Search results for: WEKA data mining tool
27435 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 16327434 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh
Abstract:
Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing
Procedia PDF Downloads 34127433 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 32027432 A Multi-Agent Urban Traffic Simulator for Generating Autonomous Driving Training Data
Authors: Florin Leon
Abstract:
This paper describes a simulator of traffic scenarios tailored to facilitate autonomous driving model training for urban environments. With the rising prominence of self-driving vehicles, the need for diverse datasets is very important. The proposed simulator provides a flexible framework that allows the generation of custom scenarios needed for the validation and enhancement of trajectory prediction algorithms. Its controlled yet dynamic environment addresses the challenges associated with real-world data acquisition and ensures adaptability to diverse driving scenarios. By providing an adaptable solution for scenario creation and algorithm testing, this tool proves to be a valuable resource for advancing autonomous driving technology that aims to ensure safe and efficient self-driving vehicles.Keywords: autonomous driving, car simulator, machine learning, model training, urban simulation environment
Procedia PDF Downloads 5927431 A Comparative Study of Three Major Performance Testing Tools
Authors: Abdulaziz Omar Alsadhan, Mohd Mudasir Shafi
Abstract:
Performance testing is done to prove the reliability of any software product. There are a number of tools available in the markets that are used to perform performance testing. In this paper we present a comparative study of the three most commonly used performance testing tools. These tools cover the major share of the performance testing market and are widely used. In this paper we compared the tools on five evaluation parameters which are; User friendliness, portability, tool support, compatibility and cost. The conclusion provided at the end of the paper is based on our study and does not support any tool or company.Keywords: software development, software testing, quality assurance, performance testing, load runner, rational testing, silk performer
Procedia PDF Downloads 60827430 Integrating Building Information Modeling into Facilities Management Operations
Authors: Mojtaba Valinejadshoubi, Azin Shakibabarough, Ashutosh Bagchi
Abstract:
Facilities such as residential buildings, office buildings, and hospitals house large density of occupants. Therefore, a low-cost facility management program (FMP) should be used to provide a satisfactory built environment for these occupants. Facility management (FM) has been recently used in building projects as a critical task. It has been effective in reducing operation and maintenance cost of these facilities. Issues of information integration and visualization capabilities are critical for reducing the complexity and cost of FM. Building information modeling (BIM) can be used as a strong visual modeling tool and database in FM. The main objective of this study is to examine the applicability of BIM in the FM process during a building’s operational phase. For this purpose, a seven-storey office building is modeled Autodesk Revit software. Authors integrated the cloud-based environment using a visual programming tool, Dynamo, for the purpose of having a real-time cloud-based communication between the facility managers and the participants involved in the project. An appropriate and effective integrated data source and visual model such as BIM can reduce a building’s operational and maintenance costs by managing the building life cycle properly.Keywords: building information modeling, facility management, operational phase, building life cycle
Procedia PDF Downloads 15527429 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 12527428 A Machine Learning-Assisted Crime and Threat Intelligence Hunter
Authors: Mohammad Shameel, Peter K. K. Loh, James H. Ng
Abstract:
Cybercrime is a new category of crime which poses a different challenge for crime investigators and incident responders. Attackers can mask their identities using a suite of tools and with the help of the deep web, which makes them difficult to track down. Scouring the deep web manually takes time and is inefficient. There is a growing need for a tool to scour the deep web to obtain useful evidence or intel automatically. In this paper, we will explain the background and motivation behind the research, present a survey of existing research on related tools, describe the design of our own crime/threat intelligence hunting tool prototype, demonstrate its capability with some test cases and lastly, conclude with proposals for future enhancements.Keywords: cybercrime, deep web, threat intelligence, web crawler
Procedia PDF Downloads 17327427 Using the Semantic Web Technologies to Bring Adaptability in E-Learning Systems
Authors: Fatima Faiza Ahmed, Syed Farrukh Hussain
Abstract:
