Search results for: computational brain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3171

Search results for: computational brain

2001 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment

Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan

Abstract:

This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.

Keywords: cognitive decline, functional connectivity, MCI, MMSE

Procedia PDF Downloads 386
2000 Patient-Specific Design Optimization of Cardiovascular Grafts

Authors: Pegah Ebrahimi, Farshad Oveissi, Iman Manavi-Tehrani, Sina Naficy, David F. Fletcher, Fariba Dehghani, David S. Winlaw

Abstract:

Despite advances in modern surgery, congenital heart disease remains a medical challenge and a major cause of infant mortality. Cardiovascular prostheses are routinely used in surgical procedures to address congenital malformations, for example establishing a pathway from the right ventricle to the pulmonary arteries in pulmonary valvar atresia. Current off-the-shelf options including human and adult products have limited biocompatibility and durability, and their fixed size necessitates multiple subsequent operations to upsize the conduit to match with patients’ growth over their lifetime. Non-physiological blood flow is another major problem, reducing the longevity of these prostheses. These limitations call for better designs that take into account the hemodynamical and anatomical characteristics of different patients. We have integrated tissue engineering techniques with modern medical imaging and image processing tools along with mathematical modeling to optimize the design of cardiovascular grafts in a patient-specific manner. Computational Fluid Dynamics (CFD) analysis is done according to models constructed from each individual patient’s data. This allows for improved geometrical design and achieving better hemodynamic performance. Tissue engineering strives to provide a material that grows with the patient and mimic the durability and elasticity of the native tissue. Simulations also give insight on the performance of the tissues produced in our lab and reduce the need for costly and time-consuming methods of evaluation of the grafts. We are also developing a methodology for the fabrication of the optimized designs.

Keywords: computational fluid dynamics, cardiovascular grafts, design optimization, tissue engineering

Procedia PDF Downloads 244
1999 A Detailed Computational Investigation into Copper Catalyzed Sonogashira Coupling Reaction

Authors: C. Rajalakshmi, Vibin Ipe Thomas

Abstract:

Sonogashira coupling reactions are widely employed in the synthesis of molecules of biological and pharmaceutical importance. Copper catalyzed Sonogashira coupling reactions are gaining importance owing to the low cost and less toxicity of copper as compared to the palladium catalyst. In the present work, a detailed computational study has been carried out on the Sonogashira coupling reaction between aryl halides and terminal alkynes catalyzed by Copper (I) species with trans-1, 2 Diaminocyclohexane as ligand. All calculations are performed at Density Functional Theory (DFT) level, using the hybrid Becke3LYP functional. Cu and I atoms are described using an effective core potential (LANL2DZ) for the inner electrons and its associated double-ζ basis set for the outer electrons. For all other atoms, 6-311G+* basis set is used. We have identified that the active catalyst species is a neutral 3-coordinate trans-1,2 diaminocyclohexane ligated Cu (I) alkyne complex and found that the oxidative addition and reductive elimination occurs in a single step proceeding through one transition state. This is owing to the ease of reductive elimination involving coupling of Csp2-Csp carbon atoms and the less stable Cu (III) intermediate. This shows the mechanism of copper catalyzed Sonogashira coupling reactions are quite different from those catalyzed by palladium. To gain further insights into the mechanism, substrates containing various functional groups are considered in our study to traverse their effect on the feasibility of the reaction. We have also explored the effect of ligand on the catalytic cycle of the coupling reaction. The theoretical results obtained are in good agreement with the experimental observation. This shows the relevance of a combined theoretical and experimental approach for rationally improving the cross-coupling reaction mechanisms.

Keywords: copper catalysed, density functional theory, reaction mechanism, Sonogashira coupling

Procedia PDF Downloads 118
1998 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis

Authors: R. Periyasamy, Deepak Joshi, Sneh Anand

Abstract:

Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.

Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis

Procedia PDF Downloads 500
1997 Risking Injury: Exploring the Relationship between Risk Propensity and Injuries among an Australian Rules Football Team

Authors: Sarah A. Harris, Fleur L. McIntyre, Paola T. Chivers, Benjamin G. Piggott, Fiona H. Farringdon

Abstract:

Australian Rules Football (ARF) is an invasion based, contact field sport with over one million participants. The contact nature of the game increases exposure to all injuries, including head trauma. Evidence suggests that both concussion and sub-concussive traumas such as head knocks may damage the brain, in particular the prefrontal cortex. The prefrontal cortex may not reach full maturity until a person is in their early twenties with males taking longer to mature than females. Repeated trauma to the pre-frontal cortex during maturation may lead to negative social, cognitive and emotional effects. It is also during this period that males exhibit high levels of risk taking behaviours. Risk propensity and the incidence of injury is an unexplored area of research. Little research has considered if the level of player’s (especially younger players) risk propensity in everyday life places them at an increased risk of injury. Hence the current study, investigated if a relationship exists between risk propensity and self-reported injuries including diagnosed concussion and head knocks, among male ARF players aged 18 to 31 years. Method: The study was conducted over 22 weeks with one West Australian Football League (WAFL) club during the 2015 competition. Pre-season risk propensity was measured using the 7-item self-report Risk Propensity Scale. Possible scores ranged from 9 to 63, with higher scores indicating higher risk propensity. Players reported their self-perceived injuries (concussion, head knocks, upper body and lower body injuries) fortnightly using the WAFL Injury Report Survey (WIRS). A unique ID code was used to ensure player anonymity, which also enabled linkage of survey responses and injury data tracking over the season. A General Linear Model (GLM) was used to analyse whether there was a relationship between risk propensity score and total number of injuries for each injury type. Results: Seventy one players (N=71) with an age range of 18.40 to 30.48 years and a mean age of 21.92 years (±2.96 years) participated in the study. Player’s mean risk propensity score was 32.73, SD ±8.38. Four hundred and ninety five (495) injuries were reported. The most frequently reported injury was head knocks representing 39.19% of total reported injuries. The GLM identified a significant relationship between risk propensity and head knocks (F=4.17, p=.046). No other injury types were significantly related to risk propensity. Discussion: A positive relationship between risk propensity and head trauma in contact sports (specifically WAFL) was discovered. Assessing player’s risk propensity therefore, may identify those more at risk of head injuries. Potentially leading to greater monitoring and education of these players throughout the season, regarding self-identification of head knocks and symptoms that may indicate trauma to the brain. This is important because many players involved in WAFL are in their late teens or early 20’s hence, may be at greater risk of negative outcomes if they experience repeated head trauma. Continued education and research into the risks associated with head injuries has the potential to improve player well-being.

Keywords: football, head injuries, injury identification, risk

Procedia PDF Downloads 334
1996 Effects of Listening to Pleasant Thai Classical Music on Increasing Working Memory in Elderly: An Electroencephalogram Study

Authors: Anchana Julsiri, Seree Chadcham

Abstract:

The present study determined the effects of listening to pleasant Thai classical music on increasing working memory in elderly. Thai classical music without lyrics that made participants feel fun and aroused was used in the experiment for 3.19-5.40 minutes. The accuracy scores of Counting Span Task (CST), upper alpha ERD%, and theta ERS% were used to assess working memory of participants both before and after listening to pleasant Thai classical music. The results showed that the accuracy scores of CST and upper alpha ERD% in the frontal area of participants after listening to Thai classical music were significantly higher than before listening to Thai classical music (p < .05). Theta ERS% in the fronto-parietal network of participants after listening to Thai classical music was significantly lower than before listening to Thai classical music (p < .05).

Keywords: brain wave, elderly, pleasant Thai classical music, working memory

Procedia PDF Downloads 460
1995 Neuroanatomical Specificity in Reporting & Diagnosing Neurolinguistic Disorders: A Functional & Ethical Primer

Authors: Ruairi J. McMillan

Abstract:

