Search results for: linked data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26349

Search results for: linked data

25179 The Links between Cardiovascular Risk and Psychological Wellbeing in Elderly

Authors: Laura Sapranaviciute-Zabazlajeva, Abdonas Tamosiunas, Dalia Luksiene, Dalia Virviciute

Abstract:

The cardiovascular diseases (CVD) is the leading cause of death in the EU, especially in the middle aged and elderly population. Psychological wellbeing (PWB) has been linked with better cardiovascular health and survival in the elderly. The aim of the study is to evaluate associations between CVD risk and PWB in middle-aged and elderly population. 10,940 middle aged and older Lithuanians of age 45-74 years, were invited to participate in the study. A study sample was a random and stratified by gender and age. In 2006-2008 7,087 responders participated in the survey, so the response rate was 64.8%. A follow-up study was conducted from 2006 till 2015. New CVD cases and deaths from CVD were evaluated using the Kaunas population-based CVD register and death register of Kaunas. Study results revealed that good PWB predicts longer life in female participants (Log Rank = 13.7, p < 0.001). In the fully adjusted model for socio-demographic, social and CVD risk factors, hazard ratio for CVD mortality risk was lower amongst women with good PWB (HR = 0.28, 95% CI 0.11-0.72), but not significantly for men. Our study concludes, that lower CVD mortality rates is being associated with better PWB in female aged 45-74 years.

Keywords: psychological well-being, cardiovascular disease, elderly, survival

Procedia PDF Downloads 363
25178 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 247
25177 Aquatic and Marshy Flora from Fresh Water Wetlands on Quartz Sands in Pinar Del Río, Cuba

Authors: Vidal Pérez Hernández, Enrique González Pendás

Abstract:

The most of the aquatic and marshy flora in Cuba, is located on quartzitic sands ecosystems and they are represented by a wide variety of freshwater wetlands, which are spread in the whole south and south-western plain of Pinar del Río. The survey carried out in these ecosystems offers an updated inventory of these species, showing up their biological type, habit, distribution, and the threat grade to which are subjected, taking into account categories granted by UICN. A remarkable decrease is evidenced, in the total of these species respect to this area; due to deposit processes and deforestation, which are taken place by the human activity and the climatic change. It is linked to others threats like, limitless use of their water reserves for irrigating groves, the cattle raising and intensive fishing. Added to it, its sand with 99% pure crystal quartz, are used for the mining. The combination of all factors has a negative influence on a flora that stores more than 250 species, most of them herbaceous and hydrophytes. In these particular ecosystems were found a 40% endemism from total flora, and more than 80%, are evaluated inside the most sensitive threat categories, and already some of them have been declared as extinct.

Keywords: aquatic flora, marshy flora, quartzitic sands, wetlands

Procedia PDF Downloads 232
25176 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 46
25175 The Environment in Urban Planning and Management

Authors: Mahmood Salahi, Fatemeh Abbasi

Abstract:

Increasing urbanization will be one of the defining features of the 21st century. This produces particular environmental challenges, but also creates opportunities for urban development that can contribute to broader goals of improving the quality of life for urban residents while achieving greater levels of global sustainability. Half of the world’s population already lives in urban areas, with a growing number of these people living in towns and cities in low and middle-income countries. As well as being a demographic phenomenon, urbanisation is intricately linked with economic, social and environmental transitions. The increasing proportion of the world’s population living in urban areas has been driven by the growing concentration of new investment and employment opportunities. In general, nations with the most rapid and sustained economic growth have urbanized most.2 Urban centres provide opportunities for a range of social and cultural activities, as well as being critical for innovations in science, technology and education. Indeed, urban areas are of critical importance for social and economic development: as the Cities Alliance recognizes, 'only sustained urban growth has the capacity to lift both rural and urban populations out of poverty'.

