Search results for: excess thermodynamic parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9458

Search results for: excess thermodynamic parameters

8288 The Role of Substrate-Nozzle Distance in Atomic Nebulizers in the Photoelectrochemical Water Splitting Performance of ZnO Nanorods

Authors: Lukman Andi Priyatna, Vivi Fauzia, Ferry Anggoro Ardy Nugroho

Abstract:

Zinc oxide (ZnO) based nanostructures are ubiquitous in applications due to their favourable physicochemical properties and ease of fabrication. One widely accessible route to synthesize ZnO nanorods, which show promising performance in e.g. photoelectrochemical water splitting, is hydrothermal growth of ZnO seeds, obtained via an atomic nebulizer. Despite its popularity, study on the impact of the synthesis parameters in atomic nebulizer on the performance of the synthesized ZnO nanostructures is lacking. This study presents an investigation on the impact of the distance between substrates and atomic nebulizer nozzle on the photoelectrochemical water splitting performance of ZnO nanorods. Adjusting such a distance reveals an optimum separation which results in nanostructures with highest absorbance. Such high absorbance translates into improved photoelectrochemistry, as evaluated by higher photocurrent density, from 0.11 mA/cm² to 0.14 mA/cm² and higher Applied Bias Photon-to-Current Efficiency (ABPE) from 0.12% to 0.14%. These results underscore the importance of understanding and optimizing the experimental parameters during ZnO nanostructure synthesis. In a broader context, it advertises the need to carefully assess the corresponding fabrication parameters to optimize the performance of the obtained nanostructures.

Keywords: atomic nebulizer, photocurrent density, photoelectrochemical water splitting, ZnO nanorods

Procedia PDF Downloads 31
8287 Getting to Know the Types of Concrete and its Production Methods

Authors: Mokhtar Nikgoo

Abstract:

Definition of Concrete and Concreting: Concrete (in French: Béton) in a broad sense is any substance or combination that consists of a sticky substance with the property of cementation. In general, concrete refers to concrete made by Portland cement, which is produced by mixing fine and coarse aggregates, Portland cement and water. After enough time, this mixture turns into a stone-like substance. During the hardening or processing of the concrete, cement is chemically combined with water to form strong crystals that bind the aggregates together, a process called hydration. During this process, significant heat is released called hydration heat. Additionally, concrete shrinks slightly, especially as excess water evaporates, a phenomenon known as drying shrinkage. The process of hardening and the gradual increase in concrete strength that occurs with it does not end suddenly unless it is artificially interrupted. Instead, it decreases more over long periods of time, although, in practical applications, concrete is usually set after 28 days and is considered at full design strength. Concrete may be made from different types of cement as well as pozzolans, furnace slag, additives, additives, polymers, fibers, etc. It may also be used in the way it is made, heating, water vapor, autoclave, vacuum, hydraulic pressures and various condensers.

Keywords: concrete, RCC, batching, cement, Pozzolan, mixing plan

Procedia PDF Downloads 98
8286 Investigation on the Effect of Welding Parameters in Additive Friction Stir Welding of Glass Fiber Reinforced Polyamide 66 Composite

Authors: Nandhini Ravi, Muthukumaran Shanmugam

Abstract:

Metals are being replaced by thermoplastic polymer composites in automotive industries because of their low density, easiness to fabricate, low cost and good wear resistance. Complex polymer components consist of assemblies of smaller parts which can be joined by friction stir welding. This study deals with the additive friction stir welding of 15 wt.% glass fiber reinforced polyamide 66 composite which is a modified technique of the conventional friction stir welding by the addition of a filler plate for the heating of the composite work piece through the tool during the welding process. Welding at different combinations of tool rotational speed, travel speed and tool plunge depth was done after which the tensile strength of the respective experiments was determined. The maximum tensile strength obtained was 77 MPa which was 80% of the strength of the base material. The process parameters were optimized using the L9 orthogonal array and also the effect of individual welding parameter on the tensile strength was studied. The optimum parameter combination was determined with the help of ANOVA studies. The hardness of the welded joints was studied with the help of Shore Durometer which yielded the maximum of D 75.

