Search results for: resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20969

Search results for: resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)

19799 Ambient Electrospray Deposition: An Efficient Technique to Immobilize Laccase on Cheap Electrodes With Unprecedented Reuse and Storage Performances

Authors: Mattea Carmen Castrovilli, Antonella Cartoni

Abstract:

Electrospray ionisation (ESI), a well-established technique widely used to produce ion beams of biomolecules in mass spectrometry (ESI-MS), can be used for ambient soft landing of enzymes on a specific substrate. In this work, we show how the ambient electrospray deposition (ESD) technique can be successfully exploited for manufacturing a promising, green-friendly electrochemical amperometric laccase-based biosensor with unprecedented reuse and storage performance. These biosensors have been manufactured by spraying a laccase solution of 2μg/μL at 20% of methanol on a commercial carbon screen printed electrode (C-SPE) using a custom ESD set-up. The laccase-based ESD biosensor has been tested against catechol compounds in the linear range 2-100 μM, with a limit of detection of 1.7 μM, without interference from cadmium, chrome, arsenic, and zinc and without any memory effects, but showing a matrix effect in lake and well water. The ESD biosensor shows enhanced performances compared to the ones fabricated with other immobilization methods, like drop-casting. Indeed, it retains 100% activity up to two months of storage at ambient conditions without any special care and working stability up to 63 measurements on the same electrode just prepared and 20 on a one-year-old electrode subjected to redeposition together with a 100% resistance to use of the same electrode in subsequent days. The ESD method is a one-step, environmentally friendly method that allows the deposition of the bio-recognition layer without using any additional chemicals. The promising results in terms of storage and working stability also obtained with the more fragile lactate oxidase enzyme suggest these improvements should be attributed to the ESD technique rather than to the bioreceptor, highlighting how the ESD could be useful in reducing pollution from disposable devices. Acknowledgment: The understanding at the molecular level of this promising biosensor by using different spectroscopies, microscopies and analytical techniques is the subject of our PRIN 2022 project ESILARANTE.

Keywords: reuse, storage performance, immobilization, electrospray deposition, biosensor, laccase, catechol detection, green chemistry

Procedia PDF Downloads 49
19798 Simulation of Pedestrian Service Time at Different Delay Times

Authors: Imran Badshah

Abstract:

Pedestrian service time reflects the performance of the facility, and it’s a key parameter to analyze the capability of facilities provided to serve pedestrians. The level of service of pedestrians (LOS) mainly depends on pedestrian time and safety. The pedestrian time utilized by taking a service is mainly influenced by the number of available services and the time utilized by each pedestrian in receiving a service; that is called a delay time. In this paper, we analyzed the simulated pedestrian service time with different delay times. A simulation is performed in AnyLogic by developing a model that reflects the real scenario of pedestrian services such as ticket machine gates at rail stations, airports, shopping malls, and cinema halls. The simulated pedestrian time is determined for various delay values. The simulated result shows how pedestrian time changes with the delay pattern. The histogram and time plot graph of a model gives the mean, maximum and minimum values of the pedestrian time. This study helps us to check the behavior of pedestrian time at various services such as subway stations, airports, shopping malls, and cinema halls.

Keywords: agent-based simulation, anylogic model, pedestrian behavior, time delay

Procedia PDF Downloads 196
19797 2D RF ICP Torch Modelling with Fluid Plasma

Authors: Mokhtar Labiod, Nabil Ikhlef, Keltoum Bouherine, Olivier Leroy

Abstract:

A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

Keywords: direct-coupled model, magnetohydrodynamic, modelling, plasma torch simulation

Procedia PDF Downloads 419
19796 Stable Isotope Ratios Data for Tracing the Origin of Greek Olive Oils and Table Olives

Authors: Efthimios Kokkotos, Kostakis Marios, Beis Alexandros, Angelos Patakas, Antonios Avgeris, Vassilios Triantafyllidis

Abstract:

H, C, and O stable isotope ratios were measured in different olive oils and table olives originating from different regions of Greece. In particular, the stable isotope ratios of different olive oils produced in the Lakonia region (Peloponesse – South Greece) from different varieties, i.e., cvs ‘Athinolia’ and ‘koroneiki’, were determined. Additionally, stable isotope ratios were also measured in different table olives (cvs ‘koroneiki’ and ‘kalamon’) produced in the same region (Messinia). The aim of this study was to provide sufficient isotope ratio data regarding each variety and region of origin that could be used in discriminative studies of oil olives and table olives produced by different varieties in other regions. In total, 97 samples of olive oil (cv ‘Athinolia’ and ‘koroneiki’) and 67 samples of table olives (cvs ‘kalmon’ and ‘koroneiki’) collected during two consecutive sampling periods (2021-2022 and 2022-2023) were measured. The C, H, and O isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS), and the results obtained were analyzed using chemometric techniques. The measurements of the isotope ratio analyses were expressed in permille (‰) using the delta δ notation (δ=Rsample/Rstandard-1, where Rsample and Rstandardis represent the isotope ratio of sample and standard). Results indicate that stable isotope ratios of C, H, and O ranged between -28,5+0,45‰, -142,83+2,82‰, 25,86+0,56‰ and -29,78+0,71‰, -143,62+1,4‰, 26,32+0,55‰ in olive oils produced in Lakonia region from ‘Athinolia’ and ‘koroneiki ‘varieties, respectively. The C, H, and O values from table olives originated from Messinia region were -28,58+0,63‰, -138,09+3,27‰, 25,45+0,62‰ and -29,41+0,59‰,-137,67+1,15‰, 24,37+0,6‰ for ‘Kalamon’ and ‘koroneiki’ olives respectively. Acknowledgments: This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH—CREATE—INNOVATE (Project code: T2EDK-02637; MIS 5075094, Title: ‘Innovative Methodological Tools for Traceability, Certification and Authenticity Assessment of Olive Oil and Olives’).

Keywords: olive oil, table olives, Isotope ratio, IRMS, geographical origin

Procedia PDF Downloads 39
19795 2023 Targets of the Republic of Turkey State Railways

Authors: Hicran Açıkel, Hüseyin Arak, D. Ali Açıkel

Abstract:

Train or high-speed train is a land transportation vehicle, which is safe and offers passengers flight-like comfort while it is preferred for busy lines with respect to passengers. In this study, TCDD’s (Turkish State Railroads Company) targets for the year of 2023, the planned high-speed train lines, improvements, which are considered for the existing lines, and achievability of these targets are examined.

Keywords: train, high-speed train, TCDD, transportation

Procedia PDF Downloads 226
19794 Assessment of Antiplasmodial and Some Other Biological Activities, Essential Oil Constituents, and Phytochemical Screening of Azadirachta indica Grown in Ethiopia

Authors: Dawit Chankaye

Abstract:

Background: Azadirachta indica is the most versatile medicinal plant known as “the village pharmacy”. The plant is known for its broad spectrum of biological activity in India and various countries throughout history by many different human cultures. The present study was undertaken to determine the antimalarial and antidiabetic properties of the leaf extracts of A. indica grown in Ethiopia when treated in vivo. This work has also been concerned with determining essential oil composition and the antimicrobial activity of the plant in vitro. Methods: Leaf extracts were prepared using three different selected solvents. Standard and clinical isolates were treated with extracts of the leaves of A. indica using the agar well diffusion method. The antimalarial and antidiabetic tests were conducted in vivo in mice. Phytochemical screening was done using various chemical tests, and the volatile oil constituents were determined using gas chromatography-mass spectrometry (GC/MS). Results: In vivo antimalarial activity studies showed 85.23%, 69.01%, and 81.54% suppression of parasitemia for 70% ethanol, acetone, and water extracts, respectively. The extracts collected from the leaves also showed reduced blood sugar levels in alloxan-induced diabetic mice. In addition, the solvent extracts were shown to have an inhibitory effect on the growth of microorganisms under the study. The minimum inhibitory concentration (MIC) ranged from 850 to 1050 µg/ml. Notably, the phytochemical investigation of the ethanol extracts showed the presence of secondary metabolites. Seventeen compounds (mainly sesquiterpenes) that represent 75.45% of the essential oil were characterized by GC/MS analysis. Conclusion: Extracts examined in this study indicated that the leaf of A. indica grown in Ethiopia retained the biological activities demonstrating the extent equivalent to when it was grown in its natural habitat. In addition, phytochemical investigation and GC/MS analysis of volatile oil constituents showed comparable results to those presented in India and elsewhere.

Keywords: Azadirachta indica, vivo, antimalarial activity, antidiabetic activity, alloxan, mice, phytochemical

Procedia PDF Downloads 60
19793 Researches Concerning Photons as Corpuscles with Mass and Negative Electrostatic Charge

Authors: Ioan Rusu

Abstract:

Let us consider that the entire universe is composed of a single hydrogen atom within which the electron is moving around the proton. In this case, according to classical theories of physics, radiation and photons, respectively, should be absorbed by the electron. Depending on the number of photons absorbed, the electron radius of rotation around the proton is established. Until now, the principle of photon absorption by electrons and the electron transition to a new energy level, namely to a higher radius of rotation around the proton, is not clarified in physics. This paper aims to demonstrate that photons have mass and negative electrostatic charge similar to electrons but infinitely smaller. The experiments which demonstrate this theory are simple: thermal expansion, photoelectric effect and thermonuclear reaction.