Introduction: This critical analysis aims to ascertain how well neuroanatomical aetiologies are communicated within 20 case reports of aphasia. Neuroanatomical visualisations based on dissected brain specimens were produced and combined with white matter tract and vascular taxonomies of function in order to address the most consistently underreported features found within the aphasic case study reports. Together, these approaches are intended to integrate aphasiological knowledge from the past 20 years with aphasiological diagnostics, and to act as prototypal resources for both researchers and clinical professionals. The medico-legal precedent for aphasia diagnostics under Canadian, US and UK case law and the neuroimaging/neurological diagnostics relative to the functional capacity of aphasic patients are discussed in relation to the major findings of the literary analysis, neuroimaging protocols in clinical use today, and the neuroanatomical aetiologies of different aphasias. Basic Methodology: Literature searches of relevant scientific databases (e.g, OVID medline) were carried out using search terms such as aphasia case study (year) & stroke induced aphasia case study. A series of 7 diagnostic reporting criteria were formulated, and the resulting case studies were scored / 7 alongside clinical stroke criteria. In order to focus on the diagnostic assessment of the patient’s condition, only the case report proper (not the discussion) was used to quantify results. Statistical testing established if specific reporting criteria were associated with higher overall scores and potentially inferable increases in quality of reporting. Statistical testing of whether criteria scores were associated with an unclear/adjusted diagnosis were also tested, as well as the probability of a given criterion deviating from an expected estimate. Major Findings: The quantitative analysis of neuroanatomically driven diagnostics in case studies of aphasia revealed particularly low scores in the connection of neuroanatomical functions to aphasiological assessment (10%), and in the inclusion of white matter tracts within neuroimaging or assessment diagnostics (30%). Case studies which included clinical mention of white matter tracts within the report itself were distributed among higher scoring cases, as were case studies which (as clinically indicated) related the affected vascular region to the brain parenchyma of the language network. Concluding Statement: These findings indicate that certain neuroanatomical functions are integrated less often within the patient report than others, despite a precedent for well-integrated neuroanatomical aphasiology also being found among the case studies sampled, and despite these functions being clinically essential in diagnostic neuroimaging and aphasiological assessment. Therefore, ultimately the integration and specificity of aetiological neuroanatomy may contribute positively to the capacity and autonomy of aphasic patients as well as their clinicians. The integration of a full aetiological neuroanatomy within the reporting of aphasias may improve patient outcomes and sustain autonomy in the event of medico-ethical investigation.

Keywords: aphasia, language network, functional neuroanatomy, aphasiological diagnostics, medico-legal ethics

Procedia PDF Downloads 67
1994 Genetic Algorithm to Construct and Enumerate 4×4 Pan-Magic Squares

Authors: Younis R. Elhaddad, Mohamed A. Alshaari

Abstract:

Since 2700 B.C the problem of constructing magic squares attracts many researchers. Magic squares one of most difficult challenges for mathematicians. In this work, we describe how to construct and enumerate Pan- magic squares using genetic algorithm, using new chromosome encoding technique. The results were promising within reasonable time.

Keywords: genetic algorithm, magic square, pan-magic square, computational intelligence

Procedia PDF Downloads 578
1993 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 94
1992 Occipital Squama Convexity and Neurocranial Covariation in Extant Homo sapiens

Authors: Miranda E. Karban

Abstract:

A distinctive pattern of occipital squama convexity, known as the occipital bun or chignon, has traditionally been considered a derived Neandertal trait. However, some early modern and extant Homo sapiens share similar occipital bone morphology, showing pronounced internal and external occipital squama curvature and paralambdoidal flattening. It has been posited that these morphological patterns are homologous in the two groups, but this claim remains disputed. Many developmental hypotheses have been proposed, including assertions that the chignon represents a developmental response to a long and narrow cranial vault, a narrow or flexed basicranium, or a prognathic face. These claims, however, remain to be metrically quantified in a large subadult sample, and little is known about the feature’s developmental, functional, or evolutionary significance. This study assesses patterns of chignon development and covariation in a comparative sample of extant human growth study cephalograms. Cephalograms from a total of 549 European-derived North American subjects (286 male, 263 female) were scored on a 5-stage ranking system of chignon prominence. Occipital squama shape was found to exist along a continuum, with 34 subjects (6.19%) possessing defined chignons, and 54 subjects (9.84%) possessing very little occipital squama convexity. From this larger sample, those subjects represented by a complete radiographic series were selected for metric analysis. Measurements were collected from lateral and posteroanterior (PA) cephalograms of 26 subjects (16 male, 10 female), each represented at 3 longitudinal age groups. Age group 1 (range: 3.0-6.0 years) includes subjects during a period of rapid brain growth. Age group 2 (range: 8.0-9.5 years) includes subjects during a stage in which brain growth has largely ceased, but cranial and facial development continues. Age group 3 (range: 15.9-20.4 years) includes subjects at their adult stage. A total of 16 landmarks and 153 sliding semi-landmarks were digitized at each age point, and geometric morphometric analyses, including relative warps analysis and two-block partial least squares analysis, were conducted to study covariation patterns between midsagittal occipital bone shape and other aspects of craniofacial morphology. A convex occipital squama was found to covary significantly with a low, elongated neurocranial vault, and this pattern was found to exist from the youngest age group. Other tested patterns of covariation, including cranial and basicranial breadth, basicranial angle, midcoronal cranial vault shape, and facial prognathism, were not found to be significant at any age group. These results suggest that the chignon, at least in this sample, should not be considered an independent feature, but rather the result of developmental interactions relating to neurocranial elongation. While more work must be done to quantify chignon morphology in fossil subadults, this study finds no evidence to disprove the developmental homology of the feature in modern humans and Neandertals.