Keywords: additive friction stir welding, polyamide 66, process parameters, thermoplastic polymer composite

Procedia PDF Downloads 159
8285 A Study on Using Network Coding for Packet Transmissions in Wireless Sensor Networks

Authors: Rei-Heng Cheng, Wen-Pinn Fang

Abstract:

A wireless sensor network (WSN) is composed by a large number of sensors and one or a few base stations, where the sensor is responsible for detecting specific event information, which is sent back to the base station(s). However, how to save electricity consumption to extend the network lifetime is a problem that cannot be ignored in the wireless sensor networks. Since the sensor network is used to monitor a region or specific events, how the information can be reliably sent back to the base station is surly important. Network coding technique is often used to enhance the reliability of the network transmission. When a node needs to send out M data packets, it encodes these data with redundant data and sends out totally M + R packets. If the receiver can get any M packets out from these M + R packets, it can decode and get the original M data packets. To transmit redundant packets will certainly result in the excess energy consumption. This paper will explore relationship between the quality of wireless transmission and the number of redundant packets. Hopefully, each sensor can overhear the nearby transmissions, learn the wireless transmission quality around it, and dynamically determine the number of redundant packets used in network coding.

Keywords: energy consumption, network coding, transmission reliability, wireless sensor networks

Procedia PDF Downloads 391
8284 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 279
8283 Study of the Chronic Effects of CRACK on Some Biochemical Parameters Including Triglycerides, Cholesterol, HDL, LDL, VLDL, Amylase, Lipase, Albumin, Protein in Rat

Authors: Alireza Jafarzadeh, Bahram Amu-Oqhli Tabrizi, Hadi Khayat Nouri, Arash Khaki

Abstract:

30 head of adult Vistar rats were chosen to evaluate the chronic narcotic effects of crack on some biochemical parameters. The rats weighted approximately 200 to 250 g. They were divided into 5 groups of 6 and were housed in identical condition in terms of food and ambience. Rats were maintained at 12 hours light and 12 hours darkness. Rats were injected 7.8 mg/kg BW crack intraperitoneally. The groups one to four received daily medication for one to four weeks respectively. The control groups were injected identical dose of saline. The blood was taken from control and test groups then serum was separated from. Serum biochemical parameters of amylase, lipase, triglycerides, cholesterol, HDL, LDL, VLDL, protein and albumin were measured by diagnostic kits. Serum protein and albumin levels did not show statistically significant changes. Serum lipase and amylase showed significant changes both of which were increased. The serum levels of cholesterol, LDL and HDL demonstrated no significant changes. Triglycerides values showed a significant increase in serum. Serum VLDL in groups 3 and 4 exhibited significant changes compare to other groups.

Keywords: albumin, amylase, cholesterol, crack, HDL, LDL, lipase, protein, rat, triglycerides, VLDL

Procedia PDF Downloads 698
8282 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters

Authors: K. Parandhama Gowd

Abstract:

The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.

Keywords: flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC)

Procedia PDF Downloads 572
8281 Assessment of Runway Micro Texture Using Surface Laser Scanners: An Explorative Study

Authors: Gerard Van Es

Abstract:

In this study, the use of a high resolution surface laser scanner to assess the micro texture of runway surfaces was investigated experimentally. Micro texture is one of the important surface components that helps to provide high braking friction between aircraft tires and a wet runway surface. Algorithms to derive different parameters that characterise micro texture was developed. Surface scans with a high resolution laser scanner were conducted on 40 different runway (like) surfaces. For each surface micro texture parameters were calculated from the laser scan data. These results were correlated with results obtained from a British pendulum tester that was used on the same surface. Results obtained with the British pendulum tester are generally considered to be indicative for the micro texture related friction characteristics. The results show that a meaningful correlation can be found between different parameters that characterise micro texture obtained with the laser scanner and the British pendulum tester results. Surface laser scanners are easier to operate and give more consistent results than a British pendulum tester. Therefore for airport operators surface laser scanners can be a useful tool to determine if their runway becomes slippery when wet due to a smooth micro texture.

