Search results for: Conjugated Linoleic Acid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3482

Search results for: Conjugated Linoleic Acid

2312 Refinement of Existing Benzthiazole lead Targeting Lysine Aminotransferase in Dormant Stage of Mycobacterium tuberculosis

Authors: R. Reshma srilakshmi, S. Shalini, P. Yogeeswari, D. Sriram

Abstract:

Lysine aminotransferase is a crucial enzyme for dormancy in M. tuberculosis. It is involved in persistence and antibiotic resistance. In present work, we attempted to develop benzthiazole derivatives as lysine aminotransferase inhibitors. In our attempts, we also unexpectedly arrived at an interesting compound 21 (E)-4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)thiophen-2-yl)benzoic acid which even though has moderate activity against persistent phase of mycobacterium, it has significant potency against active phase. In the entire series compound 22 (E)-4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)thiophen-2-yl)isophthalic acid emerged as potent molecule with LAT IC50 of 2.62 µM. It has a significant log reduction of 2.9 and 2.3 fold against nutrient starved and biofilm forming mycobacteria. It was found to be inactive in MABA assay and M.marinum induced zebra fish model. It is also devoid of cytotoxicity. Compound 22 was also found to possess bactericidal effect which is independent of concentration and time. It was found to be effective in combination with Rifampicin in 3D granuloma model. The results are very encouraging as the hit molecule shows activity against active as well as persistent forms of tuberculosis. The identified hit needs further more pharmacokinetic and dynamic screening for development as new drug candidate.

Keywords: benzothiazole, latent tuberculosis, LAT, nutrient starvation

Procedia PDF Downloads 332
2311 The Effect of Enamel Surface Preparation on the Self-Etch Bonding of Orthodontic Tubes: An in Vitro Study

Authors: Fernandes A. C. B. C. J., de Jesus V. C., Sepideh N., Vilela OFGG, Somarin K. K., França R., Pinheiro F. H. S. L.

Abstract:

Objective: The purpose of this study was to look at the effect of pre-treatment of enamel with pumice and/or 37% phosphoric acid on the shear bond strength (SBS) of orthodontic tubes bonded to enamel while simultaneously evaluating the efficacy of orthodontic tubes bonded by self-etch primer (SEP). Materials and Methods: 39 of the crown halves were divided into 3 groups at random. Group, I was the control group utilizing both prophy paste and the conventional double etching pre-treatment method. Group II excluded the use of prophy paste prior to double etching. Group III excluded the use of both prophy paste and double etching and only utilized SEP. Bond strength of the orthodontic tubes was measured by SBS. One way ANOVA and Tukey’s HSD test were used to compare SBS values between the three groups. The statistical significance was set to p<0.05. Results: The difference in SBS values of groups I (36.672 ± 9.315 Mpa), II (34.242 ± 9.986 Mpa), and III (39.055 ± 5.565) were not statistically significant (P<0.05). Conclusion: This study suggested that the use of prophy paste or pre-acid etch of the enamel surface did not provide a statistically significant difference in SBS between the three groups.

Keywords: shear bond strength, orthodontic bracket, self-etch primer, pumice, prophy

Procedia PDF Downloads 183
2310 A Study of Anthraquinone Dye Removal by Using Chitosan Nanoparticles

Authors: Pyar S. Jassal, Sonal Gupta, Neema Chand, Rajni Johar

Abstract:

In present study, Low molecular weight chitosan naoparticles (LMWCNP) were synthesized by using low molecular weight chitosan (LMWC) and sodium tripolyphosphate for the adsorption of anthraquinone dyes from waste water. The ionic-gel technique was used for this purpose. Size of nanoparticles was determined by “Scherrer equation”. The absorbance was carried out with UV-visible spectrophotometer for Acid Green 25 (AG25) and Reactive Blue 4 (RB4) dyes solutions at λmax 644 and λmax 598 nm respectively. The removal of dyes was dependent on the pH and the optimum adsorption was between pH 2 to 9. The extraction of dyes was linearly dependent on temperature. The equilibrium parameters, RL was calculated by using the Langmuir isotherm and shows that adsorption of dyes is favorable on the LMWCNP. The XRD images of LMWC show a crystalline nature whereas LMWCNP is amorphous one. The thermo gravimetric analysis (TGA) shows that LMWCNP thermally more stable than LMWC. As the contact time increases, percentage removal of Acid Green 25 and Reactive Blue 4 dyes also increases. TEM images reveal the size of the LMWCNP were in the range of 45-50 nm. The capacity of AG25 dye on LMWC was 5.23 mg/g, it compared with LMWCNP capacity which was 6.83 mg/g respectively. The capacity of RB4 dye on LMWC was 2.30 mg/g and 2.34 mg/g was on LMWCNP.

Keywords: low molecular weight chitosan nanoparticles, anthraquinone dye, removal efficiency, adsorption isotherm

Procedia PDF Downloads 140
2309 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand

Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav

Abstract:

Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.

Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand

Procedia PDF Downloads 151
2308 Enhance Biogas Production by Enzymatic Pre-Treatment from Palm Oil Mill Effluent (POME)

Authors: M. S. Tajul Islam, Md. Zahangir Alam

Abstract:

To enhance biogas production through anaerobic digestion, the application of various type of pre-treatment method has some limitations in terms of sustainable environmental management. Many studies on pretreatments especially chemical and physical processes are carried out to evaluate the anaerobic digestion for enhanced biogas production. Among the pretreatment methods acid and alkali pre-treatments gained the highest importance. Previous studies have showed that although acid and alkali pretreatment has significant effect on degradation of biomass, these methods have some negative impact on environment due to their hazard in nature while enzymatic pre-treatment is environmentally friendly. One of the constrains to use of enzyme in pretreatment process for biogas production is high cost which is currently focused to reduce cost through fermentation of waste-based media. As such palm oil mill effluent (POME) as an abundant resource generated during palm oil processing at mill is being used a potential fermentation media for enzyme production. This low cost of enzyme could be an alternative to biogas pretreatment process. This review is to focus direct application of enzyme as enzymatic pre-treatment on POME to enhanced production of biogas.

