Search results for: Extended arithmetic precision.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2267

Search results for: Extended arithmetic precision.

1097 Information Communication Technology Based Road Traffic Accidents’ Identification, and Related Smart Solution Utilizing Big Data

Authors: Ghulam Haider Haidaree, Nsenda Lukumwena

Abstract:

Today the world of research enjoys abundant data, available in virtually any field, technology, science, and business, politics, etc. This is commonly referred to as big data. This offers a great deal of precision and accuracy, supportive of an in-depth look at any decision-making process. When and if well used, Big Data affords its users with the opportunity to produce substantially well supported and good results. This paper leans extensively on big data to investigate possible smart solutions to urban mobility and related issues, namely road traffic accidents, its casualties, and fatalities based on multiple factors, including age, gender, location occurrences of accidents, etc. Multiple technologies were used in combination to produce an Information Communication Technology (ICT) based solution with embedded technology. Those technologies include principally Geographic Information System (GIS), Orange Data Mining Software, Bayesian Statistics, to name a few. The study uses the Leeds accident 2016 to illustrate the thinking process and extracts thereof a model that can be tested, evaluated, and replicated. The authors optimistically believe that the proposed model will significantly and smartly help to flatten the curve of road traffic accidents in the fast-growing population densities, which increases considerably motor-based mobility.

Keywords: accident factors, geographic information system, information communication technology, mobility

Procedia PDF Downloads 208
1096 The Internet of Healthcare Things: A European Perspective and a Review of Ethical Concerns

Authors: M. Emmanouilidou

Abstract:

The Internet of Things (IoT) is a disruptive technological paradigm that is at the center of the digital evolution by integrating physical and virtual worlds leading to the creation of extended interconnected ecosystems that are characterized as smart environments. The concept of the IoT has a broad range of applications in different industries including the healthcare sector. The Internet of Healthcare Things (IoHT), a branch of the IoT, is expected to bring promising benefits to all involved stakeholders and accelerate the revolution of the healthcare sector through a transition towards preventive and personalized medicine. The socio-economic challenges that the healthcare sector is facing further emphasize the need for a radical transformation of healthcare systems in both developed and developing countries with the role of pervasive technological innovations, such as IoHT, recognized as key to counteract the relevant challenges. Besides the number of potential opportunities that IoHT presents, there are fundamental ethical concerns that need to be considered and addressed in relation to the application of IoHT. This paper contributes to the discussion of the emerging topic of IoHT by providing an overview of the role and potential of IoHT, highlighting the characteristics of the current and future healthcare landscape, reporting on the up-to-date status of IoHT in Europe and reflecting upon existing research in the ethics of IoHT by incorporating additional ethical dimensions that have been ignored which can provide pathways for future research in the field.

Keywords: ethics, Europe, healthcare, Internet of Things

Procedia PDF Downloads 136
1095 An Activity Based Trajectory Search Approach

Authors: Mohamed Mahmoud Hasan, Hoda M. O. Mokhtar

Abstract:

With the gigantic increment in portable applications use and the spread of positioning and location-aware technologies that we are seeing today, new procedures and methodologies for location-based strategies are required. Location recommendation is one of the highly demanded location-aware applications uniquely with the wide accessibility of social network applications that are location-aware including Facebook check-ins, Foursquare, and others. In this paper, we aim to present a new methodology for location recommendation. The proposed approach coordinates customary spatial traits alongside other essential components including shortest distance, and user interests. We also present another idea namely, "activity trajectory" that represents trajectory that fulfills the set of activities that the user is intrigued to do. The approach dispatched acquaints the related distance value to select trajectory(ies) with minimum cost value (distance) and spatial-area to prune unneeded directions. The proposed calculation utilizes the idea of movement direction to prescribe most comparable N-trajectory(ies) that matches the client's required action design with least voyaging separation. To upgrade the execution of the proposed approach, parallel handling is applied through the employment of a MapReduce based approach. Experiments taking into account genuine information sets were built up and tested for assessing the proposed approach. The exhibited tests indicate how the proposed approach beets different strategies giving better precision and run time.