Keywords: electrostatic, electron, photon, proton, radiation

Procedia PDF Downloads 382
19792 Aircraft Automatic Collision Avoidance Using Spiral Geometric Approach

Authors: M. Orefice, V. Di Vito

Abstract:

This paper provides a description of a Collision Avoidance algorithm that has been developed starting from the mathematical modeling of the flight of insects, in terms of spirals and conchospirals geometric paths. It is able to calculate a proper avoidance manoeuver aimed to prevent the infringement of a predefined distance threshold between ownship and the considered intruder, while minimizing the ownship trajectory deviation from the original path and in compliance with the aircraft performance limitations and dynamic constraints. The algorithm is designed in order to be suitable for real-time applications, so that it can be considered for the implementation in the most recent airborne automatic collision avoidance systems using the traffic data received through an ADS-B IN device. The presented approach is able to take into account the rules-of-the-air, due to the possibility to select, through specifically designed decision making logic based on the consideration of the encounter geometry, the direction of the calculated collision avoidance manoeuver that allows complying with the rules-of-the-air, as for instance the fundamental right of way rule. In the paper, the proposed collision avoidance algorithm is presented and its preliminary design and software implementation is described. The applicability of this method has been proved through preliminary simulation tests performed in a 2D environment considering single intruder encounter geometries, as reported and discussed in the paper.

Keywords: ADS-B Based Application, Collision Avoidance, RPAS, Spiral Geometry.

Procedia PDF Downloads 231
19791 Hydrometallurgical Production of Nickel Ores from Field Bugetkol

Authors: A. T. Zhakiyenova, E. E. Zhatkanbaev, Zh. K. Zhatkanbaeva

Abstract:

Nickel plays an important role in mechanical engineering and creation of military equipment; practically all steel are alloyed by nickel and other metals for receiving more durable, heat-resistant, corrosion-resistant steel and cast iron. There are many ways of processing of nickel in the world. Generally, it is igneous metallurgy methods. In this article, the review of majority existing ways of technologies of processing silicate nickel - cobalt ores is considered. Leaching of ores of a field Bugetkol is investigated by solution of sulfuric acid. We defined a specific consumption of sulfuric acid in relation to the mass of ore and to the mass of metal.

Keywords: cobalt, degree of extraction, hydrometallurgy, igneous metallurgy, leaching, matte, nickel

Procedia PDF Downloads 363
19790 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: building structure, seismic waves, spectral analysis, structural response

Procedia PDF Downloads 388
19789 Protein Feeding Pattern, Casein Feeding, or Milk-Soluble Protein Feeding did not Change the Evolution of Body Composition during a Short-Term Weight Loss Program

Authors: Solange Adechian, Michèle Balage, Didier Remond, Carole Migné, Annie Quignard-Boulangé, Agnès Marset-Baglieri, Sylvie Rousset, Yves Boirie, Claire Gaudichon, Dominique Dardevet, Laurent Mosoni

Abstract:

Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment.

Keywords: lean body mass, fat mass, casein, whey, protein metabolism

Procedia PDF Downloads 58
19788 An Efficient Emitting Supramolecular Material Derived from Calixarene: Synthesis, Optical and Electrochemical Features

Authors: Serkan Sayin, Songul F. Varol

Abstract:

High attention on the organic light-emitting diodes has been paid since their efficient properties in the flat panel displays, and solid-state lighting was realized. Because of their high efficient electroluminescence, brightness and providing eminent in the emission range, organic light emitting diodes have been preferred a material compared with the other materials consisting of the liquid crystal. Calixarenes obtained from the reaction of p-tert-butyl phenol and formaldehyde in a suitable base have been potentially used in various research area such as catalysis, enzyme immobilization, and applications, ion carrier, sensors, nanoscience, etc. In addition, their tremendous frameworks, as well as their easily functionalization, make them an effective candidate in the applied chemistry. Herein, a calix[4]arene derivative has been synthesized, and its structure has been fully characterized using Fourier Transform Infrared Spectrophotometer (FTIR), proton nuclear magnetic resonance (¹H-NMR), carbon-13 nuclear magnetic resonance (¹³C-NMR), liquid chromatography-mass spectrometry (LC-MS), and elemental analysis techniques. The calixarene derivative has been employed as an emitting layer in the fabrication of the organic light-emitting diodes. The optical and electrochemical features of calixarane-contained organic light-emitting diodes (Clx-OLED) have been also performed. The results showed that Clx-OLED exhibited blue emission and high external quantum efficacy. As a conclusion obtained results attributed that the synthesized calixarane derivative is a promising chromophore with efficient fluorescent quantum yield that provides it an attractive candidate for fabricating effective materials for fluorescent probes and labeling studies. This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK Grant no. 117Z402).