Keywords: POME, enzymatic pre-treatment, biogas, lignocellulosic biomass, anaerobic digestion

Procedia PDF Downloads 554
2307 Trastuzumab Decorated Bioadhesive Nanoparticles for Targeted Breast Cancer Therapy

Authors: Kasi Viswanadh Matte, Abhisheh Kumar Mehata, M.S. Muthu

Abstract:

Brest cancer, up-regulated with human epidermal growth factor receptor type-2 (HER-2) led to the concept of developing HER-2 targeted anticancer therapeutics. Docetaxel-loaded D-α-tocopherol polyethylene glycol succinate 1000 conjugated chitosan (TPGS-g-chitosan) nanoparticles were prepared with or without Trastuzumab decoration. The particle size and entrapment efficiency of conventional, non-targeted and targeted nanoparticles were found to be in the range of 126-186 nm and 74-78% respectively. In-vitro, MDA-MB-231 cells showed that docetaxel-loaded non-targeted and HER-2 receptor targeted TPGS-g-chitosan nanoparticles have enhanced the cellular uptake and cytotoxicity with a promising bioadhesion property, in comparison to conventional nanoparticles. The IC50 values of non-targeted and targeted nanoparticles from cytotoxic assay were found to be 43 and 223 folds higher than DocelTM. The in-vivo pharmacokinetic study showed 2.33, and 2.82-fold enhancement in relative bioavailability of docetaxel for non-targeted and HER-2 receptor targeted nanoparticles, respectively than DocelTM, and after i.v administration, non-targeted and targeted nanoparticle achieved 3.48 and 5.94 times prolonged half-life in comparison to DocelTM. The area under the curve (AUC), relative bioavailability (FR) and mean residence time (MRT) were found to be higher for non-targeted and targeted nanoparticles compared to DocelTM. Further, histopathology results of non-targeted and targeted nanoparticles showed less toxicity on vital organs such as lungs, liver, and kidney compared to DocelTM.

Keywords: breast cancer, HER-2 receptor, targeted nanomedicine, chitosan, TPGS

Procedia PDF Downloads 244
2306 Comparison of Methods for the Detection of Biofilm Formation in Yeast and Lactic Acid Bacteria Species Isolated from Dairy Products

Authors: Goksen Arik, Mihriban Korukluoglu

Abstract:

Lactic acid bacteria (LAB) and some yeast species are common microorganisms found in dairy products and most of them are responsible for the fermentation of foods. Such cultures are isolated and used as a starter culture in the food industry because of providing standardisation of the final product during the food processing. Choice of starter culture is the most important step for the production of fermented food. Isolated LAB and yeast cultures which have the ability to create a biofilm layer can be preferred as a starter in the food industry. The biofilm formation could be beneficial to extend the period of usage time of microorganisms as a starter. On the other hand, it is an undesirable property in pathogens, since biofilm structure allows a microorganism become more resistant to stress conditions such as antibiotic presence. It is thought that the resistance mechanism could be turned into an advantage by promoting the effective microorganisms which are used in the food industry as starter culture and also which have potential to stimulate the gastrointestinal system. Development of the biofilm layer is observed in some LAB and yeast strains. The resistance could make LAB and yeast strains dominant microflora in the human gastrointestinal system; thus, competition against pathogen microorganisms can be provided more easily. Based on this circumstance, in the study, 10 LAB and 10 yeast strains were isolated from various dairy products, such as cheese, yoghurt, kefir, and cream. Samples were obtained from farmer markets and bazaars in Bursa, Turkey. As a part of this research, all isolated strains were identified and their ability of biofilm formation was detected with two different methods and compared with each other. The first goal of this research was to determine whether isolates have the potential for biofilm production, and the second was to compare the validity of two different methods, which are known as “Tube method” and “96-well plate-based method”. This study may offer an insight into developing a point of view about biofilm formation and its beneficial properties in LAB and yeast cultures used as a starter in the food industry.

Keywords: biofilm, dairy products, lactic acid bacteria, yeast

Procedia PDF Downloads 266
2305 Functional Finishing of Organic Cotton Fabric Using Vetiver Root Extract

Authors: Sakeena Naikwadi, K. Jagaluraiah Sannapapamma

Abstract:

Vetiveria zizanioides is an aromatic grass and traditionally been used in aromatherapy and ayurvedic medicine. Vetiver root is multi-functional biopolymer and has highly aromatic, antimicrobial, UV blocking, antioxidant properties suitable for textile finishing. The vetiver root (Gulabi) powder of different concentration (2, 4, 6,8 percent) were extracted by aqueous and solvent methods subjected to bioassay for antimicrobial efficiency and GCMS spectral analysis. The organic cotton fabric was finished with vetiver root extract (8 percent) by exhaust and pad dry cure methods. The finished fabric was assessed for functional properties viz., UV protective factor, antimicrobial efficiency and aroma intensity. The results revealed that Ethanol extraction showed a greater zone of inhibition compared to aqueous extract in root powder. Among the concentrations, 8 percent root extract in ethanol showed a greater zone of inhibition against gram-positive organism S. aureus and gram-negative organism E. coli. The major compounds present in vetiver root extracts were diethyl pathalate with greater percentage (87.73 %) followed by 7- Isopropyl dimethyl carboxylic acid (4.05 %), 2-butanone 4-trimethyle cyclohexen (1.21 %), phenanthrene carboxylic acid (1.03 %), naphthalene pentanoic acid (0.99 %), 1-phenanthrene carboxylic acid and 1 cyclohexenone 2-methyl oxobuty (0.89 %). The sample finished by pad dry cure method exhibited better UV protection even after 10th wash as compared to exhaust method. Vetiver extract treated samples exhibited maximum zone of inhibition against S. aureus than the E. coli organism. The vetiver root extract treated organic cotton fabric through pad dry cure method possessed good antimicrobial activity against S. aureus and E. coli even after 20th washes compared to vetiver root extract treated by exhaust method. The olfactory analysis was carried out by 30 panels of members and opined that vetiver root extract treated fabric has very good and pleasant aroma with better tactile properties that provide cooling, soothing effect and enhances the mood of the wearer. Vetiver root extract finished organic cotton fabric possessed aroma, antimicrobial and UV properties which are aptly suitable for medical and healthcare textiles viz., wound dressing, bandage gauze, surgical cloths, baby diapers and sanitary napkins. It can be used as after finishing agent for variegated garments and made-ups and can be replaced with commercial after finishing agents.

Keywords: antimicrobial, olfactory analysis, UV protection factor, vetiver root extract

Procedia PDF Downloads 238
2304 Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine

Authors: Antonio Montes, Antonio Cozar, Clara Pereyra, Diego Valor, Enrique Martinez de la Ossa

Abstract:

Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term.

Keywords: scaffold, foaming, supercritical, PVA, polypyrrole, gallic acid

Procedia PDF Downloads 186
2303 Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth

Authors: Rajiv Arora

Abstract:

Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished.