Keywords: runway friction, micro texture, aircraft braking performance, slippery runways

Procedia PDF Downloads 121
8280 Riemannain Geometries Of Visual Space

Authors: Jacek Turski

Abstract:

The visual space geometries are constructed in the Riemannian geometry framework from simulated iso-disparity conics in the horizontalvisual plane of the binocular system with the asymmetric eyes (AEs). For the eyes fixating at the abathic distance, which depends on the AE’s parameters, the iso-disparity conics are frontal straight lines in physical space. For allother fixations, the iso-disparity conics consist of families of the ellipses or hyperbolas depending on both the AE’s parameters and the bifoveal fixation. However, the iso-disparity conic’s arcs are perceived in the gaze direction asthe frontal lines and are referred to as visual geodesics. Thus, geometriesof physical and visual spaces are different. A simple postulate that combines simulated iso-disparity conics with basic anatomy od the human visual system gives the relative depth for the fixation at the abathic distance that establishes the Riemann matric tensor. The resulting geodesics are incomplete in the gaze direction and, therefore, give thefinite distances to the horizon that depend on the AE’s parameters. Moreover, the curvature vanishes in this eyes posture such that visual space is flat. For all other fixations, only the sign of the curvature canbe inferred from the global behavior of the simulated iso-disparity conics: the curvature is positive for the elliptic iso-disparity curves and negative for the hyperbolic iso-disparity curves.

Keywords: asymmetric eye model, iso-disparity conics, metric tensor, geodesics, curvature

Procedia PDF Downloads 145
8279 A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part II: Case Studies

Authors: Morteza Aien, Masoud Rashidinejad, Mahmud Fotuhi-Firuzabad

Abstract:

Power systems are innately uncertain systems. To face with such uncertain systems, robust uncertainty assessment tools are appealed. This paper inspects the uncertainty assessment formulation of the load flow (LF) problem considering different kinds of uncertainties, developed in its companion paper through some case studies. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. The load and wind power generation are considered as probabilistic uncertain variables and the electric vehicles (EVs) and gas turbine distributed generation (DG) units are considered as possibilistic uncertain variables. The cumulative distribution function (CDF) of the system output parameters obtained by the pure probabilistic method lies within the belief and plausibility functions obtained by the joint propagation approach. Furthermore, the imprecision in the DG parameters is explicitly reflected by the gap between the belief and plausibility functions. This gap, due to the epistemic uncertainty on the DG resources parameters grows as the penetration level increases.

Keywords: electric vehicles, joint possibilistic- probabilistic uncertainty modeling, uncertain load flow, wind turbine generator

Procedia PDF Downloads 431
8278 Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt

Authors: Abdel Moktader A. El Sayed, Nahla A. El Sayed

Abstract:

Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas.

Keywords: resevoir sandstone, Egypt, Sinai, permeability

Procedia PDF Downloads 100
8277 Energy-Dense and High-Power Li-Cl₂/I₂ Batteries by Reversible Chemical Bonds

Authors: Pei Li, Chunyi Zhi

Abstract:

Conversion-type lithium-ion batteries show great potential as high-energy-density, low-cost and sustainable alternatives to current transition-metal-based intercalation cells. Li-Cl₂/Li⁻I₂ conversion batteries, based on anionic redox reactions of Cl⁻/Cl⁰ or I⁻/I⁰, are highly attractive due to their superior voltage and capacity. However, a redox-active and reversible chlorine cathode has not been developed in organic electrolytes. And thermodynamic instability and shuttling issues of iodine cathodes have plagued the active iodine loading, capacity retention and cyclability. By reversible chemical bonds, we develop reversible chlorine redox reactions in organic electrolytes with interhalogen bonds between I and Cl for Li-I₂ batteries and develop a highly thermally stable I/I₃--bonded organic salts with iodine content up to 80% as cathode materials for the rechargeable Li-I₂ batteries. The demonstration of reversible chemical bonds enabled rechargeable Li-halogen batteries opens a new avenue to develop halogen compound cathodes.