Keywords: environment, urban planning, management, urbanization

Procedia PDF Downloads 466
25174 Enhancing Transfer Path Analysis with In-Situ Component Transfer Path Analysis for Interface Forces Identification

Authors: Raef Cherif, Houssine Bakkali, Wafaa El Khatiri, Yacine Yaddaden

Abstract:

The analysis of how vibrations are transmitted between components is required in many engineering applications. Transfer path analysis (TPA) has been a valuable engineering tool for solving Noise, Vibration, and Harshness (NVH problems using sub-structuring applications. The most challenging part of a TPA analysis is estimating the equivalent forces at the contact points between the active and the passive side. Component TPA in situ Method calculates these forces by inverting the frequency response functions (FRFs) measured at the passive subsystem, relating the motion at indicator points to forces at the interface. However, matrix inversion could pose problems due to the ill-conditioning of the matrices leading to inaccurate results. This paper establishes a TPA model for an academic system consisting of two plates linked by four springs. A numerical study has been performed to improve the interface forces identification. Several parameters are studied and discussed, such as the singular value rejection and the number and position of indicator points chosen and used in the inversion matrix.

Keywords: transfer path analysis, matrix inverse method, indicator points, SVD decomposition

Procedia PDF Downloads 89
25173 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 337
25172 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 263
25171 Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 481
25170 Emotion Regulation in Young Adult Relationships in Relation to Parenting Styles

Authors: Taylor Brown

Abstract:

The parent-child attachment bond begins early, often before the birth of the child. Both father and mother begin to form a bond with their child by selecting a name, preparing for the birth, etc. The biological mother carries the child and often breastfeeds the infant after birth. While fathers play an important role in caring for the child as well, the mother is traditionally seen as the caregiver with the primary role of caring for her baby. These core ideas could include how to form bonds, how to communicate emotions, and even how to create and maintain relationships. Mothers tend to shape their children’s minds based on their own. Studies have even shown that when mothers stroke their children’s bodies with their fingers, the child does calm down more than most other methods. The bond between mother and child is one that happens immediately and strengthens over time. This attachment affects the child’s overall development. The mother-child attachment style is directly linked to a multitude of patterns in adolescents, and later on, adults. The researcher believes that the subsequent patterns of communication in romantic relationships are included in the multitude. Awareness of these patterns and their effects could improve experiences in romantic relationships during young adulthood.

Keywords: emotion regulation, parenting, maternal, attachment, romantic

Procedia PDF Downloads 175
25169 Illuminating Regional Identity: An Interdisciplinary Exploration in Saskatchewan

Authors: Anne Gibbons

Abstract:

Both inside and outside of academia, people have sought to understand the “sense of place” of various regions, many times over and for many different reasons. The concept of regional identity is highly complex and surrounded by considerable contention. There are multiple bodies of research on regional identity theory in many different disciplines and even across sub-disciplinary classifications. Each discipline takes a slightly different angle or perspective on regional identity, resulting in a fragmented body of work on this topic overall. There is a need to consolidate this body of increasingly fragmented theory through interdisciplinary integration. For the purpose of this study, the province of Saskatchewan will serve as an exemplar for exploring regional identity in a concrete context. Saskatchewan can be thought of as a ‘functional region,’ with clear boundaries and clear residency, from which regional identity can be studied. This thesis shares the outcomes of a qualitative study grounded in a series of group interviews with askatchewan residents, from which it is concluded that the use of interdisciplinary theory is an appropriate approach to the study of regional identity. Regional identity cannot be compartmentalized; it is a web of characteristics, attributes, and feelings that are inextricably linked. The thesis thus concludes by offering lessons learned about how we might better understand regional identity, as illuminated through both interdisciplinary theory and the lived experiences and imaginations of people living in the region of Saskatchewan.

Keywords: interdisciplinary, regional identity, Saskatchewan, tourism studies

Procedia PDF Downloads 535
25168 The Use of Solar Energy for Cold Production

Authors: Nadia Allouache, Mohamed Belmedani

Abstract:

—It is imperative today to further explore alternatives to fossil fuels by promoting in particular renewable sources such as solar energy to produce cold. It is also important to carefully examine its current state as well as its future prospects in order to identify the best conditions to support its optimal development. Technologies linked to this alternative source fascinate their users because they seem magical in their ability to directly transform solar energy into cooling without resorting to polluting fuels such as those derived from hydrocarbons or other toxic substances. In addition, these not only allow significant savings in electricity, but can also help reduce the costs of electrical energy production when applied on a large scale. In this context, our study aims to analyze the performance of solar adsorption cooling systems by selecting the appropriate pair Adsorbent/Adsorbat. This paper presents a model describing the heat and mass transfer in tubular finned adsorber of solar adsorption refrigerating machine. The modelisation of the solar reactor take into account the heat and mass transfers phenomena. The reactor pressure is assumed to be uniform, the reactive reactor is characterized by an equivalent thermal conductivity and assumed to be at chemical and thermodynamic equilibrium. The numerical model is controlled by heat, mass and sorption equilibrium equations. Under the action of solar radiation, the mixture of adsorbent–adsorbate has a transitory behavior. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analyzed and discussed. The results show that, The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions. For the used working pairs, the increase of the fins number corresponds to the decreasing of the heat losses towards environmental and the increasing of heat transfer inside the adsorber. The system performances are sensitive to the evaporator and condenser temperatures. For the considered data measured for clear type days of may and july 2023 in Algeria and Tunisia, the performances of the cooling system are very significant in Algeria compared to Tunisia.

Keywords: adsorption, adsorbent-adsorbate pair, finned reactor, numerical modeling, solar energy

Procedia PDF Downloads 23
25167 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer

Authors: Nirav J. Patel, Kalpesh K. Dudani

Abstract:

Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.

Keywords: acoustic, partial discharge, perfectly matched layer, sensor

Procedia PDF Downloads 528
25166 Physico-Chemical and Heavy Metals Analysis of Contaminated Ndawuse River in North Central of Nigeria

Authors: Abimbola Motunrayo Enitan, Ibironke Titilayo Enitan, John Odiyo

Abstract:

The study assessed quality of surface water across Ndawuse River Phase 1, District of the Federal Capital Territory (FCT), Abuja, Nigeria based on physico-chemical variables that are linked to agrochemical and eutrophication, as well as heavy metals concentrations. In total, sixteen surface water samples were obtained from five locations along the river. The results were compared with the standard limits set by both World Health Organization and Federal Environmental Protection Agency for drinking water. The results obtained indicated that BOD5, turbidity, 0.014-3.511 mg Fe/L and 0.078-0.14 mg Cr/L were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on these receiving water bodies primarily as their source of water. Therefore, there is a need for strict enforcement of environmental laws considering the physico-chemical analysis.

Keywords: Abuja, heavy metals, human exposure risk, Ndawuse River, Nigeria, surface water

Procedia PDF Downloads 270
25165 Investigating the Role of Social Media in Supporting Parents and Teachers of Students with Down Syndrome: Focus on Early Intervention Services in the Kingdom of Saudi Arabia

Authors: Awatif Habeeb Al-Shamare

Abstract:

The number of social media users amongst special education teachers and parents of children with Down Syndrome (DS) is increasing annually. This is also the case in the Kingdom of Saudi Arabia (KSA). However, according to the best of the author’s knowledge, there are no qualitative studies which testify to the true nature of the interaction between teachers and parents when using social media, nor the role of social media in supporting and assisting parents and teachers with regards to the children’s educational needs in KSA. Therefore, this ongoing study aims to identify the role of social media in supporting parents and teachers of DS students, with a special emphasis on early intervention services in KSA. By bridging the knowledge gap on social media and special education in KSA and presenting socially relevant and applied information on the topic, this research provides a theoretical and practical base for the establishment of appropriate and effective programmes between the ministries of Information and Special Education in particular. A qualitative approach was selected because it was the most suitable approach for exploring the participants’ experiences, which could not be determined through scientific tests. Interviewing, chosen as the research instrument, allowed the researcher to obtain a detailed understanding of the topic linked to the study objectives. Initially, a pilot study was conducted at the Daycare Center in May 2016. Its aim was to examine and refine the methodology and assess whether the questions were understood with the potential for re-drafting them, if necessary. The main study consists of five teachers and five mothers with experience of using social media and with links to the Daycare Center. Thematic Analysis has been chosen for analysing the findings because it is a flexible method that allows themes to emerge from the data. Results of the current study are still in the initial stages, but the preliminary findings are as follows: (1) social media is an important tool in encouraging parents and teachers to access the necessary information and knowledge about, and experience in, early intervention services; (2) it acts as a support network for the parents; (3) it helps raise awareness about DS and the need for early intervention; (4) it can be used to put pressure on the government for an expansion in early intervention services, and finally (5) its use can be problematic in that parents and teachers face some difficulties and challenges when using the different platforms. It can be concluded that social media plays a significant role in the lives of teachers and parents with special needs children in KSA.