Keywords: biodiesel, esterification, free fatty acids, residual oil, spent bleaching earth, transesterification

Procedia PDF Downloads 180
2302 Synthesis and Properties of Poly(N-(sulfophenyl)aniline) Nanoflowers and Poly(N-(sulfophenyl)aniline) Nanofibers/Titanium dioxide Nanoparticles by Solid Phase Mechanochemical and Their Application in Hybrid Solar Cell

Authors: Mazaher Yarmohamadi-Vasel, Ali Reza Modarresi-Alama, Sahar Shabzendedara

Abstract:

Purpose/Objectives: The first purpose was synthesize Poly(N-(sulfophenyl)aniline) nanoflowers (PSANFLs) and Poly(N-(sulfophenyl)aniline) nanofibers/titanium dioxide nanoparticles ((PSANFs/TiO2NPs) by a solid-state mechano-chemical reaction and template-free method and use them in hybrid solar cell. Also, our second aim was to increase the solubility and the processability of conjugated nanomaterials in water through polar functionalized materials. poly[N-(4-sulfophenyl)aniline] is easily soluble in water because of the presence of polar groups of sulfonic acid in the polymer chain. Materials/Methods: Iron (III) chloride hexahydrate (FeCl3∙6H2O) were bought from Merck Millipore Company. Titanium oxide nanoparticles (TiO2, <20 nm, anatase) and Sodium diphenylamine-4-sulfonate (99%) were bought from Sigma-Aldrich Company. Titanium dioxide nanoparticles paste (PST-20T) was prepared from Sharifsolar Co. Conductive glasses coated with indium tin oxide (ITO) were bought from Xinyan Technology Co (China). For the first time we used the solid-state mechano-chemical reaction and template-free method to synthesize Poly(N-(sulfophenyl)aniline) nanoflowers. Moreover, for the first time we used the same technique to synthesize nanocomposite of Poly(N-(sulfophenyl)aniline) nanofibers and titanium dioxide nanoparticles (PSANFs/TiO2NPs) also for the first time this nanocomposite was synthesized. Examining the results of electrochemical calculations energy gap obtained by CV curves and UV–vis spectra demonstrate that PSANFs/TiO2NPs nanocomposite is a p-n type material that can be used in photovoltaic cells. Doctor blade method was used to creat films for three kinds of hybrid solar cells in terms of different patterns like ITO│TiO2NPs│Semiconductor sample│Al. In the following, hybrid photovoltaic cells in bilayer and bulk heterojunction structures were fabricated as ITO│TiO2NPs│PSANFLs│Al and ITO│TiO2NPs│PSANFs /TiO2NPs│Al, respectively. Fourier-transform infrared spectra, field emission scanning electron microscopy (FE-SEM), ultraviolet-visible spectra, cyclic voltammetry (CV) and electrical conductivity were the analysis that used to characterize the synthesized samples. Results and Conclusions: FE-SEM images clearly demonstrate that the morphology of the synthesized samples are nanostructured (nanoflowers and nanofibers). Electrochemical calculations of band gap from CV curves demonstrated that the forbidden band gap of the PSANFLs and PSANFs/TiO2NPs nanocomposite are 2.95 and 2.23 eV, respectively. I–V characteristics of hybrid solar cells and their power conversion efficiency (PCE) under 100 mWcm−2 irradiation (AM 1.5 global conditions) were measured that The PCE of the samples were 0.30 and 0.62%, respectively. At the end, all the results of solar cell analysis were discussed. To sum up, PSANFLs and PSANFLs/TiO2NPs were successfully synthesized by an affordable and straightforward mechanochemical reaction in solid-state under the green condition. The solubility and processability of the synthesized compounds have been improved compared to the previous work. We successfully fabricated hybrid photovoltaic cells of synthesized semiconductor nanostructured polymers and TiO2NPs as different architectures. We believe that the synthesized compounds can open inventive pathways for the development of other Poly(N-(sulfophenyl)aniline based hybrid materials (nanocomposites) proper for preparing new generation solar cells.

Keywords: mechanochemical synthesis, PSANFLs, PSANFs/TiO2NPs, solar cell

Procedia PDF Downloads 71
2301 Homeostatic Analysis of the Integrated Insulin and Glucagon Signaling Network: Demonstration of Bistable Response in Catabolic and Anabolic States

Authors: Pramod Somvanshi, Manu Tomar, K. V. Venkatesh

Abstract:

Insulin and glucagon are responsible for homeostasis of key plasma metabolites like glucose, amino acids and fatty acids in the blood plasma. These hormones act antagonistically to each other during the secretion and signaling stages. In the present work, we analyze the effect of macronutrients on the response from integrated insulin and glucagon signaling pathways. The insulin and glucagon pathways are connected by DAG (a calcium signaling component which is part of the glucagon signaling module) which activates PKC and inhibits IRS (insulin signaling component) constituting a crosstalk. AKT (insulin signaling component) inhibits cAMP (glucagon signaling component) through PDE3 forming the other crosstalk between the two signaling pathways. Physiological level of anabolism and catabolism is captured through a metric quantified by the activity levels of AKT and PKA in their phosphorylated states, which represent the insulin and glucagon signaling endpoints, respectively. Under resting and starving conditions, the phosphorylation metric represents homeostasis indicating a balance between the anabolic and catabolic activities in the tissues. The steady state analysis of the integrated network demonstrates the presence of a bistable response in the phosphorylation metric with respect to input plasma glucose levels. This indicates that two steady state conditions (one in the homeostatic zone and other in the anabolic zone) are possible for a given glucose concentration depending on the ON or OFF path. When glucose levels rise above normal, during post-meal conditions, the bistability is observed in the anabolic space denoting the dominance of the glycogenesis in liver. For glucose concentrations lower than the physiological levels, while exercising, metabolic response lies in the catabolic space denoting the prevalence of glycogenolysis in liver. The non-linear positive feedback of AKT on IRS in insulin signaling module of the network is the main cause of the bistable response. The span of bistability in the phosphorylation metric increases as plasma fatty acid and amino acid levels rise and eventually the response turns monostable and catabolic representing diabetic conditions. In the case of high fat or protein diet, fatty acids and amino acids have an inhibitory effect on the insulin signaling pathway by increasing the serine phosphorylation of IRS protein via the activation of PKC and S6K, respectively. Similar analysis was also performed with respect to input amino acid and fatty acid levels. This emergent property of bistability in the integrated network helps us understand why it becomes extremely difficult to treat obesity and diabetes when blood glucose level rises beyond a certain value.