Keywords: calixarene, OLED, supramolecular chemistry, synthesis

Procedia PDF Downloads 240
19787 A Study on the Performance Improvement of Zeolite Catalyst for Endothermic Reaction

Authors: Min Chang Shin, Byung Hun Jeong, Jeong Sik Han, Jung Hoon Park

Abstract:

In modern times, as flight speeds have increased due to improvements in aircraft and missile engine performance, thermal loads have also increased. Because of the friction heat of air flow with high speed on the surface of the vehicle, it is not easy to cool the superheat of the vehicle by the simple air cooling method. For this reason, a cooling method through endothermic heat is attracting attention by using a fuel that causes an endothermic reaction in a high-speed vehicle. There are two main ways of cooling the fuel through the endothermic reaction. The first is physical heat absorption. When the temperature rises, there is a sensible heat that accompanies it. The second is the heat of reaction corresponding to the chemical heat absorption, which absorbs heat during the fuel decomposes. Generally, since the decomposition reaction of the fuel proceeds at a high temperature, it does not achieve a great efficiency in cooling the high-speed flight body. However, when the catalyst is used, decomposition proceeds at a low temperature thereby increasing the cooling efficiency. However, when the catalyst is used as a powder, the catalyst enters the engine and damages the engine or the catalyst can deteriorate the performance due to the sintering. On the other hand, when used in the form of pellets, catalyst loss can be prevented. However, since the specific surface of pellet is small, the efficiency of the catalyst is low. And it can interfere with the flow of fuel, resulting in pressure loss and problems with fuel injection. In this study, we tried to maximize the performance of the catalyst by preparing a hollow fiber type pellet for zeolite ZSM-5, which has a higher amount of heat absorption, than other conventional pellets. The hollow fiber type pellet was prepared by phase inversion method. The hollow fiber type pellet has a finger-like pore and sponge-like pore. So it has a higher specific surface area than conventional pellets. The crystal structure of the prepared ZSM-5 catalyst was confirmed by XRD, and the characteristics of the catalyst were analyzed by TPD/TPR device. This study was conducted as part of the Basic Research Project (Pure-17-20) of Defense Acquisition Program Administration.

Keywords: catalyst, endothermic reaction, high-speed vehicle cooling, zeolite, ZSM-5

Procedia PDF Downloads 297
19786 Histamine Skin Reactivity Increased with Body Mass Index in Korean Children

Authors: Jeong Hong Kim, Ju Wan Kang

Abstract:

Objective: Histamine skin prick testing is most commonly used to diagnose immunoglobulin E (IgE)-mediated allergic diseases, and histamine reactivity is used as a standardized positive control in the interpretation of a skin prick test. However, reactivity to histamine differs among individuals for reasons that are poorly understood. The present study aimed to evaluate the potential association between body mass index (BMI) and histamine skin reactivity in children. Methods: A total of 451 children (246 boys, 205 girls) aged 7–8 years were enrolled in this study. The skin prick test was performed with 26 aeroallergens commonly found in Korea. Other information was collected, including sex, age, BMI, parental allergy history, and parental smoking status. Multivariate analysis was used to confirm the association between histamine skin reactivity and BMI. Results: The histamine wheal size was revealed to be associated with BMI (Spearman's Rho 0.161, p < 0.001). This association was confirmed by multivariate analysis, after adjusting for sex, age, parental allergy history, parental smoking status, and allergic sensitization (coefficient B 0.071, 95% confidence interval 0.030–0.112). Conclusions: Skin responses to histamine were primarily correlated with increased BMI. Further studies are needed to understand the clinical implication of BMI when interpreting the results of skin prick test.

Keywords: allergy, body mass index, histamine, skin prick test

Procedia PDF Downloads 351
19785 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction

Authors: Huashan Tai, Chien-Hui Lung

Abstract:

Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.

Keywords: biomass energy, orange, torrefaction

Procedia PDF Downloads 278
19784 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics

Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri

Abstract:

Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.