The last few decades have seen a large proportion of our population bending towards e-learning technologies, starting from learning tools used in primary and elementary schools to competency based e-learning systems specifically designed for applications like finance and marketing. The huge diversity in this crowd brings about a large number of challenges for the designers of these e-learning systems, one of which is the adaptability of such systems. This paper focuses on adaptability in the learning material in an e-learning course and how artificial intelligence and the semantic web can be used as an effective tool for this purpose. The study proved that the semantic web, still a hot topic in the area of computer science can prove to be a powerful tool in designing and implementing adaptable e-learning systems.Keywords: adaptable e-learning, HTMLParser, information extraction, semantic web
Procedia PDF Downloads 33927426 The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia
Authors: T. H. Derdzyan, K. A. Ghazaryan, G. A. Gevorgyan
Abstract:
Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.Keywords: Armenia, metallurgical industrial activity, heavy metal pollutionl, soil enzyme activity
Procedia PDF Downloads 29627425 Aviation versus Aerospace: A Differential Analysis of Workforce Jobs via Text Mining
Authors: Sarah Werner, Michael J. Pritchard
Abstract:
From pilots to engineers, the skills development within the aerospace industry is exceptionally broad. Employers often struggle with finding the right mixture of qualified skills to fill their organizational demands. This effort to find qualified talent is further complicated by the industrial delineation between two key areas: aviation and aerospace. In a broad sense, the aerospace industry overlaps with the aviation industry. In turn, the aviation industry is a smaller sector segment within the context of the broader definition of the aerospace industry. Furthermore, it could be conceptually argued that -in practice- there is little distinction between these two sectors (i.e., aviation and aerospace). However, through our unstructured text analysis of over 6,000 job listings captured, our team found a clear delineation between aviation-related jobs and aerospace-related jobs. Using techniques in natural language processing, our research identifies an integrated workforce skill pattern that clearly breaks between these two sectors. While the aviation sector has largely maintained its need for pilots, mechanics, and associated support personnel, the staffing needs of the aerospace industry are being progressively driven by integrative engineering needs. Increasingly, this is leading many aerospace-based organizations towards the acquisition of 'system level' staffing requirements. This research helps to better align higher educational institutions with the current industrial staffing complexities within the broader aerospace sector.Keywords: aerospace industry, job demand, text mining, workforce development
Procedia PDF Downloads 27227424 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education
Procedia PDF Downloads 13227423 Programming Language Extension Using Structured Query Language for Database Access
Authors: Chapman Eze Nnadozie
Abstract:
Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.Keywords: data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table
Procedia PDF Downloads 18727422 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis
Authors: Shriya Shukla, Lachin Fernando
Abstract:
Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning
Procedia PDF Downloads 12527421 How to Use Big Data in Logistics Issues
Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy
Abstract:
Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.Keywords: big data, logistics, operational efficiency, risk management
Procedia PDF Downloads 64127420 A Case Study of Ontology-Based Sentiment Analysis for Fan Pages
Authors: C. -L. Huang, J. -H. Ho
Abstract:
Social media has become more and more important in our life. Many enterprises promote their services and products to fans via the social media. The positive or negative sentiment of feedbacks from fans is very important for enterprises to improve their products, services, and promotion activities. The purpose of this paper is to understand the sentiment of the fan’s responses by analyzing the responses posted by fans on Facebook. The entity and aspect of fan’s responses were analyzed based on a predefined ontology. The ontology for cell phone sentiment analysis consists of aspect categories on the top level as follows: overall, shape, hardware, brand, price, and service. Each category consists of several sub-categories. All aspects for a fan’s response were found based on the ontology, and their corresponding sentimental terms were found using lexicon-based approach. The sentimental scores for aspects of fan responses were obtained by summarizing the sentimental terms in responses. The frequency of 'like' was also weighted in the sentimental score calculation. Three famous cell phone fan pages on Facebook were selected as demonstration cases to evaluate performances of the proposed methodology. Human judgment by several domain experts was also built for performance comparison. The performances of proposed approach were as good as those of human judgment on precision, recall and F1-measure.Keywords: opinion mining, ontology, sentiment analysis, text mining
Procedia PDF Downloads 23227419 A Survey on Genetic Algorithm for Intrusion Detection System
Authors: Prikhil Agrawal, N. Priyanka
Abstract:
With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security