Keywords: conversion-type, chlorine, halogen cathode, high energy density, iodine, interhalogen bond, lithium-ion batteries

Procedia PDF Downloads 84
8276 The Role of ICT for Income Inequality: The Model and the Simulations

Authors: Shoji Katagiri

Abstract:

This paper is to clarify the relationship between ICT and income inequality. To do so, we develop the general equilibrium model with ICT investment, obtain the equilibrium solutions, and then simulate the model with these solutions for some OECD countries. As a result, generally, during the corresponding periods we confirm that the relationship between ICT investment and income inequality is positive. In this mode, the increment of the ratio of ICT investment to the aggregated investment in stock enhances the capital’s share of income, and finally leads to income inequality such as the increase of the share of the top decile income. Although we confirm the positive relationship between ICT investment and income inequality, the upward trend for that relationship depends on the values of parameters for the making use of the simulations and these parameters are not deterministic in the magnitudes on the calculated results for the simulations.

Keywords: ICT, inequality, capital accumulation, technology

Procedia PDF Downloads 221
8275 Post-Exercise Effects of Cold Water Immersion over a 48-Hour Recovery Period on the Physical and Haematological Parameters of Male University-Level Rugby Players

Authors: Adele Broodryk, Cindy Pienaar, Martinique Sparks, Ben Coetzee

Abstract:

Background: Cold water immersion (CWI) is a popular recovery modality utilised. However, discrepancies exist regarding the results over a 48 hour recovery period. Aim: To evaluate the effects of CWI and passive recovery (PAR) on a range of haematological and physical parameters over a 48-hour using a cross-sectional, pre-post-test design. Subjects and Methods: Both the and physical parameters were evaluated at baseline, after a 15-min fitness session, and at 0, 24 and 48 hours post-recovery in 23 male university rugby players. The CWI group sat in a cold water pool (8°C) for 20 min whereas the PAR group remained seated. Results: At 0 hours post-CWI, three (blood lactate (BLa-), Sodium (Na+) and haemoglobin) returned to baseline values, however Vertical Jump Test (VJT) height results decreased whereas after PAR it improved. From 0 to 24 and/or 48 h, four (Partial Oxygen (PO2) VJT-height, plasma glucose, and Na+) significantly increased (p ≤ 0.05) in either and/or both groups. Significant intergroup differences (p ≤ 0.05) were noticed in the physical tests. Conclusions: PAR is superior as an acute modality (0 hours) due to CWI cooling the body down. However, CWI demonstrates advantageous over a 24-hour period in a wide range of haematological variables.

Keywords: cryotherapy, recuperation, haematological, rugby

Procedia PDF Downloads 264
8274 Effect of Coal Fly Ash on Morphological and Biochemical Characteristics of Helianthus Annuus L. Sunflower

Authors: Patel P. Kailash, Patel M. Parimal

Abstract:

An investigation was conducted to study the different concentration of coal fly ash solution on morphological and biochemical parameters of Helianthus annuus L. The seeds of Helianthus annuus L. were placed in petri dishes in three replicates and allowed to grow for 16 days in different concentration of coal fly ash solution. Shoot length, root length and fresh weight, dry weight declined with increasing concentration of fly ash. Semidiluted and concentrated fly ash solution exhibited significant reduction in chlorophyll, protein,sugar and ascorbic acid. Concentration dependent changes were observed in most of parameters. Diluted solution of fly ash revealed the maximum increase morphological and biochemical changes of seedlings.

Keywords: Helianthus annuus L., protein, sugar, chlorophyll, coal fly ash

Procedia PDF Downloads 350
8273 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study

Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung

Abstract:

Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.

Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification

Procedia PDF Downloads 306
8272 Steady Conjugate Heat Transfer of Two Connected Thermal Systems

Authors: Mohamed El-Sayed Mosaad

Abstract:

An analytic approach is obtained for the steady heat transfer problem of two fluid systems, in thermal communication via heat conduction across a solid wall separating them. The two free convection layers created on wall sides are assumed to be in parallel flow. Fluid-solid interface temperature on wall sides is not prescribed in analysis in advance; rather, determined from conjugate solution among other unknown parameters. The analysis highlights the main conjugation parameters controlling thermal interaction process of involved heat transfer modes. Heat transfer results of engineering importance are obtained.

Keywords: conjugate heat transfer, boundary layer, convection, thermal systems

Procedia PDF Downloads 379
8271 Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element

Authors: Mojtaba Ahmadabadi, Akbar Masoudi, Morteza Rezai

Abstract:

In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution.

Keywords: retaining wall, fem, soil and wall interaction, angle of internal friction of the soil, wall displacement

Procedia PDF Downloads 387
8270 Oxidative Stability of an Iranian Ghee (Butter Fat) Versus Soybean Oil During Storage at Different Temperatures

Authors: Kooshan Nayebzadeh, Maryam Enteshari

Abstract:

In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25 ˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV) and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25 ˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months, while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4 ˚C between p-AV and TBA (r2=0.99).

Keywords: headspace-liquid phase microextraction, oxidation, shelf-life, soybean oil

Procedia PDF Downloads 398
8269 Substrate Coupling in Millimeter Wave Frequencies

Authors: Vasileios Gerakis, Fontounasios Christos, Alkis Hatzopoulos

Abstract:

A study of the impact of metal guard rings on the coupling between two square metal pads is presented. The structure is designed over a bulk silicon substrate with epitaxial layer, so the coupling through the substrate is also involved. A lightly doped profile is adopted and is simulated by means of an electromagnetic simulator for various pad distances and different metal layers, assuming a 65 nm bulk CMOS technology. The impact of various guard ring design (geometrical) parameters is examined. Furthermore, the increase of isolation (resulting in reduction of the noise coupling) between the pads by cutting the ring, or by using multiple rings, is also analyzed. S parameters are used to compare the various structures.

Keywords: guard rings, metal pad coupling, millimeter wave frequencies, substrate noise,

Procedia PDF Downloads 539
8268 Machine Learning in Momentum Strategies

Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu

Abstract:

The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.

Keywords: information coefficient, machine learning, momentum, portfolio, return prediction

Procedia PDF Downloads 53
8267 On the Influence of the Metric Space in the Critical Behavior of Magnetic Temperature

Authors: J. C. Riaño-Rojas, J. D. Alzate-Cardona, E. Restrepo-Parra

Abstract:

In this work, a study of generic magnetic nanoparticles varying the metric space is presented. As the metric space is changed, the nanoparticle form and the inner product are also varied, since the energetic scale is not conserved. This study is carried out using Monte Carlo simulations combined with the Wolff embedding and Metropolis algorithms. The Metropolis algorithm is used at high temperature regions to reach the equilibrium quickly. The Wolff embedding algorithm is used at low and critical temperature regions in order to reduce the critical slowing down phenomenon. The ions number is kept constant for the different forms and the critical temperatures using finite size scaling are found. We observed that critical temperatures don't exhibit significant changes when the metric space was varied. Additionally, the effective dimension according the metric space was determined. A study of static behavior for reaching the static critical exponents was developed. The objective of this work is to observe the behavior of the thermodynamic quantities as energy, magnetization, specific heat, susceptibility and Binder's cumulants at the critical region, in order to demonstrate if the magnetic nanoparticles describe their magnetic interactions in the Euclidean space or if there is any correspondence in other metric spaces.