Keywords: impedance spectroscopy, ultrasensitive detection in blood, peak frequency, electronic interface

Procedia PDF Downloads 386
19783 Experimental Approach and Numerical Modeling of Thermal Properties of Porous Materials: Application to Construction Materials

Authors: Nassima Sotehi

Abstract:

This article presents experimental and numerical results concerning the thermal properties of the porous materials used as heat insulator in the buildings sector. Initially, the thermal conductivity of three types of studied walls (classic concrete, concrete with cork aggregate and polystyrene concrete) was measured in experiments by the method of the boxes. Then a numerical modeling of the heat and mass transfers which occur within porous materials was applied to these walls. This work shows the influence of the presence of water in building materials on their thermophysical properties, as well as influence of the nature of materials and dosage of fibers introduced within these materials on the thermal and mass transfers.

Keywords: modeling, porous media, thermal materials, thermal properties

Procedia PDF Downloads 453
19782 Experimental and Numerical Investigations on the Vulnerability of Flying Structures to High-Energy Laser Irradiations

Authors: Vadim Allheily, Rudiger Schmitt, Lionel Merlat, Gildas L'Hostis

Abstract:

Inflight devices are nowadays major actors in both military and civilian landscapes. Among others, missiles, mortars, rockets or even drones this last decade are increasingly sophisticated, and it is today of prior manner to develop always more efficient defensive systems from all these potential threats. In this frame, recent High Energy Laser weapon prototypes (HEL) have demonstrated some extremely good operational abilities to shot down within seconds flying targets several kilometers off. Whereas test outcomes are promising from both experimental and cost-related perspectives, the deterioration process still needs to be explored to be able to closely predict the effects of a high-energy laser irradiation on typical structures, heading finally to an effective design of laser sources and protective countermeasures. Laser matter interaction researches have a long history of more than 40 years at the French-German Research Institute (ISL). Those studies were tied with laser sources development in the mid-60s, mainly for specific metrology of fast phenomena. Nowadays, laser matter interaction can be viewed as the terminal ballistics of conventional weapons, with the unique capability of laser beams to carry energy at light velocity over large ranges. In the last years, a strong focus was made at ISL on the interaction process of laser radiation with metal targets such as artillery shells. Due to the absorbed laser radiation and the resulting heating process, an encased explosive charge can be initiated resulting in deflagration or even detonation of the projectile in flight. Drones and Unmanned Air Vehicles (UAVs) are of outmost interests in modern warfare. Those aerial systems are usually made up of polymer-based composite materials, whose complexity involves new scientific challenges. Aside this main laser-matter interaction activity, a lot of experimental and numerical knowledge has been gathered at ISL within domains like spectrometry, thermodynamics or mechanics. Techniques and devices were developed to study separately each aspect concerned by this topic; optical characterization, thermal investigations, chemical reactions analysis or mechanical examinations are beyond carried out to neatly estimate essential key values. Results from these diverse tasks are then incorporated into analytic or FE numerical models that were elaborated, for example, to predict thermal repercussion on explosive charges or mechanical failures of structures. These simulations highlight the influence of each phenomenon during the laser irradiation and forecast experimental observations with good accuracy.

Keywords: composite materials, countermeasure, experimental work, high-energy laser, laser-matter interaction, modeling

Procedia PDF Downloads 245
19781 Antecedents and Impacts of Human Capital Flight in the Sub-Saharan Africa with Specific Reference to the Higher Education Sector: Conceptual Model

Authors: Zelalem B. Gurmessa, Ignatius W. Ferreira, Henry F. Wissink

Abstract:

The aim of this paper is to critically examine the factors contributing to academic brain drain in the Sub-Saharan Africa with specific reference to the higher education sector. Africa in general and Sub-Saharan African (SSA) countries, in particular, are experiencing an exodus of highly trained, qualified and competent human resources to other developing and developed countries thereby threatening the overall development of the relevant regions and impeding both public and private service delivery systems in the nation states. The region is currently in a dire situation in terms of health care services, education, science, and technology. The contribution of SSA countries to Science, Technology and Innovation is relatively minimal owing to the migration of skilled professionals due to both push and pull factors. The phenomenon calls for both international and trans-boundary, regional, national and institutional interventions to curb the exodus. Based on secondary data and the review of the literature, the article conceptualizes the antecedents and impacts of human capital flight or brain drain in the SSA countries from a higher education perspective. To this end, the article explores the magnitude, causes, and impacts of brain drain in the region. Despite the lack of consistent data on the magnitude of academic brain drain in the region, a critical analysis of the existing sources shows that pay disparity between developing and developed countries, the lack of enabling working conditions at source countries, fear of security due to political turmoil or unrest, the availability of green pastures and opportunity for development in the receiving countries were identified as major factors contributing to academic brain drain in the region. This hampers the socio-economic, technological and political development of the region. The paper also recommends that further research can be undertaken on the magnitude, causes, characteristics and impact of brain drain on the sustainability and competitiveness of SSA higher education institutions in the region.