Keywords: down syndrome, early intervention services, social media, support parents and teachers

Procedia PDF Downloads 147
25164 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 134
25163 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 150
25162 Challenges in Multi-Cloud Storage Systems for Mobile Devices

Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta

Abstract:

The demand for cloud storage is increasing because users want continuous access their data. Cloud Storage revolutionized the way how users access their data. A lot of cloud storage service providers are available as DropBox, G Drive, and providing limited free storage and for extra storage; users have to pay money, which will act as a burden on users. To avoid the issue of limited free storage, the concept of Multi Cloud Storage introduced. In this paper, we will discuss the limitations of existing Multi Cloud Storage systems for mobile devices.

Keywords: cloud storage, data privacy, data security, multi cloud storage, mobile devices

Procedia PDF Downloads 703
25161 Illness Roles and Coping Strategies in Aged Patients on Hemodialysis in Lahore

Authors: Zainab Bashir

Abstract:

There has been a lot of quantitative research on end-stage renal disease (ESRD), its implications, psychological effects and so on across the world, however little qualitative information is available on coping strategies and illness role adaptations specific to renal failure. This article attempts to learn about illness roles and coping strategies specific to aged ESRD patients on hemodialysis in Lahore. The patients were interviewed on a structured schedule and were asked questions on tasks and coping related to physical, psychological, and social consequences of renal failure. Standardised techniques and methods of grounded theory were used to analyse and code the information in this small-scale, in-depth study. An analysis of tasks faced by the ESRD patients and coping they employ to fulfill or overcome those tasks were done. This analysis was based on three different types of data: experiential accounts of ESRD patients with respect to tasks and strategies for coping, coping styles and illness roles typologies, and monographs of coping styles. In the information gathered using interviews with respondents, three styles of problem focused coping, and two styles of emotion focused coping could be identified. Problem focused coping included making physical adjustments to suit the requirements of the health condition, including dialysis and medical regime as integral part of patients’ lives, and altering future plans according to the course of the disease. Emotion focused coping included seeking help to manage stress/anxiety and resenting the disease condition and giving up. These coping styles are linked to the illness roles assigned to the respondents. In conclusion, there is no single formula to deal with the disease, however, some typologies can be established. In most of the cases discussed in the paper, adjustment to a regular dialysis routine, restriction in bodily function, inability to work and negative impacts on family life, especially spousal relationships have come to fore as common problems. A large part of coping with these problems had to do with mentally accepting the disease and carrying on despite. These cannot be seen as deviant adaptations to the depressive situation arising from renal failure, but more of patterned ways in which patients can approximate a close to normal lifestyle despite the terminal disease.

Keywords: coping strategies, ESRD patients, hemodialysis, illness roles

Procedia PDF Downloads 123
25160 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 190
25159 Effect of Innovation and Its Determinants on the Performance of Small and Medium-Sized Enterprises

Authors: Rihab Hentati, Younes Boujelbene

Abstract:

Nowadays we realize more and more than the value of a company is not only a function of its means of production but depends essentially on the managerial aptitude and orientation to implement the material and human means for generating profitability. Indeed, a productive R&D activity, a good strategy, and innovation are originally supplementary benefits that increase the value of the business. Is this ‘value-added’ closely linked to innovation? The purpose of our research is to Meta-analyze the results of 56 empirical studies in order to explain the overall effect of innovation on performance of small and medium-sized enterprises. In order to justify the differences in the results, we look for the moderating factors that may affect the innovation-performance relationship. We find a positive and significant relationship between innovation and performance in small and medium-sized enterprises. The results also note a positive relationship between entrepreneurial orientation, research and development (R&D), and performance in SMEs. In addition, innovation has a strong impact on performance measured both with accounting and market index. The originality of the article is based on a rigorous synthesis, based on several statistical tools, of an important subject of research in finance.