Keywords: chignon, craniofacial covariation, human cranial development, longitudinal growth study, occipital bun

Procedia PDF Downloads 202
1991 Auditory and Visual Perceptual Category Learning in Adults with ADHD: Implications for Learning Systems and Domain-General Factors

Authors: Yafit Gabay

Abstract:

Attention deficit hyperactivity disorder (ADHD) has been associated with both suboptimal functioning in the striatum and prefrontal cortex. Such abnormalities may impede the acquisition of perceptual categories, which are important for fundamental abilities such as object recognition and speech perception. Indeed, prior research has supported this possibility, demonstrating that children with ADHD have similar visual category learning performance as their neurotypical peers but use suboptimal learning strategies. However, much less is known about category learning processes in the auditory domain or among adults with ADHD in which prefrontal functions are more mature compared to children. Here, we investigated auditory and visual perceptual category learning in adults with ADHD and neurotypical individuals. Specifically, we examined learning of rule-based categories – presumed to be optimally learned by a frontal cortex-mediated hypothesis testing – and information-integration categories – hypothesized to be optimally learned by a striatally-mediated reinforcement learning system. Consistent with striatal and prefrontal cortical impairments observed in ADHD, our results show that across sensory modalities, both rule-based and information-integration category learning is impaired in adults with ADHD. Computational modeling analyses revealed that individuals with ADHD were slower to shift to optimal strategies than neurotypicals, regardless of category type or modality. Taken together, these results suggest that both explicit, frontally mediated and implicit, striatally mediated category learning are impaired in ADHD. These results suggest impairments across multiple learning systems in young adults with ADHD that extend across sensory modalities and likely arise from domain-general mechanisms.

Keywords: ADHD, category learning, modality, computational modeling

Procedia PDF Downloads 51
1990 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 205
1989 Study the Action of Malathion Induced Enzymatic Changes in the Target Organ of Fish Labeo Rohita

Authors: Sudha Summarwar, Jyotsana Pandey, Deepali Lall

Abstract:

The Malathion compound has the great tendency to be accumulated in the organs of the fishes both if it is present in traces or in higher amount in the aquatic environment. It has the tendency to be accumulated more in quantity in the organs directly exposed to it. The accumulation was found to be time and concentration dependent. The accumulation of malathion was maximum in gills and is the minimum in the brain. Effect of different sub-lethal concentrations (l/5th, l/l0th, l/15th, l/20th, and 1/25th fractions of 96 hr. LC50) of malathion compound on acid phosphatase (AcPase), alkaline phosphatase (AlPase), serum glutamic oxalacetic transaminase (SGOT) and Serum Glucose-6-Phosphatase (S-G-6-Pase), serum glutamic pyruvic transaminase (SGPT) in blood of Labeo rohita exposed for the period of 15. 30, 45, and 60 days, have been studied in present investigations. In general the alterations were concentrations and duration dependent.