Keywords: location based recommendation, map-reduce, recommendation system, trajectory search

Procedia PDF Downloads 223
1094 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 332
1093 Chemopreventive Potency of Medicinal and Eatable Plant, Gromwell Seed on in Vitro and in Vivo Carcinogenesis Systems

Authors: Harukuni Tokuda, Xu FengHao, Nobutaka Suzuki

Abstract:

As part of an ongoing our projects to investigate the anti-tumor promoring properties (chemopreventive potency) of Gromwell seed, dry powder materials and its active compounds were carried out through useful test systems. Gromwell seed (Coix lachryma-jobi seed) (GS) is a grass crop that has long been used and played a role in traditional medicine as a nourishing food, and for the treatment of various aliments, paticularly cancer. The application of a new screening procedure which utilizes the synergistic effect of short-chain fatty acids and phorbol esters in enable rapid and easy detection of naturally occurring substances(anti-tumor promoters chemo-preventive agents) with inhibition of Epstein-Barr virus(EBV) activation, using human lymphblastoid cells. In addition, we have now extended these investigations to a new tumorigenesis model in which we initiated the tumors with DMBA intiation and promoted with 1.7 nmol of TPA in two-stage mouse skin test and other models. these results provide a basis for further development of these botanical supplements for human cancer chemoprevention and observations seem that this materials more extensively as one of the trials for the purpose of complementary and alternative medicine.

Keywords: chemoprevention, medicinal plant, mouse, carcinogenesis systems

Procedia PDF Downloads 482
1092 Shrinkage Evaluation in a Stepped Wax Pattern – a Simulation Approach

Authors: Alok S Chauhan, Sridhar S., Pradyumna R.

Abstract:

In the process of precision investment casting of turbine hollow blade/vane components, a part of the dimensional deviations observed in the castings can be attributed to the wax pattern. In the process of injection moulding of wax to produce patterns, heated wax shrinks in size during cooling in the die, leading to a reduction in the dimensions of the pattern. Also, flow and thermal induced residual stresses result in shrinkage & warpage of the component after removal from the die, further adding to the deviations. Injection moulding parameters such as wax temperature, flow rate, packing pressure, etc. affect the flow and thermal behavior of the component and hence are directly responsible for the dimensional deviations. There is a need to precisely determine and control these deviations in order to achieve stringent dimensional accuracies imposed on these castings by aerospace standards. Simulation based approaches provide a platform to predict these dimensional deviations without resorting to elaborate experimentation. In the present paper, Moldex3D simulation package has been utilized to analyze the effect of variations in injection temperature, packing pressure and cooling time on the shrinkage behavior of a stepped pattern. Two types of waxes with different rheological properties have been included in the study to gauge the effect of change in wax on the dimensional deviations. A full factorial design of experiments has been configured with these parameters and results of analysis of variance have been presented.

Keywords: wax patterns, investment casting, pattern die/mould, wax injection, Moldex3D simulation

Procedia PDF Downloads 374
1091 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images

Authors: Tian Zhang

Abstract:

Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.

Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment

Procedia PDF Downloads 111
1090 Impedance Based Biosensor for Agricultural Pathogen Detection

Authors: Rhea Patel, Madhuri Vinchurkar, Rajul Patkar, Gopal Pranjale, Maryam Shojaei Baghini

Abstract:

One of the major limitations on food resources worldwide is the deterioration of plant products due to pathogenic infections. Early screening of plants for pathogenic infections can serve as a boon in the Agricultural sector. The standard microbiology techniques has not kept pace with the rapid enumeration and automated methods for bacteria detection. Electrochemical Impedance Spectroscopy (EIS) serves as a label free bio sensing technique to monitor pathogens in real time. The changes in the electrical impedance of a growing bacterial culture can be monitored to detect activity of microorganisms. In this study, we demonstrate development of a gold interdigitated electrode (gold IDE) based impedance biosensor to detect bacterial cells in real on-field crop samples. To calibrate our impedance measurement system, nutrient broth suspended Escherichia coli cells were used. We extended this calibrated protocol to identify the agricultural pathogens in real potato tuber samples. Distinct difference was seen in the impedance recorded for the healthy and infected potato samples. Our results support the potential application of this Impedance based biosensor in Agricultural pathogen detection.

