Search results for: vehicles emissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2458

Search results for: vehicles emissions

2368 Simultaneous Adsorption and Characterization of NOx and SOx Emissions from Power Generation Plant on Sliced Porous Activated Carbon Prepared by Physical Activation

Authors: Muhammad Shoaib, Hassan M. Al-Swaidan

Abstract:

Air pollution has been a major challenge for the scientists today, due to the release of toxic emissions from various industries like power plants, desalination plants, industrial processes and transportation vehicles. Harmful emissions into the air represent an environmental pressure that reflects negatively on human health and productivity, thus leading to a real loss in the national economy. Variety of air pollutants in the form of carbon oxides, hydrocarbons, nitrogen oxides, sulfur oxides, suspended particulate material etc. are present in air due to the combustion of different types of fuels like crude oil, diesel oil and natural gas. Among various pollutants, NOx and SOx emissions are considered as highly toxic due to its carcinogenicity and its relation with various health disorders. In Kingdom of Saudi Arabia electricity is generated by burning of crude, diesel or natural gas in the turbines of electricity stations. Out of these three, crude oil is used extensively for electricity generation. Due to the burning of the crude oil there are heavy contents of gaseous pollutants like sulfur dioxides (SOx) and nitrogen oxides (NOx), gases which are ultimately discharged in to the environment and is a serious environmental threat. The breakthrough point in case of lab studies using 1 gm of sliced activated carbon adsorbant comes after 20 and 30 minutes for NOx and SOx, respectively, whereas in case of PP8 plant breakthrough point comes in seconds. The saturation point in case of lab studies comes after 100 and 120 minutes and for actual PP8 plant it comes after 60 and 90 minutes for NOx and SOx adsorption, respectively. Surface characterization of NOx and SOx adsorption on SAC confirms the presence of peaks in the FT-IR spectrum. CHNS study verifies that the SAC is suitable for NOx and SOx along with some other C and H containing compounds coming out from stack emission stream from the turbines of a power plant.

Keywords: activated carbon, flue gases, NOx and SOx adsorption, physical activation, power plants

Procedia PDF Downloads 348
2367 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range

Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini

Abstract:

This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.

Keywords: battery, electric vehicles, ultra-capacitor, model predictive control

Procedia PDF Downloads 259
2366 A Survey on Intelligent Connected-Vehicle Applications Based on Intercommunication Techniques in Smart Cities

Authors: B. Karabuluter, O. Karaduman

Abstract:

Connected-Vehicles consists of intelligent vehicles, each of which can communicate with each other. Smart Cities are the most prominent application area of intelligent vehicles that can communicate with each other. The most important goal that is desired to be realized in Smart Cities planned for facilitating people's lives is to make transportation more comfortable and safe with intelligent/autonomous/driverless vehicles communicating with each other. In order to ensure these, the city must have communication infrastructure in the first place, and the vehicles must have the features to communicate with this infrastructure and with each other. In this context, intelligent transport studies to solve all transportation and traffic problems in classical cities continue to increase rapidly. In this study, current connected-vehicle applications developed for smart cities are considered in terms of communication techniques, vehicular networking, IoT, urban transportation implementations, intelligent traffic management, road safety, self driving. Taxonomies and assessments performed in the work show the trend of studies in inter-vehicle communication systems in smart cities and they are contributing to by ensuring that the requirements in this area are revealed.

Keywords: smart city, connected vehicles, infrastructures, VANET, wireless communication, intelligent traffic management

Procedia PDF Downloads 527
2365 The Role of Car Dealerships in Promoting Electric Vehicles: Covert Participatory Observations of Car Dealerships in Sweden

Authors: Anne Y. Faxer, Ellen Olausson, Jens Hagman, Ana Magazinius, Jenny J. Stier, Tommy Fransson, Oscar Enerback

Abstract:

While electric vehicles (both battery electric vehicles and plug-in hybrids) have been on the market for around 6 years, they are still far from mainstream and the knowledge of them is still low among the public. This is likely one of the reasons that Sweden, having one of the highest penetrations of electric vehicles in Europe, still has a long way to go in reaching a fossil free vehicle fleet. Car dealerships are an important medium that connects consumers to vehicles, but somehow, their role in introducing electric vehicles has not yet been thoroughly studied. Research from other domains shows that salespeople can affect customer decisions in their choice of products. The aim of this study is to explore the role of car dealerships when it comes to promoting electric vehicles. The long-term goal is to understand how they could be a key in the effort of achieving a mass introduction of electric vehicles in Sweden. By emulating the customer’s experience, this study investigates the interaction between car salespeople and customers, particularly examining whether they present electric vehicles as viable options. Covert participatory observations were conducted for data collection from four different brands at in total twelve car dealers. The observers worked in pairs and played the role of a customer with needs that could be matched by an electric vehicle. The data was summarized in observation protocols and analyzed using thematic coding. The result shows that only one of twelve salespeople offered an electric vehicle as the first option. When environmental factors were brought up by the observers, the salespeople followed up with lower fuel consumption internal combustion engine vehicles rather than suggesting an electric vehicle. All salespeople possessed at least basic knowledge about electric vehicles but their interest of selling them were low in most cases. One of the reasons could be that the price of electric vehicles is usually higher. This could be inferred from the finding that salespeople tend to have a strong focus on price and economy in their dialogues with customers, regardless which type of car they were selling. In conclusion, the study suggests that car salespeople have the potential to help the market to achieve mass introduction of electric vehicles; however, their potential needs to be exploited further. To encourage salespeople to prioritize electric vehicles in the sales process, right incentives need to be in place.

Keywords: car dealerships, covert participatory observation, customer perspective , electric vehicle, market penetration

Procedia PDF Downloads 198
2364 Spare Part Carbon Footprint Reduction with Reman Applications

Authors: Enes Huylu, Sude Erkin, Nur A. Özdemir, Hatice K. Güney, Cemre S. Atılgan, Hüseyin Y. Altıntaş, Aysemin Top, Muammer Yılman, Özak Durmuş

Abstract:

Remanufacturing (reman) applications allow manufacturers to contribute to the circular economy and help to introduce products with almost the same quality, environment-friendly, and lower cost. The objective of this study is to present that the carbon footprint of automotive spare parts used in vehicles could be reduced by reman applications based on Life Cycle Analysis which was framed with ISO 14040 principles. In that case, it was aimed to investigate reman applications for 21 parts in total. So far, research and calculations have been completed for the alternator, turbocharger, starter motor, compressor, manual transmission, auto transmission, and DPF (diesel particulate filter) parts, respectively. Since the aim of Ford Motor Company and Ford OTOSAN is to achieve net zero based on Science-Based Targets (SBT) and the Green Deal that the European Union sets out to make it climate neutral by 2050, the effects of reman applications are researched. In this case, firstly, remanufacturing articles available in the literature were searched based on the yearly high volume of spare parts sold. Paper review results related to their material composition and emissions released during incoming production and remanufacturing phases, the base part has been selected to take it as a reference. Then, the data of the selected base part from the research are used to make an approximate estimation of the carbon footprint reduction of the relevant part used in Ford OTOSAN. The estimation model is based on the weight, and material composition of the referenced paper reman activity. As a result of this study, it was seen that remanufacturing applications are feasible to apply technically and environmentally since it has significant effects on reducing the emissions released during the production phase of the vehicle components. For this reason, the research and calculations of the total number of targeted products in yearly volume have been completed to a large extent. Thus, based on the targeted parts whose research has been completed, in line with the net zero targets of Ford Motor Company and Ford OTOSAN by 2050, if remanufacturing applications are preferred instead of recent production methods, it is possible to reduce a significant amount of the associated greenhouse gas (GHG) emissions of spare parts used in vehicles. Besides, it is observed that remanufacturing helps to reduce the waste stream and causes less pollution than making products from raw materials by reusing the automotive components.