Keywords: AcPase, AlPase, Labeo rohita, malathion, S-G-6-Pase, SGOT, SGPT

Procedia PDF Downloads 328
1988 Exposure to Tactile Cues Does Not Influence Spatial Navigation in 129 S1/SvLm Mice

Authors: Rubaiyea Uddin, Rebecca Taylor, Emily Levesque

Abstract:

The hippocampus, located in the limbic system, is most commonly known for its role in memory and spatial navigation (as cited in Brain Reward and Pathways). It maintains an especially important role in specifically episodic and declarative memory. The hippocampus has also recently been linked to dopamine, the reward pathway’s primary neurotransmitter. Since research has found that dopamine also contributes to memory consolidation and hippocampal plasticity, this neurotransmitter is potentially responsible for contributing to the hippocampus’s role in memory formation. In this experiment we tested to see the effect of tactile cues on spatial navigation for eight different mice. We used a radial arm that had one designated “reward” arm containing sucrose. The presence or absence of bedding was our tactile cue. We attempted to see if the memory of that cue would enhance the mice’s memory of having received the reward in that arm. The results from our study showed there was no significant response from the use of tactile cues on spatial navigation on our 129 mice. Tactile cues therefore do not influence spatial navigation.

Keywords: mice, radial arm maze, memory, spatial navigation, tactile cues, hippocampus, reward, sensory skills, Alzheimer's, neuro-degenerative diseases

Procedia PDF Downloads 689
1987 The Five Aggregates in Buddhism and Natural Sciences: A Revolutionary Perspective of Nature

Authors: Choo Fatt Foo

Abstract:

The Five Aggregates is core to Buddhism teaching. According to Buddhism, human beings and all sentient beings are made up of nothing but the Five Aggregates. If that is the case, the Five Aggregates must be found in all natural sciences. So far, there has not been any systematic connection between the Five Aggregates and natural sciences. This study aims at identifying traces of the Five Aggregates in various levels of natural sciences and pointing possible directions for future research. The following areas are briefly explored to identify the connection with the Five Aggregates: physics, chemistry, organic chemistry, DNA, cell, and human body and brain. Traces of the Five Aggregates should be found in each level of this hierarchy of natural sciences for human and sentient beings to be said to be made up of the Five Aggregates. This study proposes a hierarchical structure of nature cutting every level with the Five Aggregates and the Four Great Elements as its basis. The structure proposed by this study would revolutionize how we look at nature. Hopefully, better understanding of sciences in this manner will steer the application of scientific methods and technology towards a brighter future with compassion and tolerance.

Keywords: the five aggregates, Buddhism, four great elements, physics, calabi-yau manifold

Procedia PDF Downloads 193
1986 Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs

Authors: Luis Andrey Fajardo Fajardo

Abstract:

We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed.

Keywords: Python, complex systems, graph theory, dynamical systems

Procedia PDF Downloads 511
1985 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 153
1984 What Smart Can Learn about Art

Authors: Faten Hatem

Abstract:

This paper explores the associated understanding of the role and meaning of art and whether it is perceived to be separate from smart city construction. The paper emphasises the significance of fulfilling the inherent need for discovery and interaction, driving people to explore new places and think of works of art. This is done by exploring the ways of thinking and types of art in Milton Keynes by illustrating a general pattern of misunderstanding that relies on the separation between smart, art, and architecture, promoting a better and deeper understanding of the interconnections between neuroscience, art, and architecture. A reflective approach is used to clarify the potential and impact of using art-based research, methodology, and ways of knowing when approaching global phenomena and knowledge production while examining the process of making and developing smart cities, in particular, asserting that factors can severely impact it in the process of conducting the study itself. It follows a case study as a research strategy. The qualitative methods included data collection and analysis that involved interviews and observations that depended on visuals.

Keywords: smart cities, art and smart, smart cities design, smart cities making, sustainability, city brain and smart cities metrics, smart cities standards, smart cities applications, governance, planning and policy

Procedia PDF Downloads 119
1983 A Novel Method for Face Detection

Authors: H. Abas Nejad, A. R. Teymoori

Abstract:

Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.

Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model

Procedia PDF Downloads 340
1982 Model of Cosserat Continuum Dispersion in a Half-Space with a Scatterer

Authors: Francisco Velez, Juan David Gomez

Abstract:

Dispersion effects on the Scattering for a semicircular canyon in a micropolar continuum are analyzed, by using a computational finite element scheme. The presence of microrotational waves and the dispersive SV waves affects the propagation of elastic waves. Here, a contrast with the classic model is presented, and the dependence with the micropolar parameters is studied.