Keywords: bistability, diabetes, feedback and crosstalk, obesity

Procedia PDF Downloads 278
2300 Glycerol-Free Biodiesel Synthesis from Crude Mahua (Madhuca indica) Oil under Supercritical Methyl Acetate Using CO2 as a Co-Solvent

Authors: Antaram Sarve, Mahesh Varma, Shriram Sonawane

Abstract:

Conventional route of producing biodiesel with alcohol produces glycerol as side product which leads to oversupply and devaluation in the world market. Supercritical methyl acetate (SCMA) has been proven to convert triglycerides into fatty acid methyl esters (FAMEs) and triacetin, which is a valuable biodiesel additive as side product rather than glycerol. However, due to the low reactivity of supercritical methyl acetate on triglycerides, high reaction conditions are required to obtained maximum yields. The present study describes the renewable approach for the production of biodiesel from low-cost, high acid value mahua oil under supercritical methyl acetate condition using carbon dioxide (CO2) as a co-solvent. CO2 was employed to decrease high reaction conditions required for supercritical methyl acetate transesterification. The influence of process parameters such as temperature, oil to methyl acetate molar ratio, reaction time, and the CO2 pressure was evaluated. The properties of biodiesel produced were found to be superior compared to conventional biodiesel method. Furthermore, SCMA has a high tolerance towards free fatty acids (FFAs) which is crucial to allow the utilization of inexpensive waste oils as a biodiesel feedstock.

Keywords: supercritical methyl acetate, CO2, biodiesel, fuel properties

Procedia PDF Downloads 569
2299 Effect of Aminoethoxyvinylglycine on Ceasing in Sweet Orange

Authors: Zahoor Hussain

Abstract:

Creasing is a physiological disorder of rind in sweet orange [Citrus sinensis (L.) Osbeck] fruit and causes serious economic losses in various countries of the world. The reversible inhibitor of ethylene, aminoethoxyvinylglycine (AVG) with the effects of different concentrations (0, 20, 40 and 60 mgL⁻¹) AVG with 0.05% ‘Tween 20’ as a surfactant applied at the fruit set, the golf ball or at the colour break stage on controlling creasing, rheological properties of fruit and rind as well as fruit quality in of Washington Navel and Lane Late sweet orange was investigated. Creasing was substantially reduced and fruit quality was improved with the exogenous application of AVG depending upon its concentration and stage of application in both cultivars. The spray application of AVG (60 mgL⁻¹) at the golf ball stage was effective in reducing creasing (27.86% and 24.29%) compared to the control (52.14 and 51.53%) in cv. Washington Navel during 2011 and 2012, respectively. Whilst, in cv. Lane Late lowest creasing was observed When AVG was applied at fruit set stage (22.86%) compared to the control (51.43%) during 2012. In cv. Washington Navel, AVG treatment (60 mgL⁻¹) was more effective to increase the fruit firmness (318.97 N) and rind hardness (25.94 N) when applied at fruit set stage. However, rind tensile strength was higher, when AVG was applied at the golf ball stage (54.13 N). In cv. Lane Late, the rind harness (28.61 N), rind tensile strength (78.82 N) was also higher when AVG was sprayed at fruit set stage. Whilst, the fruit compression force (369.68 N) was higher when AVG was applied at the golf ball stage. Similarly, the treatment AVG (60 mgL⁻¹) was more effective in improving fruit weight (281.00 and 298.50 g) and fruit diameter (87.30 and 82.69 mm), rind thickness (5.56 and 5.38 mm) and total sugars (15.27 mg.100ml⁻¹) when AVG was applied at the fruit golf ball stage in cv. Washington Navel and Lane Late, respectively. Similarly, rind harness (25.94 and 28.61 N), total antioxidants (45.30 and 46.48 mM trolox 100ml⁻¹), total sugars (13.64 and 15.27 mg.100ml⁻¹), citric acid (1.66 and 1.32 mg100ml⁻¹), malic acid (0.36 and 0.63 mg.100ml⁻¹) and succinic acid (0.35 and 0.38 mg100ml⁻¹) were also higher, when AVG was applied at the fruit set stage in both cultivars. In conclusion, the exogenous applications of AVG substantially reduces the creasing incidence, improves rheological properties of fruit and rind as well as fruit quality in Washington Navel and Lane Late sweet orange fruit.

Keywords: AVG, creasing, ethylene inhibitor, sweet orange

Procedia PDF Downloads 162
2298 Anti-Obesity Effects of Pteryxin in Peucedanum japonicum Thunb Leaves through Different Pathways of Adipogenesis In-Vitro

Authors: Ruwani N. Nugara, Masashi Inafuku, Kensaku Takara, Hironori Iwasaki, Hirosuke Oku

Abstract:

Pteryxin from the partially purified hexane phase (HP) of Peucedanum japonicum Thunb (PJT) was identified as the active compound related to anti-obesity. Thus, in this study we investigated the mechanisms related to anti-obesity activity in-vitro. The HP was fractionated, and effect on the triglyceride (TG) content was evaluated in 3T3-L1 and HepG2 cells. Comprehensive spectroscopic analyses were used to identify the structure of the active compound. The dose dependent effect of active constituent on the TG content, and the gene expressions related to adipogenesis, fatty acid catabolism, energy expenditure, lipolysis and lipogenesis (20 μg/mL) were examined in-vitro. Furthermore, higher dosage of pteryxin (50μg/mL) was tested against 20μg/mL in 3T3-L1 adipocytes. The mRNA were subjected to SOLiD next generation sequencer and the obtained data were analyzed by Ingenuity Pathway Analysis (IPA). The active constituent was identified as pteryxin, a known compound in PJT. However, its biological activities against obesity have not been reported previously. Pteryxin dose dependently suppressed TG content in both 3T3-L1 adipocytes and HepG2 hepatocytes (P < 0.05). Sterol regulatory element-binding protein-1 (SREBP1 c), Fatty acid synthase (FASN), and acetyl-CoA carboxylase-1 (ACC1) were downregulated in pteryxin-treated adipocytes (by 18.0, 36.1 and 38.2%; P < 0.05, respectively) and hepatocytes (by 72.3, 62.9 and 38.8%, respectively; P < 0.05) indicating its suppressive effects on fatty acid synthesis. The hormone-sensitive lipase (HSL), a lipid catabolising gene was upregulated (by 15.1%; P < 0.05) in pteryxin-treated adipocytes suggesting improved lipolysis. Concordantly, the adipocyte size marker gene, paternally expressed gene1/mesoderm specific transcript (MEST) was downregulated (by 42.8%; P < 0.05), further accelerating the lipolytic activity. The upregulated trend of uncoupling protein 2 (UCP2; by 77.5%; P < 0.05) reflected the improved energy expenditure due to pteryxin. The 50μg/mL dosage of pteryxin completely suppressed PPARγ, MEST, SREBP 1C, HSL, Adiponectin, Fatty Acid Binding Protein (FABP) 4, and UCP’s in 3T3-L1 adipocytes. The IPA suggested that pteryxin at 20μg/mL and 50μg/mL suppress obesity in two different pathways, whereas the WNT signaling pathway play a key role in the higher dose of pteryxin in preadipocyte stage. Pteryxin in PJT play the key role in regulating lipid metabolism related gene network and improving energy production in vitro. Thus, the results suggests pteryxin as a new natural compound to be used as an anti-obesity drug in pharmaceutical industry.