Keywords: greenhouse gas emissions, net zero targets, remanufacturing, spare parts, sustainability

Procedia PDF Downloads 82
2363 How Autonomous Vehicles Transform Urban Policies and Cities

Authors: Adrián P. Gómez Mañas

Abstract:

Autonomous vehicles have already transformed urban policies and cities. This is the main assumption of our research, which aims to understand how the representations of the possible arrival of autonomous vehicles already transform priorities or actions in transport and more largely, urban policies. This research is done within the framework of a Ph.D. doctorate directed by Professor Xavier Desjardins at the Sorbonne University of Paris. Our hypotheses are: (i) the perspectives, representations, and imaginaries on autonomous vehicles already affect the stakeholders of urban policies; (ii) the discourses on the opportunities or threats of autonomous vehicles reflect the current strategies of the stakeholders. Each stakeholder tries to integrate a discourse on autonomous vehicles that allows them to change as little as possible their current tactics and strategies. The objective is to eventually make a comparison between three different cases: Paris, United Arab Emirates, and Bogota. We chose those territories because their contexts are very different, but they all have important interests in mobility and innovation, and they all have started to reflect on the subject of self-driving mobility. The main methodology used is to interview actors of the metropolitan area (local officials, leading urban and transport planners, influent experts, and private companies). This work is supplemented with conferences, official documents, press articles, and websites. The objective is to understand: 1) What they know about autonomous vehicles and where does their knowledge come from; 2) What they expect from autonomous vehicles; 3) How their ideas about autonomous vehicles are transforming their action and strategy in managing daily mobility, investing in transport, designing public spaces and urban planning. We are going to present the research and some preliminary results; we will show that autonomous vehicles are often viewed by public authorities as a lever to reach something else. We will also present that speeches are very influenced by local context (political, geographical, economic, etc.), creating an interesting balance between global and local influences. We will analyze the differences and similarities between the three cases and will try to understand which are the causes.

Keywords: autonomous vehicles, self-driving mobility, urban planning, urban mobility, transport, public policies

Procedia PDF Downloads 199
2362 Nematodes, Rotifers, Tardigrades and Diatoms as Vehicles for the Panspermic Transfer of Microbes

Authors: Sulamain Alharbi, Mohammad Khiyami, Reda Amasha, Bassam Al-Johny, Hesham Khalil, Milton Wainwrigh

Abstract:

Nematodes, Rotifers and Tardigrades (NRT) are extreme-tolerant invertebrates which can survive long periods of stasis brought about by extreme drying and cold. They can also resist the effects of UV radiation, and as a result could act as vehicles for the panspermic transfer of microorganisms. Here we show that NRT contain a variety of bacteria and fungi within their bodies in which environment they could be protected from the extremes of the space and released into new cosmic environments. Diatoms were also shown to contain viable alga and Escherichia coli and so could also act as panspermic vehicles for the transfer of these and perhaps other microbes through space. Although not studied here, NRT, and possibly diatoms, also carry protozoa and viruses within their bodies and could act as vehicles for the panspermic transfer of an even wider range of microbes than shown here.

Keywords: extromophiles, diatoms, panspermia, survival in space

Procedia PDF Downloads 560
2361 Observation of Critical Sliding Velocity

Authors: Visar Baxhuku, Halil Demolli, Alishukri Shkodra

Abstract:

This paper presents the monitoring of vehicle movement, namely the developing of speed of vehicles during movement in a certain twist. The basic geometry data of twist are measured with the purpose of calculating the slide in border speed. During the research, measuring developed speed of passenger vehicles for the real conditions of the road surface, dry road with average damage, was realised. After setting values, the analysis was done in function security of movement in twist.

Keywords: critical sliding velocity, moving velocity, curve, passenger vehicles

Procedia PDF Downloads 421
2360 Abandoned Mine Methane Mitigation in the United States

Authors: Jerome Blackman, Pamela Franklin, Volha Roshchanka

Abstract:

The US coal mining sector accounts for 6% of total US Methane emissions (2021). 60% of US coal mining methane emissions come from active underground mine ventilation systems. Abandoned mines contribute about 13% of methane emissions from coal mining. While there are thousands of abandoned underground coal mines in the US, the Environmental Protection Agency (EPA) estimates that fewer than 100 have sufficient methane resources for viable methane recovery and use projects. Many abandoned mines are in remote areas far from potential energy customers and may be flooded, further complicating methane recovery. Because these mines are no longer active, recovery projects can be simpler to implement.

Keywords: abandoned mines, coal mine methane, coal mining, methane emissions, methane mitigation, recovery and use

Procedia PDF Downloads 78
2359 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach

Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva

Abstract:

Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.

Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx

Procedia PDF Downloads 215
2358 Carbon Credits in Voluntary Carbon Markets: A Proposal for Iran

Authors: Saeed Mohammadirad

Abstract:

During the first commitment period of the Kyoto Protocol, many developed countries were forced to restrict carbon emissions. Although Iran was one of the countries of Kyoto protocol, due to some special conditions, it was not required to restrict its carbon emissions. Flexible mechanisms were developed to assist countries responsible for reducing their carbon emissions, and regulated carbon markets were introduced. Carbon credits which are provided by organizations in countries with no responsibility to restrict their carbon emissions are traded in voluntary markets. This study focuses on how to measure and report the carbon allowances and carbon credits from accounting view point under both regulated and voluntary markets.

Keywords: carbon credits, carbon markets, accounting, flexible mechanisms

Procedia PDF Downloads 409
2357 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)

Authors: Muazzam A. Khan, Muhammad Wasim

Abstract:

Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.

Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict

Procedia PDF Downloads 535
2356 Feasibility Study of Distributed Lightless Intersection Control with Level 1 Autonomous Vehicles

Authors: Bo Yang, Christopher Monterola

Abstract:

Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme.

Keywords: intersection control, autonomous vehicles, traffic modelling, intelligent transport system

Procedia PDF Downloads 459
2355 Nonlinear Multivariable Analysis of CO2 Emissions in China

Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu

Abstract:

This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.

Keywords: China, CO₂ emissions, foreign direct investment, grey relational analysis

Procedia PDF Downloads 404
2354 Open Jet Testing for Buoyant and Hybrid Buoyant Aerial Vehicles

Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S Mohamed Ali

Abstract:

Open jet testing is a valuable testing technique which provides the desired results with reasonable accuracy. It has been used in past for the airships and now has recently been applied for the hybrid ones, having more non-buoyant force coming from the wings, empennage and the fuselage. In the present review work, an effort has been done to review the challenges involved in open jet testing. In order to shed light on the application of this technique, the experimental results of two different configurations are presented. Although, the aerodynamic results of such vehicles are unique to its own design; however, it will provide a starting point for planning any future testing. Few important testing areas which need more attention are also highlighted. Most of the hybrid buoyant aerial vehicles are unconventional in shape and there experimental data is generated, which is unique to its own design.

Keywords: open jet testing, aerodynamics, hybrid buoyant aerial vehicles, airships

Procedia PDF Downloads 573
2353 Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design

Authors: Claudeny Simone Alves Santana, Alexandre Simas De Medeiros, Marcelino Aurélio Vieira Da Silva

Abstract:

The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability.

Keywords: life cycle assessment, greenhouse gases, urban paving, service cost

Procedia PDF Downloads 75
2352 Effects of Non-Motorized Vehicles on a Selected Intersection in Dhaka City for Non Lane Based Heterogeneous Traffic Using VISSIM 5.3

Authors: A. C. Dey, H. M. Ahsan

Abstract:

Heterogeneous traffic composed of both motorized and non-motorized vehicles that are a common feature of urban Bangladeshi roads. Popular non-motorized vehicles include rickshaws, rickshaw-van, and bicycle. These modes performed an important role in moving people and goods in the absence of a dependable mass transport system. However, rickshaws play a major role in meeting the demand for door-to-door public transport services to the city dwellers. But there is no separate lane for non-motorized vehicles in this city. Non-motorized vehicles generally occupy the outermost or curb-side lanes, however, at intersections non-motorized vehicles get mixed with the motorized vehicles. That’s why the conventional models fail to analyze the situation completely. Microscopic traffic simulation software VISSIM 5.3, itself a lane base software but default behavioral parameters [such as driving behavior, lateral distances, overtaking tendency, CCO=0.4m, CC1=1.5s] are modified for calibrating a model to analyze the effects of non-motorized traffic at an intersection (Mirpur-10) in a non-lane based mixed traffic condition. It is seen from field data that NMV occupies an average 20% of the total number of vehicles almost all the link roads. Due to the large share of non-motorized vehicles, capacity significantly drop. After analyzing simulation raw data, significant variation is noticed. Such as the average vehicular speed is reduced by 25% and the number of vehicles decreased by 30% only for the presence of NMV. Also the variation of lateral occupancy and queue delay time increase by 2.37% and 33.75% respectively. Thus results clearly show the negative effects of non-motorized vehicles on capacity at an intersection. So special management technics or restriction of NMV at major intersections may be an effective solution to improve this existing critical condition.