Keywords: scattering, semicircular canyon, wave dispersion, micropolar medium, FEM modeling

Procedia PDF Downloads 545
1981 Syndrome of Irreversible Lithium-Effectuated Neurotoxicity: Case Report and Review of Literature

Authors: David J. Thomson, Joshua C. J. Chew

Abstract:

Background: Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT) is a rare complication of lithium toxicity that typically causes irreversible cerebellar dysfunction. These patients may require hemodialysis and extensive supports in the intensive care. Methods: A review was performed on the available literature of SILENT with a focus on current pathophysiological hypotheses and advances in treatment. Articles were restricted to the English language. Results: Although the exact mechanism is unclear, CNS demyelination, especially in the cerebellum, was seen on the brain biopsies of a proportion of patients. There is no definitive management of SILENT but instead current management is focused on primary and tertiary prevention – detection of those at risk, and rehabilitation post onset of neurological deficits. Conclusions: This review draws conclusions from a limited amount of available literature, most of which are isolated case reports. Greater awareness of SILENT and further investigation into the risk factors and pathogenesis are required so this serious and irreversible syndrome may be avoided.

Keywords: lithium toxicity, pathogenesis, SILENT, syndrome of irreversible lithium-effectuated neurotoxicity

Procedia PDF Downloads 498
1980 Self-focused Language and the Reversive Impact of Depression in Negative Mood

Authors: Soheil Behdarvandirad

Abstract:

The relationship between depression and self-focused language has been well documented. The more depressed a person is, the more "I"s, "me"s, and "my"s they will use. The present study attempted to factor in the impact of mood and examine whether negative mood has self-focused impacts similar to those of depression. For this purpose, 160 Iranian native speakers of Farsi were divided into three experimental groups of negative, neutral, and positive groups. After completing the BDI-II inventory and depression measurement, they were presented with pretested mood stimuli (3 separate videos to induce the target moods). Finally, they were asked to write between 10 to 20 minutes about a topic that asked them to freely write about their state of life, how you feel about it and the reasons that had shaped their current life circumstances. While the significant correlation between depression and I-talk was observed, negative mood led to more we-talk in general and seemed to even push the participants away from self-rumination. It seems that it is an emotion-regulatory strategy that participants subconsciously adopt to distract themselves from the disturbing mood. However, negative mood intensified the self-focused language among depressed participants. Such results can be further studied by examining brain areas that are more involved in self-perception and particularly in precuneus.

Keywords: self-focused language, depression, mood, precuneus

Procedia PDF Downloads 89
1979 Numerical Investigation of Turbulent Inflow Strategy in Wind Energy Applications

Authors: Arijit Saha, Hassan Kassem, Leo Hoening

Abstract:

Ongoing climate change demands the increasing use of renewable energies. Wind energy plays an important role in this context since it can be applied almost everywhere in the world. To reduce the costs of wind turbines and to make them more competitive, simulations are very important since experiments are often too costly if at all possible. The wind turbine on a vast open area experiences the turbulence generated due to the atmosphere, so it was of utmost interest from this research point of view to generate the turbulence through various Inlet Turbulence Generation methods like Precursor cyclic and Kaimal Spectrum Exponential Coherence (KSEC) in the computational simulation domain. To be able to validate computational fluid dynamic simulations of wind turbines with the experimental data, it is crucial to set up the conditions in the simulation as close to reality as possible. This present work, therefore, aims at investigating the turbulent inflow strategy and boundary conditions of KSEC and providing a comparative analysis alongside the Precursor cyclic method for Large Eddy Simulation within the context of wind energy applications. For the generation of the turbulent box through KSEC method, firstly, the constrained data were collected from an auxiliary channel flow, and later processing was performed with the open-source tool PyconTurb, whereas for the precursor cyclic, only the data from the auxiliary channel were sufficient. The functionality of these methods was studied through various statistical properties such as variance, turbulent intensity, etc with respect to different Bulk Reynolds numbers, and a conclusion was drawn on the feasibility of KSEC method. Furthermore, it was found necessary to verify the obtained data with DNS case setup for its applicability to use it as a real field CFD simulation.

Keywords: Inlet Turbulence Generation, CFD, precursor cyclic, KSEC, large Eddy simulation, PyconTurb

Procedia PDF Downloads 97
1978 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)

Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé

Abstract:

Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.

Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)

Procedia PDF Downloads 92
1977 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 150
1976 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation

Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang

Abstract:

The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.

Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics

Procedia PDF Downloads 134
1975 Solving LWE by Pregressive Pumps and Its Optimization

Authors: Leizhang Wang, Baocang Wang

Abstract:

General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.

Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free

Procedia PDF Downloads 60
1974 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates

Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery

Abstract:

Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.

Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop

Procedia PDF Downloads 96
1973 The End Justifies the Means: Using Programmed Mastery Drill to Teach Spoken English to Spanish Youngsters, without Relying on Homework

Authors: Robert Pocklington

Abstract:

Most current language courses expect students to be ‘vocational’, sacrificing their free time in order to learn. However, pupils with a full-time job, or bringing up children, hardly have a spare moment. Others just need the language as a tool or a qualification, as if it were book-keeping or a driving license. Then there are children in unstructured families whose stressful life makes private study almost impossible. And the countless parents whose evenings and weekends have become a nightmare, trying to get the children to do their homework. There are many arguments against homework being a necessity (rather than an optional extra for more ambitious or dedicated students), making a clear case for teaching methods which facilitate full learning of the key content within the classroom. A methodology which could be described as Programmed Mastery Learning has been used at Fluency Language Academy (Spain) since 1992, to teach English to over 4000 pupils yearly, with a staff of around 100 teachers, barely requiring homework. The course is structured according to the tenets of Programmed Learning: small manageable teaching steps, immediate feedback, and constant successful activity. For the Mastery component (not stopping until everyone has learned), the memorisation and practice are entrusted to flashcard-based drilling in the classroom, leading all students to progress together and develop a permanently growing knowledge base. Vocabulary and expressions are memorised using flashcards as stimuli, obliging the brain to constantly recover words from the long-term memory and converting them into reflex knowledge, before they are deployed in sentence building. The use of grammar rules is practised with ‘cue’ flashcards: the brain refers consciously to the grammar rule each time it produces a phrase until it comes easily. This automation of lexicon and correct grammar use greatly facilitates all other language and conversational activities. The full B2 course consists of 48 units each of which takes a class an average of 17,5 hours to complete, allowing the vast majority of students to reach B2 level in 840 class hours, which is corroborated by an 85% pass-rate in the Cambridge University B2 exam (First Certificate). In the past, studying for qualifications was just one of many different options open to young people. Nowadays, youngsters need to stay at school and obtain qualifications in order to get any kind of job. There are many students in our classes who have little intrinsic interest in what they are studying; they just need the certificate. In these circumstances and with increasing government pressure to minimise failure, teachers can no longer think ‘If they don’t study, and fail, its their problem’. It is now becoming the teacher’s problem. Teachers are ever more in need of methods which make their pupils successful learners; this means assuring learning in the classroom. Furthermore, homework is arguably the main divider between successful middle-class schoolchildren and failing working-class children who drop out: if everything important is learned at school, the latter will have a much better chance, favouring inclusiveness in the language classroom.

Keywords: flashcard drilling, fluency method, mastery learning, programmed learning, teaching English as a foreign language

Procedia PDF Downloads 110
1972 Factors Affecting English Language Acquisition and Learning for Primary Schools in Nigeria

Authors: Chibuzor Dalmeida

Abstract:

This paper shall discuss the factors affecting English Language Acquisition and Learning for Primary School in Nigeria. Learning English language is a difficult task mostly those at the primary school level. Pupils find it more difficult on vocabulary, grammar and sentence structure, idioms, pronunciation etc. Researchers have discovered the reasons behind these discrepancies and have formulated theories that could be of utmost assistance to English language teachers and students. This paper further looked at the following factors that include Learner Characteristics and Personal Traits, Situational and Environmental Factors, Prior Language Development and Competence and Age and Brain Development. It further recommended that pupils must learn new vocabulary, rules for grammar and sentence structure, idioms, pronunciation. Pupils whose families and communities set high standards for language acquisition learn more quickly than those who do not. Exposure to high-quality programs also essential. Pupils do best when they are allowed to speak their native language.

Keywords: acquisition, affecting, factors, learning

Procedia PDF Downloads 633