Keywords: obesity, peucedanum japonicum thunb, pteryxin, food science

Procedia PDF Downloads 456
2297 In Vitro Studies on Antimicrobial Activities of Lactic Acid Bacteria Isolated from Fresh Fruits for Biocontrol of Pathogens

Authors: Okolie Pius Ifeanyi, Emerenini Emilymary Chima

Abstract:

Aims: The study investigated the diversity and identities of Lactic Acid Bacteria (LAB) isolated from different fresh fruits using Molecular Nested PCR analysis and the efficacy of cell free supernatants from Lactic Acid Bacteria (LAB) isolated from fresh fruits for in vitro control of some tomato pathogens. Study Design: Nested PCR approach was used in this study employing universal 16S rRNA gene primers in the first round PCR and LAB specific Primers in the second round PCR with the view of generating specific Nested PCR products for the LAB diversity present in the samples. The inhibitory potentials of supernatant obtained from LAB isolates of fruits origin that were molecularly characterized were investigated against some tomato phytopathogens using agar-well method with the view to develop biological agents for some tomato disease causing organisms. Methodology: Gram positive, catalase negative strains of LAB were isolated from fresh fruits on Man Rogosa and Sharpe agar (Lab M) using streaking method. Isolates obtained were molecularly characterized by means of genomic DNA extraction kit (Norgen Biotek, Canada) method. Standard methods were used for Nested Polymerase Chain Reaction (PCR) amplification targeting the 16S rRNA gene using universal 16S rRNA gene and LAB specific primers, agarose gel electrophoresis, purification and sequencing of generated Nested PCR products (Macrogen Inc., USA). The partial sequences obtained were identified by blasting in the non-redundant nucleotide database of National Center for Biotechnology Information (NCBI). The antimicrobial activities of characterized LAB against some tomato phytopathogenic bacteria which include (Xanthomonas campestries, Erwinia caratovora, and Pseudomonas syringae) were obtained by using the agar well diffusion method. Results: The partial sequences obtained were deposited in the database of National Centre for Biotechnology Information (NCBI). Isolates were identified based upon the sequences as Weissella cibaria (4, 18.18%), Weissella confusa (3, 13.64%), Leuconostoc paramensenteroides (1, 4.55%), Lactobacillus plantarum (8, 36.36%), Lactobacillus paraplantarum (1, 4.55%) and Lactobacillus pentosus (1, 4.55%). The cell free supernatants of LAB from fresh fruits origin (Weissella cibaria, Weissella confusa, Leuconostoc paramensenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus) can inhibits these bacteria by creating clear zones of inhibition around the wells containing cell free supernatants of the above mentioned strains of lactic acid bacteria. Conclusion: This study shows that potentially LAB can be quickly characterized by molecular methods to specie level by nested PCR analysis of the bacteria isolate genomic DNA using universal 16S rRNA primers and LAB specific primer. Tomato disease causing organisms can be most likely biologically controlled by using extracts from LAB. This finding will reduce the potential hazard from the use of chemical herbicides on plant.

Keywords: nested pcr, molecular characterization, 16s rRNA gene, lactic acid bacteria

Procedia PDF Downloads 417
2296 Antimicrobial Peptide Produced by Lactococcus garvieae with a Broad Inhibition Spectrum

Authors: Hai Chi, Ibrahim Mehmeti, Kirill Ovchinnikov, Hegle Holo, Ingolf F. Nes, Dzung B. Diep

Abstract:

By using a panel of multiple indicator strains of different bacterial species and genera, we screened a large collection of bacterial isolates (over 1800 isolates) derived from raw milk, for bacteriocin producers with broad inhibition spectra (BIS). Fourteen isolates with BIS were identified, and by 16S rDNA sequencing they were found to belong to Lactococcus garvieae (10 isolates) and Enterococcus feacalis (4 isolates). Further analysis of the ten L. garvieae isolates revealed that they were very similar, if not identical, to each other in metabolic and genetic terms: they had the same fermentation profile on different types of sugars, repetitive sequence-based PCR (rep-PCR) DNA pattern as well as they all had the same inhibition profile towards over 50 isolates of different species. The bacteriocin activity from one of the L. garvieae isolates was assessed further. The bacteriocin which was termed garvicin KS, was found to be heatstable and proteinase-labile and its inhibition spectrum contained many distantly related genera of Firmicutes, comprising most lactic acid bacteria (LAB) as well as problematic species of Bacillus, Listeria, Streptococcus and Staphylococcus and their antibiotic resistant derivatives (e.g. VRE, MRSA). Taken together, the results indicate that this is a potent bacteriocin from L. garvieae and that its very broad inhibition spectrum can be a very useful property for use in food preservation as well as in infection treatments caused by gram-positive pathogens and their antibiotic-derivatives.

Keywords: bacteriocin, lactic acid bacteria, Lactococcus garvieae, antibiotics resistance

Procedia PDF Downloads 246
2295 Algae for Wastewater Treatment and CO₂ Sequestration along with Recovery of Bio-Oil and Value Added Products

Authors: P. Kiran Kumar, S. Vijaya Krishna, Kavita Verma1, V. Himabindu

Abstract:

Concern about global warming and energy security has led to increased biomass utilization as an alternative feedstock to fossil fuels. Biomass is a promising feedstock since it is abundant and cheap and can be transformed into fuels and chemical products. Microalgae biofuels are likely to have a much lower impact on the environment. Microalgae cultivation using sewage with industrial flue gases is a promising concept for integrated biodiesel production, CO₂ sequestration, and nutrients recovery. Autotrophic, Mixotrophic, and Heterotrophic are the three modes of cultivation for microalgae biomass. Several mechanical and chemical processes are available for the extraction of lipids/oily components from microalgae biomass. In organic solvent extraction methods, a prior drying of biomass and recovery of the solvent is required, which are energy-intensive. Thus, the hydrothermal process overcomes the drawbacks of conventional solvent extraction methods. In the hydrothermal process, the biomass is converted into oily components by processing in a hot, pressurized water environment. In this process, in addition to the lipid fraction of microalgae, other value-added products such as proteins, carbohydrates, and nutrients can also be recovered. In the present study was (Scenedesmus quadricauda) was isolated and cultivated in autotrophic, heterotrophic, and mixotrophically using sewage wastewater and industrial flue gas in batch and continuous mode. The harvested algae biomass from S. quadricauda was used for the recovery of lipids and bio-oil. The lipids were extracted from the algal biomass using sonication as a cell disruption method followed by solvent (Hexane) extraction, and the lipid yield obtained was 8.3 wt% with Palmitic acid, Oleic acid, and Octadeonoic acid as fatty acids. The hydrothermal process was also carried out for extraction of bio-oil, and the yield obtained was 18wt%. The bio-oil compounds such as nitrogenous compounds, organic acids, and esters, phenolics, hydrocarbons, and alkanes were obtained by the hydrothermal process of algal biomass. Nutrients such as NO₃⁻ (68%) and PO₄⁻ (15%) were also recovered along with bio-oil in the hydrothermal process.

Keywords: flue gas, hydrothermal process, microalgae, sewage wastewater, sonication

Procedia PDF Downloads 142
2294 Physicochemical and Functional Characteristics of Hemp Protein Isolate

Authors: El-Sohaimy Sobhy A., Androsova Natalia, Toshev Abuvali Djabarovec

Abstract:

The conditions of the isolation of proteins from the hemp seeds were optimized in the current work. Moreover, the physicochemical and functional properties of hemp protein isolate were evaluated for its potential application in food manufacturing. The elastin protein is the most predominant protein in the protein profile with a molecular weight of 58.1 KDa, besides albumin, with a molecular weight of 31.5 KDa. The FTIR spectrum detected the absorption peaks of the amide I in 1750 and 1600 cm⁻¹, which pointed to C=O stretching while N-H was stretching at 1650-1580 cm⁻¹. The peak at 3250 was related to N-H stretching of primary aliphatic amine (3400-3300 cm⁻¹), and the N-H stretching for secondary (II) amine appeared at 3350-3310 cm⁻¹. Hemp protein isolate (HPI) was showed high content of arginine (15.52 g/100 g), phenylalanine+tyrosine (9.63 g/100 g), methionine + cysteine (5.49 g/100 g), leucine + isoleucine (5.21 g/100 g) and valine (4.53 g/100 g). It contains a moderate level of threonine (3.29 g/100 g) and lysine (2.50 g/100 g), with the limiting amino acid being a tryptophan (0.22 g/100 g HPI). HPI showed high water-holding capacity (4.5 ± 2.95 ml/g protein) and oil holding capacity (2.33 ± 1.88 ml/g) values. The foaming capacity of HPI was increased with increasing the pH values to reach the maximum value at pH 11 (67.23±3.20 %). The highest emulsion ability index of HPI was noted at pH 9 (91.3±2.57 m2/g) with low stability (19.15±2.03).

Keywords: Cannabis sativa ssp., protein isolate, isolation conditions, amino acid composition, chemical properties, functional properties

Procedia PDF Downloads 184
2293 Synthesis and Surface Engineering of Lanthanide Nanoparticles for NIR Luminescence Imaging and Photodynamic Therapy

Authors: Syue-Liang Lin, C. Allen Chang

Abstract:

Luminescence imaging is an important technique used in biomedical research and clinical diagnostic applications in recent years. Concurrently, the development of NIR luminescence probes / imaging contrast agents has helped the understanding of the structural and functional properties of cells and animals. Photodynamic therapy (PDT) is used clinically to treat a wide range of medical conditions, but the therapeutic efficacy of general PDT for deeper tumor was limited by the penetration of excitation source. The tumor targeting biomedical nanomaterials UCNP@PS (upconversion nanoparticle conjugated with photosensitizer) for photodynamic therapy and near-infrared imaging of cancer will be developed in our study. Synthesis and characterization of biomedical nanomaterials were completed in this studies. The spectrum of UCNP was characterized by photoluminescence spectroscopy and the morphology was characterized by Transmission Electron Microscope (TEM). TEM and XRD analyses indicated that these nanoparticles are about 20~50 nm with hexagonal phase. NaYF₄:Ln³⁺ (Ln= Yb, Nd, Er) upconversion nanoparticles (UCNPs) with core / shell structure, synthesized by thermal decomposition method in 300°C, have the ability to emit visible light (upconversion: 540 nm, 660 nm) and near-infrared with longer wavelength (downconversion: NIR: 980 nm, 1525 nm) by absorbing 800 nm NIR laser. The information obtained from these studies would be very useful for applications of these nanomaterials for bio-luminescence imaging and photodynamic therapy of deep tumor tissue in the future.

Keywords: Near Infrared (NIR), lanthanide, core-shell structure, upconversion, theranostics

Procedia PDF Downloads 238
2292 In vitro Method to Evaluate the Effect of Steam-Flaking on the Quality of Common Cereal Grains

Authors: Wanbao Chen, Qianqian Yao, Zhenming Zhou

Abstract:

Whole grains with intact pericarp are largely resistant to digestion by ruminants because entire kernels are not conducive to bacterial attachment. But processing methods makes the starch more accessible to microbes, and increases the rate and extent of starch degradation in the rumen. To estimate the feasibility of applying a steam-flaking as the processing technique of grains for ruminants, cereal grains (maize, wheat, barley and sorghum) were processed by steam-flaking (steam temperature 105°C, heating time, 45 min). And chemical analysis, in vitro gas production, volatile fatty acid concentrations, and energetic values were adopted to evaluate the effects of steam-flaking. In vitro cultivation was conducted for 48h with the rumen fluid collected from steers fed a total mixed ration consisted of 40% hay and 60% concentrates. The results showed that steam-flaking processing had a significant effect on the contents of neutral detergent fiber and acid detergent fiber (P < 0.01). The concentration of starch gelatinization degree in all grains was also great improved in steam-flaking grains, as steam-flaking processing disintegrates the crystal structure of cereal starch, which may subsequently facilitate absorption of moisture and swelling. Theoretical maximum gas production after steam-flaking processing showed no great difference. However, compared with intact grains, total gas production at 48 h and the rate of gas production were significantly (P < 0.01) increased in all types of grain. Furthermore, there was no effect of steam-flaking processing on total volatile fatty acid, but a decrease in the ratio between acetate and propionate was observed in the current in vitro fermentation. The present study also found that steam-flaking processing increased (P < 0.05) organic matter digestibility and energy concentration of the grains. The collective findings of the present study suggest that steam-flaking processing of grains could improve their rumen fermentation and energy utilization by ruminants. In conclusion, the utilization of steam-flaking would be practical to improve the quality of common cereal grains.