Keywords: innovation, performance, entrepreneurial orientation, meta-analysis, moderator variables

Procedia PDF Downloads 288
25158 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem

Authors: Ouafa Amira, Jiangshe Zhang

Abstract:

Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.

Keywords: clustering, fuzzy c-means, regularization, relative entropy

Procedia PDF Downloads 263
25157 Synthesis, Characterization, Antioxidant and Anti-inflammatory Studies of Modern Synthetic Tetra Phenyl Porphyrin Derivatives

Authors: Mian Gul Sayed, Rahim Shah, Fazal Mabood, Najeeb Ur Rahman, Maher Noor

Abstract:

Embarking on the frontier of molecular advancement, this study focuses on the synthesis and characterization of a distinct class of porphyrin derivatives—specifically, the 5, 10, 15, 20-tetrakis (3-bromopropoxyphenyl) porphyrins. Through meticulous synthetic methodologies, these derivatives are crafted, strategically incorporating bromopropoxyphenyl moieties at distinct positions within the porphyrin framework. This research aims to unravel the structural intricacies and explore the potential applications of these compounds through a detailed characterization utilizing advanced analytical techniques. 5, 10, 15, 20, tetrakis (4-hydroxyphenyl) porphyrin was synthesized by treating pyrrole and p- hydroxylbenzaldehyde. 5, 10, 15, 20, tetrakis-(4-hydroxyphenyl) was converted into 5, 10, 15, 20, tetrakis (4-bromoalkoxyphenyl) porphyrin. 5,10,15, 20-Tetrakis -(4-bromoalkoxyphenyl) porphyrin was treated with Isopropyl phenol, para-Aminophenol, hydroquinone, 2-Naphthol, 1-Naphthol and Hydroquinone and different derivatives of ether-linked were obtained. The synthesized compounds were analyzed using contemporary spectroscopic techniques like UV-Vis, NMR and Mass spectrometry. The synthesized compounds were also tested for their biological activities like antioxidants and anti-inflammatory.

Keywords: tetraphenyl porphyrin, NMR, antioxidant, anti-inflammatory

Procedia PDF Downloads 23
25156 Physical Activity Levels in Qatar: A Pedometer-Based Assessment

Authors: Suzan Sayegh, Izzeldin Ibrahim, Mercia Van Der Walt, Mohamed Al-Kuwari

Abstract:

Background: Walking is the most common form of physical activity which can promote a healthy well-being among people of different age groups. In this regard, pedometers are becoming more popular within research and are considered useful tools in monitoring physical activity levels based on individuals’ daily steps. A value of ˂5,000 steps/day is identified as a sedentary lifestyle index where individuals are physically inactive. Those achieving 5,000-7,499 steps/day have a low active lifestyle as they do not meet the moderate-to-vigorous physical activity (MVPA) recommendations. Moreover, individuals achieving ≥7,500 steps/day are classified as physically active. The objective of this study is to assess the physical activity levels of adult population in Qatar through a pedometer-based program over a one-year period. Methods: A cross-sectional analysis, as part of a longitudinal study, was carried out over one year to assess the daily step count. “Step into Health” is a community-based program launched by Aspire as an approach for the purpose of improving physical activity across the population of Qatar. The program involves distribution of pedometers to registered members which is supported by a self-monitoring online account and linked to a web database. Daily habitual physical activity (daily total step count) was assessed through Omron HJ-324U pedometer. Analyses were done on data extracted from the web database. Results: A total of 1,988 members were included in this study (males: n=1,143, 57%; females: n=845, 43%). Average age was 37.8±10.9 years distributed as 60% of age between age 25-54 (n=1,186), 27% of age 45-64 (n=546), and 13% of age 18-24 years (n=256). Majority were non-Qataris, 81% (n=1,609) compared with 19% of the Qatari nationality (n=379). Average body mass index (BMI) was 27.8±6.1 (kg/m2) where most of them (41%, n=809) were found to be overweight, between 25-30 kg/m2. Total average step count was 5,469±3,884. Majority were found to be sedentary (n=1110, 55.8%). Middle aged individuals were more active than the other two age groups. Males were seen as more active than females. Those who were less active had a higher BMI. Older individuals were more active. There was a variation in the physical activity level throughout the year period. Conclusion: It is essential to further develop the available intervention programs and increase their physical activity behavior. Planning such physical activity interventions for female population should involve aspects such as time, environmental variables and aerobic steps.