Keywords: agriculture, biosensor, electrochemical impedance spectroscopy, microelectrode, pathogen detection

Procedia PDF Downloads 156
1089 Characterising the Performance Benefits of a 1/7-Scale Morphing Rotor Blade

Authors: Mars Burke, Alvin Gatto

Abstract:

Rotary-wing aircraft serve as indispensable components in the advancement of aviation, valued for their ability to operate in diverse and challenging environments without the need for conventional runways. This versatility makes them ideal for applications like environmental conservation, precision agriculture, emergency medical support, and rapid-response operations in rugged terrains. However, although highly maneuverable, rotary-wing platforms generally have lower aerodynamic efficiency than fixed-wing aircraft. This study takes the view of improving aerodynamic performance by examining a 1/7th scale rotor blade model with a NACA0012 airfoil using CROTOR software. The analysis focuses on optimal spanwise locations for separating morphing and fixed blade sections at 85%, 90%, and 95% of the blade radius (r/R) with up to +20 degrees of twist incorporated to the design.. Key performance metrics assessed include lift coefficient (CL), drag coefficient (CD), lift-to-drag ratio (CL / CD), Mach number, power, thrust coefficient, and Figure of Merit (FOM). Results indicate that the 0.90 r/R position is optimal for dividing the morphing and fixed sections, achieving a significant improvement of over 7% in both lift-to-drag ratio and FOM. These findings underscoring the substantial impact on overall performance of the rotor system and rotational aerodynamics that geometric modifications through the inclusion of a morphing capability can ultimately realise.

Keywords: rotary morphing, rotational aerodynamics, rotorcraft morphing, rotor blade, twist morphing

Procedia PDF Downloads 18
1088 Real-Time Pedestrian Detection Method Based on Improved YOLOv3

Authors: Jingting Luo, Yong Wang, Ying Wang

Abstract:

Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.

Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3

Procedia PDF Downloads 143
1087 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging

Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason

Abstract:

Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.

Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia

Procedia PDF Downloads 274
1086 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression

Procedia PDF Downloads 173
1085 Comprehensive Multi-Omics Study Highlights Osteopontin/SPP1 in Ovarian Aging Control

Authors: Chia-Jung Li, Li-Te Lin, Kuan-Hao Tsui

Abstract:

The study identifies SPP1 as a potential gene associated with ovarian aging, revealing a significant decline in its expression in aged ovaries. SPP1, also known as osteopontin (OPN), is a multifunctional glycoprotein involved with regulatory proteins and pro-inflammatory immune chemokines. However, its genetic links to ovarian aging have not been extensively explored. Spatial transcriptomic analyses were conducted on ovaries from young and aged female mice, along with a sample from a 73-year-old individual. Additionally, single-cell RNA sequencing analysis was performed to identify associations between SPP1 and key genes. The study focused on crucial genes, including ITGAV, ITGB1, CD44, MMP3, and FN1, with a particular emphasis on the correlation between SPP1 and ITGB1. The findings indicate a significant decline in SPP1 expression in aged ovaries, which was consistent in the 73-year-old sample. Single-cell RNA sequencing unveiled associations between SPP1 and key genes, emphasizing a strong co-expression correlation between SPP1 and ITGB1. While the study provides valuable insights, further research is necessary to understand the broader implications and potential applications of SPP1 in ovarian aging. Translating these findings to clinical settings requires careful consideration. The identification of SPP1 as a gene implicated in ovarian aging opens new avenues for advancing precision medicine and refining treatment strategies for conditions related to ovarian aging.