Keywords: lateral occupancy, non lane based intersection, nmv, queue delay time, VISSIM 5.3

Procedia PDF Downloads 156
2351 Modeling Heat-Related Mortality Based on Greenhouse Emissions in OECD Countries

Authors: Anderson Ngowa Chembe, John Olukuru

Abstract:

Greenhouse emissions by human activities are known to irreversibly increase global temperatures through the greenhouse effect. This study seeks to propose a mortality model with sensitivity to heat-change effects as one of the underlying parameters in the model. As such, the study sought to establish the relationship between greenhouse emissions and mortality indices in five OECD countries (USA, UK, Japan, Canada & Germany). Upon the establishment of the relationship using correlation analysis, an additional parameter that accounts for the sensitivity of heat-changes to mortality rates was incorporated in the Lee-Carter model. Based on the proposed model, new parameter estimates were calculated using iterative algorithms for optimization. Finally, the goodness of fit for the original Lee-Carter model and the proposed model were compared using deviance comparison. The proposed model provides a better fit to mortality rates especially in USA, UK and Germany where the mortality indices have a strong positive correlation with the level of greenhouse emissions. The results of this study are of particular importance to actuaries, demographers and climate-risk experts who seek to use better mortality-modeling techniques in the wake of heat effects caused by increased greenhouse emissions.

Keywords: climate risk, greenhouse emissions, Lee-Carter model, OECD

Procedia PDF Downloads 345
2350 Energy Use, Emissions, Economic Growth and Trade: Evidence from Mauritius

Authors: B. Seetanah, H. Neeliah

Abstract:

This paper investigates the relationship among energy, emissions and economic growth in Mauritius in the presence of trade activities, with capital and labour as other control variables. Using annual data from 1960 to 2011, it is found that the variables are non-stationary and cointegrated. The relationship among the various variables are thus examined in a dynamic VECM framework. Our empirical results comply with the growth hypothesis. Output elasticities of 0.17, 0.25 and 0.43 show that increases in energy consumption cause increases in economic growth, capital accumulation and trade in the long run. We also found that CO2 negatively affects output, but has no significant effect on trade. Findings for the long-run generally tend to tally with those in the short-run. Interestingly we found that energy consumption has a significant impact on CO2 emissions. Our results tend to suggest that implementing energy conservation strategies to mitigate the negative impact of CO2 emissions can dent economic growth, and that promoting cleaner energy production could be a better alternative for Mauritius.

Keywords: energy, emissions, economic growth, export, VECM

Procedia PDF Downloads 479
2349 Accelerating Sustainable Urban Transition Through Green Technology Innovation and Clean Energy to Achieve Net Zero Emissions

Authors: Emma Serwaa Obobisa

Abstract:

Urbanization has become the focus for challenging goals relating to environmental performance, such as carbon neutrality. Green technological innovation and clean energy are considered the prominent factors in reducing emissions and achieving sustainable cities. Through the application of a fixed effect model, generalized method of moments, and quantile-on-quantile regression, this study explores the role of green technology innovation and clean energy in accelerating the sustainable urban transition towards net zero emissions in developing countries while controlling for nonrenewable energy consumption, and economic growth. The long-run results show that green technology innovation and renewable energy consumption reduce CO₂ emissions from urban residential buildings. In contrast, economic growth and nonrenewable energy consumption increase CO₂ emissions. This study proposes a consistent technique for encouraging green technological innovation and renewable energy projects in developing countries where the role of innovation in achieving carbon neutrality is still understudied.