Keywords: nanoparticles, metric, Monte Carlo, critical behaviour

Procedia PDF Downloads 516
8266 Hormones and Mineral Elements Associated with Osteoporosis in Postmenopausal Women in Eastern Slovakia

Authors: M. Mydlárová Blaščáková, J. Poráčová, Z. Tomková, Ľ. Blaščáková, M. Nagy, M. Konečná, E. Petrejčíková, Z. Gogaľová, V. Sedlák, J. Mydlár, M. Zahatňanská, K. Hricová

Abstract:

Osteoporosis is a multifactorial disease that results in reduced quality of life, causes decreased bone strength, and changes in their microarchitecture. Mostly postmenopausal women are at risk. In our study, we measured anthropometric parameters of postmenopausal women (104 women of control group – CG and 105 women of osteoporotic group - OG) and determined TSH hormone levels and PTH as well as mineral elements - Ca, P, Mg and enzyme alkaline phosphatase. Through the correlation analysis in CG, we have found association based on age and BMI, P and Ca, as well as Mg and Ca; in OG we determined interdependence based on an association of age and BMI, age and Ca. Using the Student's t test, we found significantly important differences in biochemical parameters of Mg (p ˂ 0,001) and TSH (p ˂ 0,05) between CG and OG.

Keywords: factors, bone mass density, Central Europe, biomarkers

Procedia PDF Downloads 196
8265 Gendered Violence Against Female Students Who Drink Alcohol: Perspectives Of South African Male University Students

Authors: Shakila Singh

Abstract:

Research on gender, sexual risk, and gender violence at universities has found alcohol to be a significant contributor. Studies from universities around the world suggest that drinking at universities is characterised by excess. However, not much attention has been given to the connections that students make between alcohol and violence. In this qualitative study, alcohol-fuelled violence against female students from the perspectives of male students themselves is analysed. In-depth individual interviews were conducted with ten volunteer undergraduate male students who reside in university residences. The findings reveal that alcohol continues to be seen as a masculine privilege. Male students explain that they use alcohol to give them the courage to perform hegemonic heterosexual masculinities. They use alcohol to enhance their capacity to control women. At the same time, they hold alcohol responsible for their loss of control when drunk. Male students also exploit alcohol as currency to coerce women into submission of sexual favours. By blaming alcohol for any deviant behaviour, they relinquish themselves from the responsibility of violating female students. The paper argues that violence prevention efforts in educational contexts must address the ways in which alcohol shapes the experience of gender, sexuality, and violence.

Keywords: alcohol-related violence, gender, and alcohol, hegemonic masculinities, university students

Procedia PDF Downloads 152
8264 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
8263 A Dynamic Model for Assessing the Advanced Glycation End Product Formation in Diabetes

Authors: Victor Arokia Doss, Kuberapandian Dharaniyambigai, K. Julia Rose Mary

Abstract:

Advanced Glycation End (AGE) products are the end products due to the reaction between excess reducing sugar present in diabetes and free amino group in protein lipids and nucleic acids. Thus, non-enzymic glycation of molecules such as hemoglobin, collagen, and other structurally and functionally important proteins add to the pathogenic complications such as diabetic retinopathy, neuropathy, nephropathy, vascular changes, atherosclerosis, Alzheimer's disease, rheumatoid arthritis, and chronic heart failure. The most common non-cross linking AGE, carboxymethyl lysine (CML) is formed by the oxidative breakdown of fructosyllysine, which is a product of glucose and lysine. CML is formed in a wide variety of tissues and is an index to assess the extent of glycoxidative damage. Thus we have constructed a mathematical and computational model that predicts the effect of temperature differences in vivo, on the formation of CML, which is now being considered as an important intracellular milieu. This hybrid model that had been tested for its parameter fitting and its sensitivity with available experimental data paves the way for designing novel laboratory experiments that would throw more light on the pathological formation of AGE adducts and in the pathophysiology of diabetic complications.