Procedia PDF Downloads 29727418 Design of a Mhealth Therapy Management to Maintain Therapy Outcomes after Bariatric Surgery
Authors: A. Dudek, P. Tylec, G. Torbicz, P. Duda, K. Proniewska, P. Major, M. Pedziwiatr
Abstract:
Background: Conservative treatments of obesity, based only on a proper diet and physical activity, without the support of an interdisciplinary team of specialist does not bring satisfactory bariatric results. Long-term maintenance of a proper metabolic results after rapid weight loss due to bariatric surgery requires engagement from patients. Mobile health tool may offer alternative model that enhance participant engagement in keeping the therapy. Objective: We aimed to assess the influence of constant monitoring and subsequent motivational alerts in perioperative period and on post-operative effects in the bariatric patients. As well as the study was designed to identify factors conductive urge to change lifestyle after surgery. Methods: This prospective clinical control study was based on a usage of a designed prototype of bariatric mHealth system. The prepared application comprises central data management with a comprehensible interface dedicated for patients and data transfer module as a physician’s platform. Motivation system of a platform consist of motivational alerts, graphic outcome presentation, and patient communication center. Generated list of patients requiring urgent consultation and possibility of a constant contact with a specialist provide safety zone. 31 patients were enrolled in continuous monitoring program during a 6-month period along with typical follow-up visits. After one year follow-up, all patients were examined. Results: There were 20 active users of the proposed monitoring system during the entire duration of the study. After six months, 24 patients took a part in a control by telephone questionnaires. Among them, 75% confirmed that the application concept was an important element in the treatment. Active users of the application indicated as the most valuable features: motivation to continue treatment (11 users), graphical presentation of weight loss, and other parameters (7 users), the ability to contact a doctor (3 users). The three main drawbacks are technical errors (9 users), tedious questionnaires inside the application (5 users), and time-consuming tasks inside the system (2 users). Conclusions: Constant monitoring and successive motivational alerts to continue treatment is an appropriate tool in the treatment after bariatric surgery, mainly in the early post-operative period. Graphic presentation of data and continuous connection with a clinical staff seemed to be an element of motivation to continue treatment and a sense of security.Keywords: bariatric surgery, mHealth, mobile health tool, obesity
Procedia PDF Downloads 11327417 Effect of Heavy Metals on the Life History Trait of Heterocephalobellus sp. and Cephalobus sp. (Nematode: Cephalobidae) Collected from a Small-Scale Mining Site, Davao de Oro, Philippines
Authors: Alissa Jane S. Mondejar, Florifern C. Paglinawan, Nanette Hope N. Sumaya, Joey Genevieve T. Martinez, Mylah Villacorte-Tabelin
Abstract:
Mining is associated with increased heavy metals in the environment, and heavy metal contamination disrupts the activities of soil fauna, such as nematodes, causing changes in the function of the soil ecosystem. Previous studies found that nematode community composition and diversity indices were strongly affected by heavy metals (e.g., Pb, Cu, and Zn). In this study, the influence of heavy metals on nematode survivability and reproduction were investigated. Life history analysis of the free-living nematodes, Heterocephalobellus sp. and Cephalobus sp. (Rhabditida: Cephalobidae) were assessed using the hanging drop technique, a technique often used in life history trait experiments. The nematodes were exposed to different temperatures, i.e.,20°C, 25°C, and 30°C, in different groups (control and heavy metal exposed) and fed with the same bacterial density of 1×109 Escherichia coli cells ml-1 for 30 days. Results showed that increasing temperature and exposure to heavy metals had a significant influence on the survivability and egg production of both species. Heterocephalobellus sp. and Cephalobus sp., when exposed to 20°C survived longer and produced few numbers of eggs but without subsequent hatching. Life history parameters of Heterocephalobellus sp. showed that the value of parameters was higher in the control group under net production rate (R0), fecundity (mx) which is also the same value for the total fertility rate (TFR), generation times (G0, G₁, and Gh) and Population doubling time (PDT). However, a lower rate of natural increase (rm) was observed since generation times were higher. Meanwhile, the life history parameters of Cephalobus sp. showed that the value of net production rate (R0) was higher in the exposed group. Fecundity (mx) which is also the same value for the TFR, G0, G1, Gh, and PDT, were higher in the control group. However, a lower rate of natural increase (rm) was observed since generation times were higher. In conclusion, temperature and exposure to heavy metals had a negative influence on the life history of the nematodes, however, further experiments should be considered.Keywords: artisanal and small-scale gold mining (ASGM), hanging drop method, heavy metals, life history trait.