Keywords: SPP1, ovarian aging, spatial transcriptomic, single-cell RNA sequencing

Procedia PDF Downloads 42
1084 Jordanian Men’s and Women’s Attitudes toward Intimate Partner Violence and Its Correlates with Family Functioning and Demographics

Authors: Fatmeh Alzoubi, Reem Ali

Abstract:

Jordan is a developing country in the Middle East and, much like other countries in the world, has high rates of intimate partner violence (IPV). Little information is available on Jordanian men’s and women’s attitudes toward IPV. The purpose of this study is to examine men’s and women’s attitudes toward IPV in Jordan and its relationship with some demographics and family functioning. A descriptive cross-sectional correlational design with a sample of 401 men and women was used. Descriptive statistics (M, SD), Pearson r, t test, and ANOVA were used. The results indicated that Jordanian men and women have a lower score of IPVAS, 40.06 (SD = 8.20), indicating lower acceptance of IPV compared with the literature. Family functioning was 3.12 (SD = 0.46), indicating more healthy families. Family functioning was negatively correlated with IPVAS scores (r = –.22, p = .00). All demographic variables showed small to moderate correlations with IPVAS. Education for both study participants and their spouses had a negative correlation with IPVAS (r = –.27, p = .00) and (r = –.20, p = .00), respectively. Male participants, individuals who were living with extended family, and those living in rural areas had significantly high IPVAS scores, indicating more accepting attitudes toward IPV. Practitioners should provide families with education on the methods of conflict resolution, effective communication within the family, problem-solving approaches, equal role distribution, and appropriate styles of establishing a family.

Keywords: intimate partner violence, Jordanian men and women’s health, attitudes, family functioning

Procedia PDF Downloads 121
1083 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior

Authors: Nazli Uren, Ayse Okur

Abstract:

Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.

Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort

Procedia PDF Downloads 303
1082 Combination Rule for Homonuclear Dipole Dispersion Coefficients

Authors: Giorgio Visentin, Inna S. Kalinina, Alexei A. Buchachenko

Abstract:

In the ambit of intermolecular interactions, a combination rule is defined as a relation linking a potential parameter for the interaction of two unlike species with the same parameters for interaction pairs of like species. Some of their most exemplificative applications cover the construction of molecular dynamics force fields and dispersion-corrected density functionals. Here, an extended combination rule is proposed, relating the dipole-dipole dispersion coefficients for the interaction of like target species to the same coefficients for the interaction of the target and a set of partner species. The rule can be devised in two different ways, either by uniform discretization of the Casimir-Polder integral on a Gauss-Legendre quadrature or by relating the dynamic polarizabilities of the target and the partner species. Both methods return the same system of linear equations, which requires the knowledge of the dispersion coefficients for interaction between the partner species to be solved. The test examples show a high accuracy for dispersion coefficients (better than 1% in the pristine test for the interaction of Yb atom with rare gases and alkaline-earth metal atoms). In contrast, the rule does not ensure correct monotonic behavior of the dynamic polarizability of the target species. Acknowledgment: The work is supported by Russian Science Foundation grant # 17-13-01466.

Keywords: combination rule, dipole-dipole dispersion coefficient, Casimir-Polder integral, Gauss-Legendre quadrature

Procedia PDF Downloads 180
1081 Understanding the Mechanisms of Salmonella Typhimurium Resistance to Cannabidiol (CDB)

Authors: Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel A. Abugri, Robertson K. Boakai, Olufemi S. Ajayi

Abstract:

The recalcitrance of pathogenic bacteria indicates that millions of people who are at risk of infection arising from chronic diseases, surgery, organ transplant, diabetes, and several other debilitating diseases present an aura of potentially untreatable illness due to resistance development. Antimicrobial resistance has successfully become a global health menace, and resistances are often acquired by bacteria through health-care-related incidence (HRI) orchestrated by multi-drug resistant (MDR) and extended drug-resistant pathogens (EDRP). To understand the mechanisms S. Typhimurium uses to resist CDB, we study the abundance of LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of susceptible and resistant S. Typhimurium. Using qPCR, we also analyzed the expression of selected genes known for enabling resistance in S. Typhimurium. We found high abundance of LPS, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of and high expression of resistant genes in S. Typhimurium compared to the susceptible strain. LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid and genes such as Fims, integrons, blaTEM are important indicators of resistance development of S. typhimurium.