Keywords: cereal grains, gas production, in vitro rumen fermentation, steam-flaking processing

Procedia PDF Downloads 277
2291 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue

Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit

Abstract:

Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.

Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury

Procedia PDF Downloads 157
2290 Identification of Some Factors Influencing Serum Uric Acid Concentration in Individuals With Metabolic Syndrome

Authors: Munkhtuul G., Bolortsetseg Z., Lutzul M., Sugar N., Nyamdorj D., Nomundari B., Zesemdorj O., Erdenebayar N., Lkhagvasuren T. S., Munkhbayarlakh S., Bayasgalan T. Uurtuya S. H.

Abstract:

Background: Elevated serum uric acid (SUA) levels are observed in metabolic and cardiovascular conditions as an early predictor of metabolic syndrome (MS). Hyperuricemia, characterised by high uric acid levels in serum, increases the risk of developing MS by 1.6 times. Being overweight and obese significantly contributes to developing MS and cardiovascular disorders. In Mongolia, the prevalence of overweight and obesity is reaching 48.8% among individuals aged 15 to 49 years, indicating a potential surge in the incidence of MS, cardiovascular disorders, diabetes mellitus, and gout.Objective: This study aimed to determine the SUA levels in men diagnosed with MS and investigate the factors influencing these levels.Methods: A total of 119 men aged 30-60, who underwent preventive examinations and resided in Ulaanbaatar city, were included in the study. The criteria established by the International Diabetes Federation (IDF), American Heart Association (AHA), and the National Heart, Lung, and Blood Institute (NHLBI) were employed to define metabolic syndrome. Hyperuricemia was defined as SUA levels ≥7 mg/dL. Dietary intake was evaluated through the 24-hour recall method.Results: The study revealed that the prevalence of MS among the participants was 42.9% (n=51), with hyperuricemia observed in 16.8% (n=20) of the individuals. Among men diagnosed with MS, 21.3% (n=10) exhibited hyperuricemia. The mean SUA levels were as follows: 4.7±0.8 mg/dL in the healthy group, 5.9±1.1 mg/dL in men without MS but presenting central obesity, and 6.2±1.3 mg/dL in men with MS. After adjusting for age and body mass index (BMI), a positive correlation was observed between SUA levels and triglycerides (β=0.93) as well as lipid accumulation product (LAP) (β=0.92) in men with MS. In the central obesity group, SUA levels exhibited a positive correlation with triglycerides (β=0.91), visceral adiposity index (VAI) (β=0.73), LAP (β=0.92), and cardiometabolic index (CMI) (β=0.69). The risk of hyperuricemia increased by 3.29 times with elevated triglycerides and 3.53 times with an increased LAP.Conclusion: The findings indicate that abdominal fat accumulation, as indicated by elevated triglyceride levels and LAP, is associated with increased SUA levels in men with MS. However, no significant relationship was observed between SUA levels and dietary intake.

Keywords: central obesity, obesity, triglycerides, hyperuricemia

Procedia PDF Downloads 63
2289 Inflammatory Alleviation on Microglia Cells by an Apoptotic Mimicry

Authors: Yi-Feng Kao, Huey-Jine Chai, Chin-I Chang, Yi-Chen Chen, June-Ru Chen

Abstract:

Microglia is a macrophage that resides in brain, and overactive microglia may result in brain neuron damage or inflammation. In this study, the phospholipids was extracted from squid skin and manufactured into a liposome (SQ liposome) to mimic apoptotic body. We then evaluated anti-inflammatory effects of SQ liposome on mouse microglial cell line (BV-2) by lipopolysaccharide (LPS) induction. First, the major phospholipid constituents in the squid skin extract were including 46.2% of phosphatidylcholine, 18.4% of phosphatidylethanolamine, 7.7% of phosphatidylserine, 3.5% of phosphatidylinositol, 4.9% of Lysophosphatidylcholine and 19.3% of other phospholipids by HPLC-UV analysis. The contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the squid skin extract were 11.8 and 28.7%, respectively. The microscopic images showed that microglia cells can engulf apoptotic cells or SQ-liposome. In cell based studies, there was no cytotoxicity to BV-2 as the concentration of SQ-liposome was less than 2.5 mg/mL. The LPS induced pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), were significant suppressed (P < 0.05) by pretreated 0.03~2.5mg/ml SQ liposome. Oppositely, the anti-inflammatory cytokines transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10) secretion were enhanced (P < 0.05). The results suggested that SQ-liposome possess anti-inflammatory properties on BV-2 and may be a good strategy for against neuro-inflammatory disease.

Keywords: apoptotic mimicry, neuroinflammation, microglia, squid processing by-products

Procedia PDF Downloads 489
2288 Milk Production and Milk Composition of Dairy Cows in Response to Calcium Salt of Palm Oil Fatty Acids Supplementation

Authors: Wisitiporn Suksombat, Tanawat Phonkert, Chayapol Meeprom

Abstract:

The aim of this experiment was to investigate the effect of calcium salt of palm oil fatty acids (Ca-POFA) supplementation on milk production and milk composition of dairy cows. Twenty-four early lactating crossbred Holstein Friesian 87.5% cows (15.4 ± 3.75 kg of milk/d; 93 ± 27 DIM; 369 ± 6 kg of BW), were assigned into 3 treatments in an RCBD. All dairy cows were fed 15.4% CP total mixed ration (TMR). The first group (control) received a basal diet and no supplement. The second group was fed the basal diet supplemented with 150 g/d calcium salt of palm oil fatty acids (Ca-POFA), and the last group was fed the basal diet supplemented with 300 g/d Ca-POFA. The experiment lasted 40 days with the first 10 days is an adaptation period, and measurements were made during the last 30 days in 6 periods with 5-days in each period for milk sample collection. The results found that supplemented calcium salt of palm oil fatty acid had no effect on milk yield, milk composition, milk composition yield, live weight and live weight change. However, Ca-POFA decreased milk protein percentage (P < 0.05).

Keywords: calcium salt of palm oil fatty acid, dairy cow, milk composition, milk production

Procedia PDF Downloads 228
2287 Oxidative Stability of an Iranian Ghee (Butter Fat) Versus Soybean Oil During Storage at Different Temperatures

Authors: Kooshan Nayebzadeh, Maryam Enteshari

Abstract:

In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25 ˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV) and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25 ˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months, while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4 ˚C between p-AV and TBA (r2=0.99).