Procedia PDF Downloads 9727416 Pre-Service Teachers’ Opinions on Disabled People
Authors: Sinem Toraman, Aysun Öztuna Kaplan, Hatice Mertoğlu, Esra Macaroğlu Akgül
Abstract:
This study aims to examine pre-service teachers’ opinions on disabled people taking into consideration various variables. The participants of the study are composed of 170 pre-service teachers being 1st year students of different branches at Education Department of Yıldız Technical, Yeditepe, Marmara and Sakarya Universities. Data of the research was collected in 2013-2014 fall term. This study was designed as a phenomenological study appropriately qualitative research paradigm. Pre-service teachers’ opinions about disabled people were examined in this study, open ended question form which was prepared by researcher and focus group interview techniques were used as data collection tool. The study presents pre-service teachers’ opinions about disabled people which were mentioned, and suggestions about teacher education.Keywords: pre-service teachers, disabled people, teacher education, teachers' opinions
Procedia PDF Downloads 45827415 Predicting Susceptibility to Coronary Artery Disease using Single Nucleotide Polymorphisms with a Large-Scale Data Extraction from PubMed and Validation in an Asian Population Subset
Authors: K. H. Reeta, Bhavana Prasher, Mitali Mukerji, Dhwani Dholakia, Sangeeta Khanna, Archana Vats, Shivam Pandey, Sandeep Seth, Subir Kumar Maulik
Abstract:
Introduction Research has demonstrated a connection between coronary artery disease (CAD) and genetics. We did a deep literature mining using both bioinformatics and manual efforts to identify the susceptible polymorphisms in coronary artery disease. Further, the study sought to validate these findings in an Asian population. Methodology In first phase, we used an automated pipeline which organizes and presents structured information on SNPs, Population and Diseases. The information was obtained by applying Natural Language Processing (NLP) techniques to approximately 28 million PubMed abstracts. To accomplish this, we utilized Python scripts to extract and curate disease-related data, filter out false positives, and categorize them into 24 hierarchical groups using named Entity Recognition (NER) algorithms. From the extensive research conducted, a total of 466 unique PubMed Identifiers (PMIDs) and 694 Single Nucleotide Polymorphisms (SNPs) related to coronary artery disease (CAD) were identified. To refine the selection process, a thorough manual examination of all the studies was carried out. Specifically, SNPs that demonstrated susceptibility to CAD and exhibited a positive Odds Ratio (OR) were selected, and a final pool of 324 SNPs was compiled. The next phase involved validating the identified SNPs in DNA samples of 96 CAD patients and 37 healthy controls from Indian population using Global Screening Array. ResultsThe results exhibited out of 324, only 108 SNPs were expressed, further 4 SNPs showed significant difference of minor allele frequency in cases and controls. These were rs187238 of IL-18 gene, rs731236 of VDR gene, rs11556218 of IL16 gene and rs5882 of CETP gene. Prior researches have reported association of these SNPs with various pathways like endothelial damage, susceptibility of vitamin D receptor (VDR) polymorphisms, and reduction of HDL-cholesterol levels, ultimately leading to the development of CAD. Among these, only rs731236 had been studied in Indian population and that too in diabetes and vitamin D deficiency. For the first time, these SNPs were reported to be associated with CAD in Indian population. Conclusion: This pool of 324 SNP s is a unique kind of resource that can help to uncover risk associations in CAD. Here, we validated in Indian population. Further, validation in different populations may offer valuable insights and contribute to the development of a screening tool and may help in enabling the implementation of primary prevention strategies targeted at the vulnerable population.Keywords: coronary artery disease, single nucleotide polymorphism, susceptible SNP, bioinformatics
Procedia PDF Downloads 7627414 Assessing Denitrification-Disintegration Model’s Efficacy in Simulating Greenhouse Gas Emissions, Crop Growth, Yield, and Soil Biochemical Processes in Moroccan Context
Authors: Mohamed Boullouz, Mohamed Louay Metougui
Abstract:
Accurate modeling of greenhouse gas (GHG) emissions, crop growth, soil productivity, and biochemical processes is crucial considering escalating global concerns about climate change and the urgent need to improve agricultural sustainability. The application of the denitrification-disintegration (DNDC) model in the context of Morocco's unique agro-climate is thoroughly investigated in this study. Our main research hypothesis is that the DNDC model offers an effective and powerful tool for precisely simulating a wide range of significant parameters, including greenhouse gas emissions, crop growth, yield potential, and complex soil biogeochemical processes, all consistent with the intricate features of environmental Moroccan agriculture. In order to verify these hypotheses, a vast amount of field data covering Morocco's various agricultural regions and encompassing a range of soil types, climatic factors, and crop varieties had to be gathered. These experimental data sets will serve as the foundation for careful model calibration and subsequent validation, ensuring the accuracy of simulation results. In conclusion, the prospective research findings add to the global conversation on climate-resilient agricultural practices while encouraging the promotion of sustainable agricultural models in Morocco. A policy architect's and an agricultural actor's ability to make informed decisions that not only advance food security but also environmental stability may be strengthened by the impending recognition of the DNDC model as a potent simulation tool tailored to Moroccan conditions.Keywords: greenhouse gas emissions, DNDC model, sustainable agriculture, Moroccan cropping systems