Keywords: green technology innovation, renewable energy, urbanization, net zero emissions

Procedia PDF Downloads 35
2348 Decoupling PM₂.₅ Emissions and Economic Growth in China over 1998-2016: A Regional Investment Perspective

Authors: Xi Zhang, Yong Geng

Abstract:

It is crucial to decouple economic growth from environmental pollution in China. This study aims to evaluate the decoupling degree between PM₂.₅ emissions and economic growth in China from a regional investment perspective. Using the panel data of 30 Chinese provinces for the period of 1998-2016, this study combines decomposition analysis with decoupling analysis to identify the roles of conventional factors and three novel investment factors in the mitigation and decoupling of PM₂.₅ emissions in China and its four sub-regions. The results show that China’s PM₂.₅ emissions were weakly decoupled to economic growth during the period of 1998-2016, as well as in China’s four sub-regions. At the national level, investment scale played the dominant role while investment structure had a marginal effect. In contrast, emission intensity was the largest driver in promoting the decoupling effect, followed by investment efficiency and energy intensity. The investment scale effect in the western region far exceeded those in other three sub-regions. At the provincial level, the investment structure of Inner Mongolia and investment scales of Xinjiang and Inner Mongolia had the greatest impacts on PM₂.₅ emission growth. Finally, several policy recommendations are raised for China to mitigate its PM₂.₅ emissions.

Keywords: decoupling, economic growth, investment, PM₂.₅ emissions

Procedia PDF Downloads 119
2347 The Research on Diesel Bus Emissions in Ulaanbaatar City: Mongolia

Authors: Tsetsegmaa A., Bayarsuren B., Altantsetseg Ts.

Abstract:

To make the best decision on reducing harmful emissions from buses, we need to have a clear understanding of the current state of their actual emissions. The emissions from city buses running on high sulfur fuel, particularly particulate matter (PM) and nitrogen oxides (NOx) from the exhaust gases of conventional diesel engines, have been studied and measured with and without diesel particulate filter (DPF) in Ulaanbaatar city. The study was conducted by using the PEMS (Portable Emissions Measurement System) and gravimetric method in real traffic conditions. The obtained data were used to determine the actual emission rates and to evaluate the effectiveness of the selected particulate filters. Actual road and daily PM emissions from city buses were determined during the warm and cold seasons. A bus with an average daily mileage of 242 km was found to emit 166.155 g of PM into the city's atmosphere on average per day, with 141.3 g in summer and 175.8 g in winter. The actual PM of the city bus is 0.6866 g/km. The concentration of NOx in the exhaust gas averages 1410.94 ppm. The use of DPF reduced the exhaust gas opacity of 24 buses by an average of 97% and filtered a total of 340.4 kg of soot from these buses over a period of six months. Retrofitting an old conventional diesel engine with cassette-type silicon carbide (SiC) DPF, despite the laboriousness of cleaning, can significantly reduce particulate matter emissions. Innovation: First comprehensive road PM and NOx emission dataset and actual road emissions from public buses have been identified. PM and NOx mathematical model equations have been estimated as a function of the bus technical speed and engine revolution with and without DPF.

Keywords: conventional diesel, silicon carbide, real-time onboard measurements, particulate matter, diesel retrofit, fuel sulphur

Procedia PDF Downloads 166
2346 Air Quality Assessment for a Hot-Spot Station by Neural Network Modelling of the near-Traffic Emission-Immission Interaction

Authors: Tim Steinhaus, Christian Beidl

Abstract:

Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modeling the exact interaction remains challenging. In this paper, a novel approach for the determination of the emission-immission interaction on the basis of neural network modeling for traffic induced NO2-immission load within a near-traffic hot-spot scenario is presented. In a detailed sensitivity analysis, the significance of relevant influencing variables on the prevailing NO2 concentration is initially analyzed. Based on this, the generation process of the model is described, in which not only environmental influences but also the vehicle fleet composition including its associated segment- and certification-specific real driving emission factors are derived and used as input quantities. The validity of this approach, which has been presented in the past, is re-examined in this paper using updated data on vehicle emissions and recent immission measurement data. Within the framework of a final scenario analysis, the future development of the immission load is forecast for different developments in the vehicle fleet composition. It is shown that immission levels of less than half of today’s yearly average limit values are technically feasible in hot-spot situations.

Keywords: air quality, emission, emission-immission-interaction, immission, NO2, zero impact

Procedia PDF Downloads 127
2345 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport

Authors: C. Hall, J. Ramos, V. Ramasamy

Abstract:

Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.

Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model

Procedia PDF Downloads 99
2344 Environmental Impact of Gas Field Decommissioning

Authors: Muhammad Ahsan

Abstract:

The effective decommissioning of oil and gas fields and related assets is one of the most important challenges facing the oil and gas industry today and in the future. Decommissioning decisions can no longer be avoided by the operators and the industry as a whole. Decommissioning yields no return on investment and carries significant regulatory liabilities. The main objective of this paper is to provide an approach and mechanism for the estimation of emissions associated with decommissioning of Oil and Gas fields. The model uses gate to gate approach and considers field life from development phase up to asset end life. The model incorporates decommissioning processes which includes; well plugging, plant dismantling, wellhead, and pipeline dismantling, cutting and temporary fabrication, new manufacturing from raw material and recycling of metals. The results of the GHG emissions during decommissioning phase are 2.31x10-2 Kg CO2 Eq. per Mcf of the produced natural gas. Well plug and abandonment evolved to be the most GHG emitting activity with 84.7% of total field decommissioning operational emissions.

Keywords: LCA (life cycle analysis), gas field, decommissioning, emissions

Procedia PDF Downloads 187
2343 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach

Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.

Keywords: CO2 emissions, performance based design, optimization, sustainable design

Procedia PDF Downloads 407
2342 The Relationship between Military Expenditure, Military Personnel, Economic Growth, and the Environment

Authors: El Harbi Sana, Ben Afia Neila

Abstract:

In this paper, we study the relationship between the military effort and pollution. A distinction is drawn between the direct and indirect impact of the military effort (military expenditure and military personnel) on pollution, which operates through the impact of military effort on per capita income and the resultant impact of income on pollution. Using the data of 121 countries covering the period 1980–2011, both the direct and indirect impacts of military effort on air pollution emissions are estimated. Our results show that the military effort is estimated to have a positive direct impact on per capita emissions. Indirect effects are found to be positive, the total effect of military effort on emissions is positive for all countries.

Keywords: military endeavor, income, emissions of CO2, panel data

Procedia PDF Downloads 346
2341 Construction of Large Scale UAVs Using Homebuilt Composite Techniques

Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp

Abstract:

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV

Procedia PDF Downloads 138
2340 Evaluation of the Integration of a Direct Reduction Process into an Existing Steel Mill

Authors: Nils Mueller, Gregor Herz, Erik Reichelt, Matthias Jahn

Abstract:

In the context of climate change, the reduction of greenhouse gas emissions in all economic sectors is considered to be an important factor in order to meet the demands of a sustainable energy system. The steel industry as one of the large industrial CO₂ emitters is currently highly dependent on fossil resources. In order to reduce coke consumption and thereby CO₂ emissions while still being able to further utilize existing blast furnaces, the possibility of including a direct reduction process (DRP) into a fully integrated steel mill was investigated. Therefore, a blast furnace model, derived from literature data and implemented in Aspen Plus, was used to analyze the impact of DRI in the blast furnace process. Furthermore, a state-of-the-art DRP was modeled to investigate the possibility of substituting the reducing agent natural gas with hydrogen. A sensitivity analysis was carried out in order to find the boundary percentage of hydrogen as a reducing agent without penalty to the DRI quality. Lastly, the two modeled process steps were combined to form a route of producing pig iron. By varying boundary conditions of the DRP while recording the CO₂ emissions of the two process steps, the overall potential for the reduction of CO₂ emissions was estimated. Within the simulated range, a maximum reduction of CO₂ emissions of 23.5% relative to typical emissions of a blast furnace could be determined.

Keywords: blast furnace, CO₂ mitigation, DRI, hydrogen

Procedia PDF Downloads 285
2339 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP per capita for Oman: Time Series Analysis, 1980–2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfil the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption, carbon dioxide (CO2) emissions and gross domestic product (GDP) for Oman using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey Fuller (ADF) test for stationary, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests positive long-run causalities from CO2 emissions to GDP. Conversely, negative impacts of energy consumption on GDP are found to be significant in Oman during the period. In the short run, there exist negative unidirectional causalities among GDP, CO2 emissions and energy consumption running from GDP to CO2 emissions and from energy consumption to CO2 emissions. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output in Oman over of period 1980-2010.

Keywords: CO2 emissions, energy consumption, GDP, Oman, time series analysis

Procedia PDF Downloads 462