Keywords: headspace-liquid phase microextraction, oxidation, shelf-life, soybean oil

Procedia PDF Downloads 400
2286 Cloning, Expression and N-Terminal Pegylation of Human Interferon Alpha-2b Analogs and Their Cytotoxic Evaluation against Cancer Cell Lines

Authors: Syeda Kiran Shahzadi, Nasir Mahmood, Muhammad Abdul Qadir

Abstract:

In the current research, three recombinant human interferon alpha-2b proteins (two modified and one normal form) were produced and Pegylated with an aim to produce more effective drugs against viral infections and cancers. The modified recombinant human interferon alpha-2b proteins were produced by site-directed modifications of interferon alpha 2b gene, targeting the amino acids at positions ‘R23’ and ‘H34’. The resulting chemically modified and unmodified forms of human interferon alpha 2b were conjugated with methoxy-polyethylene glycol propanealdehyde (400 KDa) and methoxy-polyethylene glycol succinimidyl succinate (400 KDa). Pegylation of normal and modified forms of Interferon alpha-2b prolong their release time and enhance their efficacy. The conjugation of PEG with modified and unmodified human interferon alpha 2b protein drugs was also characterized with 1H-NMR, HPLC, and SDS-PAGE. Antiproliferative assays of modified and unmodified forms of drugs were performed in cell based bioassays using MDBK cell lines. The results indicated that experimentally produced recombinant human interferon alpha-2b proteins were biologically active and resulted in significant inhibition of cell growth.

Keywords: protein refolding, antiproliferative activities, biomedical applications, human interferon alpha-2b, pegylation, mPEG-propionaldehyde, site directed mutagenesis, E. coli expression

Procedia PDF Downloads 180
2285 Phenolic Rich Dry Extracts and Their Antioxidant Activity

Authors: R. Raudonis, L. Raudonė, V. Janulis, P. Viškelis

Abstract:

Pharmacological and clinical studies demonstrated that phenolic compounds particularly flavonoids and phenolic acids are responsible for a wide spectrum of therapeutic activities. Flavonoids and phenolic acids are regarded as natural antioxidants that play an important role in protecting cells from oxidative stress. Qualitatively prepared dry extracts possess high stability and concentration of bio active compounds, facility of standardization and quality control. The aim of this work was to determine the phenolic and antioxidant profiles of Hippophaë rhamnoides L., Betula pendula Roth., Tilia cordata Mill., Sorbus aucuparia L. leaves dry extracts and to identify markers of antioxidant activity. Extracts were analyzed using high-performance liquid chromatography (HPLC) with FRAP post-column assay. Dry extracts are versatile forms possessing wide area of applications, final product ensure consistent phytochemical and functional properties. Seven flavonoids: rutin, hyperoside, isorhamnetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, quercetin, kaempferol, isorhamnetin were identified in dry extract of Hippophaë rhamnoides L. leaves. Predominant compounds were flavonol glycosides which were chosen as markers for quantitative control of dry extracts. Chlorogenic acid, hyperoside, rutin, quercetin, isorhamnetin were prevailing compounds in Betula pendula Roth. leaves extract, whereas strongest ferric reducing activity was determined for chlorogenic acid and hyperoside. Notable amounts of protocatechuic acid and flavonol glycosides, rutin, hyperoside, quercitrin, isoquercitrin were identified in the chromatographic profile of Tilia cordata Mill. Neochlorogenic and chlorogenic acids were significantly dominant compounds in antioxidant profile in dry extract of Sorbus aucuparia L. leaves. Predominant compounds of antioxidant profiles could be proposed as functional markers of quality of phenolic rich raw materials. Dry extracts could be further used for manufacturing of pharmaceutical and nutraceuticals.

Keywords: dry extract, FRAP, antioxidant activity, phenolic

Procedia PDF Downloads 512
2284 Time Temperature Indicator for Monitoring Freshness of Packed Pasteurized Milk

Authors: Rajeshwar S. Matche, Subhash V. Pawde, Suraj P, Sachin R. Chaudhari

Abstract:

Time Temperature Indicator’s (TTI) are trending approach in a food packaging that will be insightful to have safe and hygienic food products. Currently, available TTI in the market are mostly a product specific and sometime even difficult to handle especially in supply chain as these are pre-activated and require specific storage conditions. In the present study, research focus is on the development of a cost-effective lactic acid based TTI that can work over a wide range of temperature and can be activated at time of packaging or on demand. The correlation between activation energies of colour change of the developed indicator and packed pasteurized milk spoilage with respect to time and temperature was established. Developed lactic acid based TTI strips have range of activation energy from 10.13 to 24.20 KJ/mol. We found that the developed TTI strip’s with activation energy 12.42, and 14.41KJ/mol can be correlated with spoilage activation energy of packed pasteurized milk which was 25.71 KJ/mol with factor of 2 at storage temperature 4°C. The implementation of these TTI on packed pasteurized milk allow us see visual colour change during the storage and can be fruitful to monitoring quality of the milk and understand its freshness especially in a cold supply chain, viz distributor and road vendor etc.

Keywords: pasteurised packed milk, time temperature indicator, spoilage, freshness

Procedia PDF Downloads 114
2283 Comparative Analysis of Various Waste Oils for Biodiesel Production

Authors: Olusegun Ayodeji Olagunju, Christine Tyreesa Pillay

Abstract:

Biodiesel from waste sources is regarded as an economical and most viable fuel alternative to depleting fossil fuels. In this work, biodiesel was produced from three different sources of waste cooking oil; from cafeterias, which is vegetable-based using the transesterification method. The free fatty acids (% FFA) of the feedstocks were conducted successfully through the titration method. The results for sources 1, 2, and 3 were 0.86 %, 0.54 % and 0.20 %, respectively. The three variables considered in this process were temperature, reaction time, and catalyst concentration within the following range: 50 oC – 70 oC, 30 min – 90 min, and 0.5 % – 1.5 % catalyst. Produced biodiesel was characterized using ASTM standard methods for biodiesel property testing to determine the fuel properties, including kinematic viscosity, specific gravity, flash point, pour point, cloud point, and acid number. The results obtained indicate that the biodiesel yield from source 3 was greater than the other sources. All produced biodiesel fuel properties are within the standard biodiesel fuel specifications ASTM D6751. The optimum yield of biodiesel was obtained at 98.76%, 96.4%, and 94.53% from source 3, source 2, and source 1, respectively at optimum operating variables of 65 oC temperature, 90 minutes reaction time, and 0.5 wt% potassium hydroxide.

Keywords: waste cooking oil, biodiesel, free fatty acid content, potassium hydroxide catalyst, optimization analysis

Procedia PDF Downloads 81