Keywords: antimicrobials, resistance, Cannabidiol, Salmonella, blaTEM, fimA, Lipopolysaccharide, Ergosterols

Procedia PDF Downloads 87
1080 Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia

Authors: Takele Nemomsa, Girma Mamo, Tesfaye Balemi

Abstract:

Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare.

Keywords: APSIM, downscaling, response, SDSM

Procedia PDF Downloads 383
1079 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors

Authors: Lingling Shui, Shuting Xie

Abstract:

As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.

Keywords: droplet, microfluidics, assembly, soft materials, microsensor

Procedia PDF Downloads 81
1078 The OverStitch and OverStitch SX Endoscopic Suturing System in Bariatric Surgery, Closing Perforations and Fistulas and Revision Procedures

Authors: Mohammad Tayefeh Norooz, Amirhossein Kargarzadeh

Abstract:

Overweight and obesity as an abnormality are health threatening factors. Body mass index (BMI) above 25 is referred to as overweight and above 30 as obese. Apollo Endosurgery, Inc., a pioneering company in endoscopy surgeries, is poised to revolutionize patient care with its minimally invasive treatment options. Some product solutions are designed to improve patient outcomes and redefine the future of healthcare. Weight gain post-weight-loss surgery may stem from an enlarged stomach opening, reducing fullness and increasing food intake. Apollo Endosurgery's OverStitch system, a minimally invasive approach, addresses this by using sutures to reduce stomach opening size. This reflects Apollo's commitment to transformative improvements in healing endoscopy, emphasizing a shift towards minimally invasive options. The system's versatility and precision in full-thickness suturing offer treatment alternatives, exemplified in applications like Endoscopic Sleeve Gastroplasty for reshaping obesity management. Apollo’s dedication to pioneering advancements suggests ongoing breakthroughs in minimally invasive surgery, positioning the OverStitch systems as a testament to innovation in patient care.

Keywords: apollo endosurgery, endoscopic sleeve gastroplasty, weight loss system, overstitch endoscopic suturing system, therapeutic, perforations, fistula

Procedia PDF Downloads 63
1077 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 58
1076 Electrohydrodynamic Instability and Enhanced Mixing with Thermal Field and Polymer Addition Modulation

Authors: Dilin Chen, Kang Luo, Jian Wu, Chun Yang, Hongliang Yi

Abstract:

Electrically driven flows (EDF) systems play an important role in fuel cells, electrochemistry, bioseparation technology, fluid pumping, and microswimmers. The core scientific problem is multifield coupling, the further development of which depends on the exploration of nonlinear instabilities, force competing mechanisms, and energy budgets. In our study, two categories of electrostatic force-dominated phenomena, induced charge electrosmosis (ICEO) and ion conduction pumping are investigated while considering polymer rheological characteristics and heat gradients. With finite volume methods, the thermal modulation strategy of ICEO under the thermal buoyancy force is numerically analyzed, and the electroelastic instability turn associated with polymer addition is extended. The results reveal that the thermal buoyancy forces are sufficient to create typical thermogravitational convection in competition with electroconvective modes. Electroelastic instability tends to be promoted by weak electrical forces, and polymers effectively alter the unstable transition routes. Our letter paves the way for improved mixing and heat transmission in microdevices, as well as insights into the non-Newtonian nature of electrohydrodynamic dynamics.