Keywords: brain drain, higher education, sub-Saharan Africa, sustainable development

Procedia PDF Downloads 240
19780 Piezoelectric Micro-generator Characterization for Energy Harvesting Application

Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima

Abstract:

This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.

Keywords: piezoelectric, micro-generator, energy harvesting, cantilever beam

Procedia PDF Downloads 451
19779 ReS, Resonant String Shell: Development of an Acoustic Shell for Outdoor Chamber Music Concerts

Authors: Serafino Di Rosario

Abstract:

ReS is a sustainable hand-built temporary acoustic shell, developed since 2011 and built during the architectural workshop at Villa Pennisi in Musica in Acireale, Sicily, each year since 2012. The design concept aims to provide a portable structure by reducing the on-site construction problems and the skills required by the builders together with maximizing the acoustic performance for the audience and the musicians. The shell is built using only wood, recycled for the most part, and can be built and dismantled by non-specialized workers in just three days. This paper describes the research process, which spans over four years and presents the final results in form of acoustic simulations performed by acoustic modeling software and real world measurements. ReS is developed by the ReS team who has been presented with the Peter Lord Award in 2015 by the Institute of Acoustics in the UK.

Keywords: acoustic shell, outdoor natural amplification, computational design, room acoustics

Procedia PDF Downloads 216
19778 Effect of Phthalates on Male Infertility: Myth or Truth?

Authors: Rashmi Tomar, A. Srinivasan, Nayan K. Mohanty, Arun K. Jain

Abstract:

Phthalates have been used as additives in industrial products since the 1930s, and are universally considered to be ubiquitous environmental contaminants. The general population is exposed to phthalates through consumer products, as well as diet and medical treatments. Animal studies showing the existence of an association between some phthalates and testicular toxicity have generated public and scientific concern about the potential adverse effects of environmental changes on male reproductive health. Unprecedented declines in fertility rates and semen quality have been reported during the last half of the 20th century in developed countries and increasing interest exists on the potential relationship between exposure to environmental contaminants, including phthalates, and human male reproductive health Studies. Phthalates may be associated with altered endocrine function and adverse effects on male reproductive development and function, but human studies are limited. The aim of the present study was detection of phthalate compounds, estimation of their metabolites in infertile & fertile male. Blood and urine samples were collected from 150 infertile patients & 75 fertile volunteers recruited through Department of Urology, Safdarjung Hospital, New Delhi. Blood have been collected in separate glass tubes from the antecubital vein of the patients, serum have been separate and estimate the phthalate level in serum samples by Gas Chromatography / Mass Spectrometry using NIOSH / OSHA detailed protocol. Urine of Infertile & Fertile Subjects was collected & extracted using solid phase extraction method, analysis by HPLC. In conclusion, to the best of our knowledge the present study based on human is first to show the presence of phthalate in human serum samples and their metabolites in urine samples. Significant differences were observed between several phthalates in infertile and fertile healthy individuals.

Keywords: Gas Chromatography, HPLC, male infertility, phthalates, serum, toxicity, urine

Procedia PDF Downloads 349
19777 A Multi-Family Offline SPE LC-MS/MS Analytical Method for Anionic, Cationic and Non-ionic Surfactants in Surface Water

Authors: Laure Wiest, Barbara Giroud, Azziz Assoumani, Francois Lestremau, Emmanuelle Vulliet

Abstract:

Due to their production at high tonnages and their extensive use, surfactants are contaminants among those determined at the highest concentrations in wastewater. However, analytical methods and data regarding their occurrence in river water are scarce and concern only a few families, mainly anionic surfactants. The objective of this study was to develop an analytical method to extract and analyze a wide variety of surfactants in a minimum of steps, with a sensitivity compatible with the detection of ultra-traces in surface waters. 27 substances, from 12 families of surfactants, anionic, cationic and non-ionic were selected for method optimization. Different retention mechanisms for the extraction by solid phase extraction (SPE) were tested and compared in order to improve their detection by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The best results were finally obtained with a C18 grafted silica LC column and a polymer cartridge with hydrophilic lipophilic balance (HLB), and the method developed allows the extraction of the three types of surfactants with satisfactory recoveries. The final analytical method comprised only one extraction and two LC injections. It was validated and applied for the quantification of surfactants in 36 river samples. The method's limits of quantification (LQ), intra- and inter-day precision and accuracy were evaluated, and good performances were obtained for the 27 substances. As these compounds have many areas of application, contaminations of instrument and method blanks were observed and considered for the determination of LQ. Nevertheless, with LQ between 15 and 485 ng/L, and accuracy of over 80%, this method was suitable for monitoring surfactants in surface waters. Application on French river samples revealed the presence of anionic, cationic and non-ionic surfactants with median concentrations ranging from 24 ng/L for octylphenol ethoxylates (OPEO) to 4.6 µg/L for linear alkylbenzenesulfonates (LAS). The analytical method developed in this work will therefore be useful for future monitoring of surfactants in waters. Moreover, this method, which shows good performances for anionic, non-ionic and cationic surfactants, may be easily adapted to other surfactants.