Keywords: adults, pedometer, physical activity, step-count

Procedia PDF Downloads 363
25155 Sampled-Data Model Predictive Tracking Control for Mobile Robot

Authors: Wookyong Kwon, Sangmoon Lee

Abstract:

In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.

Keywords: model predictive control, sampled-data control, linear parameter varying systems, LPV

Procedia PDF Downloads 314
25154 Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data

Authors: Nasser A. Al-Azri

Abstract:

The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world.

Keywords: bioclimatic charts, passive cooling, TMY, weather data

Procedia PDF Downloads 242
25153 Development of Management System of the Experience of Defensive Modeling and Simulation by Data Mining Approach

Authors: D. Nam Kim, D. Jin Kim, Jeonghwan Jeon

Abstract:

Defense Defensive Modeling and Simulation (M&S) is a system which enables impracticable training for reducing constraints of time, space and financial resources. The necessity of defensive M&S has been increasing not only for education and training but also virtual fight. Soldiers who are using defensive M&S for education and training will obtain empirical knowledge and know-how. However, the obtained knowledge of individual soldiers have not been managed and utilized yet since the nature of military organizations: confidentiality and frequent change of members. Therefore, this study aims to develop a management system for the experience of defensive M&S based on data mining approach. Since individual empirical knowledge gained through using the defensive M&S is both quantitative and qualitative data, data mining approach is appropriate for dealing with individual empirical knowledge. This research is expected to be helpful for soldiers and military policy makers.

Keywords: data mining, defensive m&s, management system, knowledge management

Procedia PDF Downloads 258
25152 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 113
25151 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 237
25150 Polyclonal IgG glycosylation in Patients with Pediatric Appendicitis

Authors: Dalma Dojcsák, Csaba Váradi, Flóra Farkas, Tamás Farkas, János Papp, Béla Viskolcz

Abstract:

Background: Appendicitis is a common acute inflammatory condition in both children and adults, but current laboratory markers such as C-reactive protein (CRP), white blood cell count (WBC), absolute neutrophil count (ANC), and red blood cell count (RNC) lack specificity in detecting appendicitis-related inflammation. N-glycosylation, an asparagine-linked glycosylation process, plays a vital role in cellular interactions, angiogenesis, immune response, and effector functions. Altered N-glycosylation impacts tumor growth and both acute and chronic inflammatory processes. IgG, the second most abundant glycoprotein in serum, shows altered glycosylation patterns during inflammation, suggesting that IgG glycan modifications may serve as potential biomarkers for appendicitis. Specifically, increased levels of agalactosylated IgG glycans are a known feature of various inflammatory conditions, potentially including appendicitis. Identifying pediatric appendicitis remains challenging due to the absence of specific biomarkers, which makes diagnosis reliant on clinical symptoms, imaging such as ultrasound, and nonspecific lab indicators (e.g., CRP, WBC, ANC). In this study, we analyzed the IgG derived N-glycome in pediatric patients with appendicitis compared with healthy controls. Methodology: The N-glycome was analyzed by high-performance liquid-chromatography combined with mass spectrometry. IgG was isolated from serum samples by Protein G column. The IgG derived glycans were released by enzymatic deglycosylation and fluorescent tags were attached to each glycan moiety, which made necessitates the sample clean-up for further reliable quantitation. Overall, 38 controls and 40 serum samples diagnosed with pediatric appendicitis were analyzed by HILIC-MS methods. Multivariate statistical tests were performed with area percentage under the peak data derived from the integrated peaks, which were obtained from the chromatograms. Conclusions: Our results represented the altered N-glycome of IgG in pediatric appendicitis is similar with other observations. The glycosylation pattern reported so far for IgG is characterized by decreased galactosylation and sialylation, and an increase in fucosylation.

Keywords: N-glycosylation, liquid chromatography, mass spectrometry, inflammation, appendicitis, immunoglobulin G

Procedia PDF Downloads 17