Keywords: advanced glycation end-products, CML, mathematical model, computational model

Procedia PDF Downloads 129
8262 Modeling of Tool Flank Wear in Finish Hard Turning of AISI D2 Using Genetic Programming

Authors: V. Pourmostaghimi, M. Zadshakoyan

Abstract:

Efficiency and productivity of the finish hard turning can be enhanced impressively by utilizing accurate predictive models for cutting tool wear. However, the ability of genetic programming in presenting an accurate analytical model is a notable characteristic which makes it more applicable than other predictive modeling methods. In this paper, the genetic equation for modeling of tool flank wear is developed with the use of the experimentally measured flank wear values and genetic programming during finish turning of hardened AISI D2. Series of tests were conducted over a range of cutting parameters and the values of tool flank wear were measured. On the basis of obtained results, genetic model presenting connection between cutting parameters and tool flank wear were extracted. The accuracy of the genetically obtained model was assessed by using two statistical measures, which were root mean square error (RMSE) and coefficient of determination (R²). Evaluation results revealed that presented genetic model predicted flank wear over the study area accurately (R² = 0.9902 and RMSE = 0.0102). These results allow concluding that the proposed genetic equation corresponds well with experimental data and can be implemented in real industrial applications.

Keywords: cutting parameters, flank wear, genetic programming, hard turning

Procedia PDF Downloads 179
8261 Numerical Study of Entropy Generation Due to Hybrid Nano-Fluid Flow through Coaxial Porous Disks

Authors: Muhammad Bilal Ameen, M. Zubair Akbar Qureshi

Abstract:

The current investigation of two-dimensional hybrid nanofluid flows with two coaxial parallel disks has been presented. Consider the hybrid nanofluid has been taken as steady-state. Consider the coaxial disks that have been porous. Consider the heat equation to examine joule heating and viscous dissipation effects. Nonlinear partial differential equations have been solved numerically. For shear stress and heat transfer, results are tabulated. Hybrid nanoparticles and Eckert numbers are increasing for heat transfer. Entropy generation is expanded with radiation parameters Eckert, Reynold, Prandtl, and Peclet numbers. A set of ordinary differential equations is obtained to utilize the capable transformation variables. The numerical solution of the continuity, momentum, energy, and entropy generation equations is obtaining using the command bvp4c of Matlab as a solver. To explore the impact of main parameters like suction/infusion, Prandtl, Reynold, Eckert, Peclet number, and volume fraction parameters, various graphs have been plotted and examined. It is concluded that a convectional nanofluid is highly compared by entropy generation with the boundary layer of hybrid nanofluid.

Keywords: entropy generation, hybrid nano fluid, heat transfer, porous disks

Procedia PDF Downloads 150
8260 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents

Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi

Abstract:

In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.

Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles

Procedia PDF Downloads 444
8259 Application of Hyperbinomial Distribution in Developing a Modified p-Chart

Authors: Shourav Ahmed, M. Gulam Kibria, Kais Zaman

Abstract:

Control charts graphically verify variation in quality parameters. Attribute type control charts deal with quality parameters that can only hold two states, e.g., good or bad, yes or no, etc. At present, p-control chart is most commonly used to deal with attribute type data. In construction of p-control chart using binomial distribution, the value of proportion non-conforming must be known or estimated from limited sample information. As the probability distribution of fraction non-conforming (p) is considered in hyperbinomial distribution unlike a constant value in case of binomial distribution, it reduces the risk of false detection. In this study, a statistical control chart is proposed based on hyperbinomial distribution when prior estimate of proportion non-conforming is unavailable and is estimated from limited sample information. We developed the control limits of the proposed modified p-chart using the mean and variance of hyperbinomial distribution. The proposed modified p-chart can also utilize additional sample information when they are available. The study also validates the use of modified p-chart by comparing with the result obtained using cumulative distribution function of hyperbinomial distribution. The study clearly indicates that the use of hyperbinomial distribution in construction of p-control chart yields much accurate estimate of quality parameters than using binomial distribution.

Keywords: binomial distribution, control charts, cumulative distribution function, hyper binomial distribution

Procedia PDF Downloads 279