Keywords: anionic surfactant, cationic surfactant, LC-MS/MS, non-ionic surfactant, SPE, surface water

Procedia PDF Downloads 130
19776 Chemical Composition and Antifungal Activity of Selected Essential Oils against Toxigenic Fungi Associated with Maize (Zea mays L.)

Authors: Birhane Atnafu, Chemeda Abedeta Garbaba, Fikre Lemessa, Abdi Mohammed, Alemayehu Chala

Abstract:

Essential oil is a bio-pesticide plant product used as an alternative to pesticides in managing plant pests, including fungal pathogens. Thus, the current study aims to investigate the chemical composition and antifungal activities of essential oils (EO) extracted from three aromatic plants i.e., Thymus vulgaris, Coriandrum sativum, and Cymbopogon martini. The leaf parts of those selected plants were collected from the Jimma area and their essential oil was extracted by hydro-distillation method in a Clevenger apparatus. The chemical composition of selected plant essential oil was analyzed by using Gas chromatography-mass spectrometry (GC/MS) and their inhibitory effects were tested in vitro on toxigenic fungi isolated from maize kernel. Chemical analysis results revealed the presence of 32 compounds in C. sativum with Hexanedioic acid, bis (2-ethylhexyl) ester (46. 9%), 2-Decenal, (E)- (12.6), and linalool (8.3%) being the dominant ones. T. vulgaris essential oils constituted 25 compounds, of which thymol (34.4%), o-cymene (17.5%), and Gamma-Terpinene (16.8%) were the major components. Twenty-five compounds were detected in C. martinii of which geraniol (51.4%), Geranyl acetate (14.5%), and Trans – ß-Ocimene (11.7%) were dominant. The EOs of the tested plants had very high antifungal activity (up to 100% efficacy) against Aspergillus flavus, Aspergillus niger, Fusarium graminearum and Fusarium verticillioides in vitro and on maize grains. The antifungal activities of these essential oils were dependent on the major components such as thymol, hexanedioic acid, bis (2-ethylhexyl) ester, and geraniol. The study affirmed the potential of these essential oils controlling as bio-fungicides to manage the effects of potentially toxigenic fungi associated with maize under post-harvest stages. This can reduce the consequences of the health impacts of the mold and toxigenic compounds produced in maize.

Keywords: bio-activity, bio-pesticides, maize, mycotoxin

Procedia PDF Downloads 53
19775 Understanding Factor Influence in Mask-Wearing Intention Onboard Airplanes during COVID-19: Attitude as a Mediator

Authors: Jing Yu Pan, Dahai Liu

Abstract:

Airlines in the US have taken protective measures to battle the COVID-19 pandemic, with a mask mandate being the most important one, especially in the aircraft cabin. As the industry is recovering from the pandemic, mask-wearing will eventually become a personal choice during flight. Nevertheless, COVID-19 will continue to create uncertainty for a long time into the future, making it necessary to understand the attitude and voluntary use of masks by air travelers on airplanes even after masks are no longer mandatory. This study aimed to understand the relationship between demographic characteristics and mask-wearing intention in the US. For age, gender, income, educational, and ethnicity groups, this study examined three factors – subjective norms, risk avoidance, and information seeking and their influence on the mask-wearing intention onboard airplanes during COVID-19 and whether or not attitude toward masks was an important mediator. The results show that all demographic factors except gender could help to explain the group variations in factor impact and the mediating effect in mask-wearing intentions. In particular, Asian travelers had mask-wearing intentions that were not affected by attitude either directly or indirectly. These findings provide useful implications to enhance the health and safety of air travelers, especially in the US, where opposing views toward mask-wearing still widely exist.