Procedia PDF Downloads 6527413 Examination of the Relationship between Managerial Competence and Job Satisfacti̇on and Career Satisfacti̇on in Sports Managers'
Authors: Omur F. Karakullukcu, Bilal Okudan, Yusuf Can
Abstract:
The aim of this study is to analyze sports managers’ managerial competence levels and job satisfaction’s correlation with career satisfaction. In the study, it has also been analyzed if there is any significant difference in sports managers’ managerial competence, job and career satisfaction in terms of gender, age, duty status, year of service and level of education. 256 sports managers, who work at department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the managerial competence scale which was developed by Cetinkaya (2009), job satisfaction scale developed by Weiss at al.(1967) and Career Satisfaction Scale developed by Vatansever (2008) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, pearson correlation analysis has been used for defining the correlation of managerial competence levels, job satisfaction, and career satisfaction levels of sports managers. T-test analysis for binary grouping and anova analysis for more than binary groups have been used in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers’ managerial competence levels, job satisfaction, and career satisfaction levels. Also, the results show that there is a significant difference in managerial competence levels, job satisfaction and career satisfaction of sports managers in terms of duty status, year of service and level of education; however, the results reveal that there is no significant difference in terms of age groups and gender.Keywords: sports manager, managerial competence, job satisfaction, career satisfaction
Procedia PDF Downloads 26327412 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100
Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono
Abstract:
Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength
Procedia PDF Downloads 31027411 Literature as a Tool for Sustenance of Human Dignity in the 21st Century
Authors: Arubi Thompson Abari
Abstract:
Globally, a writer is absolutely necessary to the society, for he mirrors and projects the society, grumbles and protects against the ills that hinders its development. A writer is committed to the language, social-cultural, political and economic factors that determine the sustenance of human dignity in the society. In this 21st century. The literary artist holds literature as a tool for the restoration and sustenance of human dignity. In Nigeria, literature is politically committed because colonialism gives birth to the modern Nigerian literature. Literature thus was regarded as one of the greatest weapons against colonialism in Nigeria. Nigerian literature is aimed at the restoration and sustenance of the dignity of Nigerians in the 21st century. A literary writer is a member of the society and his sensibility is conditioned by the socio-political situations around him. A writer cannot be excused from the task of regeneration and restoration of his past lost glorious days that must be done. This academic paper therefore showcases the efficacy of literature in bringing about the sustenance of human dignity in the 21st century. Consequently, the paper in its introduction clarifies some vital concepts. It discusses the forms of literature, portrays the ability and capability of literature as a tool for the sustenance of human dignity globally, and makes useful recommendations for the growth of knowledge in the 21st century and beyond.Keywords: literature, sustenance, human dignity, 21st century
Procedia PDF Downloads 9127410 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar
Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh
Abstract:
Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring
Procedia PDF Downloads 17927409 Advancement of Computer Science Research in Nigeria: A Bibliometric Analysis of the Past Three Decades
Authors: Temidayo O. Omotehinwa, David O. Oyewola, Friday J. Agbo
Abstract:
This study aims to gather a proper perspective of the development landscape of Computer Science research in Nigeria. Therefore, a bibliometric analysis of 4,333 bibliographic records of Computer Science research in Nigeria in the last 31 years (1991-2021) was carried out. The bibliographic data were extracted from the Scopus database and analyzed using VOSviewer and the bibliometrix R package through the biblioshiny web interface. The findings of this study revealed that Computer Science research in Nigeria has a growth rate of 24.19%. The most developed and well-studied research areas in the Computer Science field in Nigeria are machine learning, data mining, and deep learning. The social structure analysis result revealed that there is a need for improved international collaborations. Sparsely established collaborations are largely influenced by geographic proximity. The funding analysis result showed that Computer Science research in Nigeria is under-funded. The findings of this study will be useful for researchers conducting Computer Science related research. Experts can gain insights into how to develop a strategic framework that will advance the field in a more impactful manner. Government agencies and policymakers can also utilize the outcome of this research to develop strategies for improved funding for Computer Science research.Keywords: bibliometric analysis, biblioshiny, computer science, Nigeria, science mapping
Procedia PDF Downloads 11227408 Experimental and Numerical Analysis of the Effects of Ball-End Milling Process upon Residual Stresses and Cutting Forces
Authors: Belkacem Chebil Sonia, Bensalem Wacef
Abstract:
The majority of ball end milling models includes only the influence of cutting parameters (cutting speed, feed rate, depth of cut). Furthermore, this influence is studied in most of works on cutting force. Therefore, this study proposes an accurate ball end milling process modeling which includes also the influence of tool workpiece inclination. In addition, a characterization of residual stresses resulting of thermo mechanical loading in the workpiece was also presented. Moreover, the study of the influence of tool workpiece inclination and cutting parameters was made on residual stresses distribution. In order to achieve the predetermination of cutting forces and residual stresses during a milling operation, a thermo mechanical three-dimensional numerical model of ball end milling was developed. Furthermore, an experimental companion of ball end milling tests was realized on a 5-axis machining center to determine the cutting forces and characterize the residual stresses. The simulation results are compared with the experiment to validate the Finite Element Model and subsequently identify the optimum inclination angle and cutting parameters.Keywords: ball end milling, cutting forces, cutting parameters, residual stress, tool-workpiece inclination
Procedia PDF Downloads 30827407 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces
Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani
Abstract:
A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.Keywords: readiness, maturity, system, integration
Procedia PDF Downloads 9227406 Toxic Metal and Radiological Risk Assessment of Soil, Water and Vegetables around a Gold Mine Turned Residential Area in Mokuro Area of Ile-Ife, Osun State Nigeria: An Implications for Human Health
Authors: Grace O. Akinlade, Danjuma D. Maza, Oluwakemi O. Olawolu, Delight O. Babalola, John A. O. Oyekunle, Joshua O. Ojo
Abstract:
The Mokuro area of Ile-Ife, South West Nigeria, was well known for gold mining in the past (about twenty years ago). However, the place has since been reclaimed and converted to residential area without any environmental risk assessment of the impact of the mining tailings on the environment. Soil, water, and plant samples were collected from 4 different locations around the mine-turned-residential area. Soil samples were pulverized and sieved into finer particles, while the plant samples were dried and pulverized. All the samples were digested and analyzed for As, Pb, Cd, and Zn using atomic absorption spectroscopy (AAS). From the analysis results, the hazard index (HI) was then calculated for the metals. The soil and plant samples were air dried and pulverized, then weighed, after which the samples were packed into special and properly sealed containers to prevent radon gas leakage. After the sealing, the samples were kept for 28 days to attain secular equilibrium. The concentrations of 40K, 238U, and 232Th in the samples were measured using a cesium iodide (CsI) spectrometer and URSA software. The AAS analysis showed that As, Pb, Cd (Toxic metals), and Zn (essential trace metals) are in concentrations lower than permissible limits in plants and soil samples, while the water samples had concentrations higher than permissible limits. The calculated health indices (HI) show that HI for water is >1 and that of plants and soil is <1. Gamma spectrometry result shows high levels of activity concentrations above the recommended limits for all the soil and plant samples collected from the area. Only the water samples have activity concentrations below the recommended limit. Consequently, the absorbed dose, annual effective dose, and excess lifetime cancer risk are all above the recommended safe limit for all the samples except for water samples. In conclusion, all the samples collected from the area are either contaminated with toxic metals or they pose radiological hazards to the consumers. Further detailed study is therefore recommended in order to be able to advise the residents appropriately.Keywords: toxic metals, gamma spectrometry, Ile-Ife, radiological hazards, gold mining
Procedia PDF Downloads 57