Keywords: non-Newtonian fluid, electroosmotic flow, electrohydrodynamic, viscoelastic liquids, heat transfer

Procedia PDF Downloads 68
1075 CFD Simulation Research on a Double Diffuser for Wind Turbines

Authors: Krzysztof Skiba, Zdzislaw Kaminski

Abstract:

Wind power is based on a variety of construction solutions to convert wind energy into electrical energy. These constructions are constrained by the correlation between their energy conversion efficiency and the area they occupy. Their energy conversion efficiency can be improved by wind tunnel tests of a rotor as a diffuser to optimize shapes of aerodynamic elements, to adapt these elements to changing conditions and to increase airflow intensity. This paper discusses the results of computer simulations and aerodynamic analyzes of this innovative diffuser design. The research aims at determining the aerodynamic phenomena triggered by the airflow inside this construction, and developing a design to improve the efficiency of the wind turbine. The research results enable us to design a diffuser with a double Venturi nozzle and specially shaped blades. The design of this type uses Bernoulli’s law on the behavior of the flowing medium in the tunnel of a decreasing diameter. The air flowing along the tunnel changes its velocity so the rotor inside such a decreased tunnel diameter rotates faster in this airflow than does the wind outside this tunnel, which makes the turbine more efficient. Additionally, airflow velocity is improved by applying aerodynamic rings with extended trailing edges to achieve controlled turbulent vortices.

Keywords: wind turbine, renewable energy, cfd, numerical analysis

Procedia PDF Downloads 310
1074 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle

Procedia PDF Downloads 346
1073 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble

Procedia PDF Downloads 138
1072 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA

Procedia PDF Downloads 451
1071 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 184
1070 Understanding Lacan’s ‘Name of the Father’ Concept, the Original Introject, and Personality Functioning

Authors: Chloe T. Cohen, Sarah Johnson

Abstract:

Psychoanalytic literature has traditionally focused on the theoretical explanations of psychological phenomena rather than empirical research to support those ideas. Many clinicians assume a lack of empirical verification of the theories that underpin psychoanalytic treatment disqualifies psychoanalytic psychotherapy as an effective clinical technique. One such theory is Lacan’s ‘Name of the Father’, which extended Freud’s idea of the importance of a successful resolution of the Oedipal problem, situating it even earlier in psychological development. Lacan posited that the Name of the Father construct (establishing psychological structure and preventing psychosis) was best represented in language use, metaphor, and linguistic structure. However, no study to date has empirically examined the Name of the Father construct. The current study attempts to measure Lacan’s ‘Name of the Father’ construct through linguistic structure and metaphor use and to compare it with Freud’s ‘original introject’. We will then investigate whether they relate to adult personality functioning (measured using the Rorschach Inkblot Test). We aim to contribute to the empirical study of psychoanalytic concepts by operationalizing and validating the Name of the Father empirically. We also aim to examine the relationship of the Name of the Father construct to Freud’s concept of the original introject and to adult pathology. We hypothesize that measures of the original introject will mediate the pathway between linguistic indicators of Lacan’s Name of the Father construct and personality functioning.

Keywords: Lacan, Name of the Father, original introject, personality functioning, psychoanalysis

Procedia PDF Downloads 201
1069 The Evaluation of Current Pile Driving Prediction Methods for Driven Monopile Foundations in London Clay

Authors: John Davidson, Matteo Castelletti, Ismael Torres, Victor Terente, Jamie Irvine, Sylvie Raymackers

Abstract:

The current industry approach to pile driving predictions consists of developing a model of the hammer-pile-soil system which simulates the relationship between soil resistance to driving (SRD) and blow counts (or pile penetration per blow). The SRD methods traditionally used are broadly based on static pile capacity calculations. The SRD is used in combination with the one-dimensional wave equation model to indicate the anticipated blowcounts with depth for specific hammer energy settings. This approach has predominantly been calibrated on relatively long slender piles used in the oil and gas industry but is now being extended to allow calculations to be undertaken for relatively short rigid large diameter monopile foundations. This paper evaluates the accuracy of current industry practice when applied to a site where large diameter monopiles were installed in predominantly stiff fissured clay. Actual geotechnical and pile installation data, including pile driving records and signal matching analysis (based upon pile driving monitoring techniques), were used for the assessment on the case study site.

Keywords: driven piles, fissured clay, London clay, monopiles, offshore foundations

Procedia PDF Downloads 225
1068 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar

Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi

Abstract:

With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study introduces a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.

Keywords: structural integrity, highways, pavement evaluation, asphalt concrete pavement

Procedia PDF Downloads 71