Keywords: COVID-19, passenger demographics, aircraft cabin, mask-wearing intention, attitude as mediator

Procedia PDF Downloads 79
19774 Collagen/Hydroxyapatite Compositions Doped with Transitional Metals for Bone Tissue Engineering Applications

Authors: D. Ficai, A. Ficai, D. Gudovan, I. A. Gudovan, I. Ardelean, R. Trusca, E. Andronescu, V. Mitran, A. Cimpean

Abstract:

In the last years, scientists struggled hardly to mimic bone structures to develop implants and biostructures which present higher biocompatibility and reduced rejection rate. One way to obtain this goal is to use similar materials as that of bone, namely collagen/hydroxyapatite composite materials. However, it is very important to tailor both compositions but also the microstructure of the bone that would ensure both the optimal osteointegartion and the mechanical properties required by the application. In this study, new collagen/hydroxyapatites composite materials doped with Cu, Li, Mn, Zn were successfully prepared. The synthesis method is described below: weight the Ca(OH)₂ mass, i.e., 7,3067g, and ZnCl₂ (0.134g), CuSO₄ (0.159g), LiCO₃ (0.133g), MnCl₂.4H₂O (0.1971g), and suspend in 100ml distilled water under magnetic stirring. The solution thus obtained is added a solution of NaH₂PO₄*H2O (8.247g dissolved in 50ml distilled water) under slow dropping of 1 ml/min followed by adjusting the pH to 9.5 with HCl and finally filter and wash until neutral pH. The as-obtained slurry was dried in the oven at 80°C and then calcined at 600°C in order to ensure a proper purification of the final product of organic phases, also inducing a proper sterilization of the mixture before insertion into the collagen matrix. The collagen/hydroxyapatite composite materials are tailored from morphological point of view to optimize their biocompatibility and bio-integration against mechanical properties whereas the addition of the dopants is aimed to improve the biological activity of the samples. The addition of transitional metals can improve the biocompatibility and especially the osteoblasts adhesion (Mn²⁺) or to induce slightly better osteoblast differentiation of the osteoblast, Zn²⁺ being a cofactor for many enzymes including those responsible for cell differentiation. If the amount is too high, the final material can become toxic and lose all of its biocompatibility. In order to achieve a good biocompatibility and not reach the cytotoxic effect, the amount of transitional metals added has to be maintained at low levels (0.5% molar). The amount of transitional metals entering into the elemental cell of HA will be verified using inductively-coupled plasma mass spectrometric system. This highly sensitive technique is necessary, because, at such low levels of transitional metals, the difference between biocompatible and cytotoxic is a very thin line, thus requiring proper and thorough investigation using a precise technique. In order to determine the structure and morphology of the obtained composite materials, IR spectroscopy, X-Ray diffraction (XRD), scanning electron microscopy (SEM), and Energy Dispersive X-Ray Spectrometry (EDS) were used. Acknowledgment: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project “Biomimetic porous structures obtained by 3D printing developed for bone tissue engineering (BIOGRAFTPRINT), No. 127PED/2017 is also highly acknowledged.

Keywords: collagen, composite materials, hydroxyapatite, bone tissue engineering

Procedia PDF Downloads 192
19773 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

Authors: Hanifeh Imanian, Morteza Kolahdoozan

Abstract:

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Keywords: dispersion, marine environment, mathematical-statistical relationship, oil spill

Procedia PDF Downloads 222
19772 Discrete-Time Bulk Queue with Service Capacity Depending on Previous Service Time

Authors: Yutae Lee

Abstract:

This paper considers a discrete-time bulk-arrival bulkservice queueing system, where service capacity varies depending on the previous service time. By using the generating function technique and the supplementary variable method, we compute the distributions of the queue length at an arbitrary slot boundary and a departure time.

Keywords: discrete-time queue, bulk queue, variable service capacity, queue length distribution

Procedia PDF Downloads 461
19771 A Proper Design of Wind Turbine Grounding Systems under Lightning

Authors: M. A. Abd-Allah, Mahmoud N. Ali, A. Said

Abstract:

Lightning Protection Systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must be taken into account. This paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated.

Keywords: WTs, Lightning Protection Systems (LPS), GPR, grounding system, mitigating techniques

Procedia PDF Downloads 361
19770 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap

Authors: Jaroslav Krutil, Simona Fialová, , František Pochylý

Abstract:

A nonlinear mathematical model of mutual fluid-structure interaction is presented in the work. The model is applicable to the general shape of sealing gaps. An in compressible fluid and turbulent flow is assumed. The shaft carries a rotational and procession motion, the gap is axially flowed through. The achieved results of the additional mass, damping and stiffness matrices may be used in the solution of the rotor dynamics. The usage of this mathematical model is expected particularly in hydraulic machines. The method of control volumes in the ANSYS Fluent was used for the simulation. The obtained results of the pressure and velocity fields are used in the mathematical model of additional effects.

Keywords: nonlinear mathematical model, CFD modeling, hydrodynamic sealing gap, matrices of mass, stiffness, damping

Procedia PDF Downloads 520