Search results for: thin films for renewable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9648

Search results for: thin films for renewable energy

9558 Thiourea Modified Cadmium Sulfide Film for Solar Cell Application

Authors: Rupali Mane

Abstract:

Cadmium sulfide (Cds) thin films were chemically deposited at room temperature, from aqueous ammonia solution using CdCl₂ (Cadmium chloride) as a Cd²⁺ and CS(NH₂)₂ (Thiourea) as S² ion sources. ‘as-deposited’ films were uniform, well adherent to the glass substrate, secularly reflective and yellowish in color. The ‘as-deposited ’Cds layers grew with nano-crystalline in nature and exhibit cubic structure, with blue-shift in optical band gap. The films were annealed in air atmosphere for two hours at different temperatures and further characterized for compositional, structural, morphological and optical properties. The XRD and SEM studies clearly revealed the systematic changes in morphological and structural form of Cds films with an improvement in the crystal quality. The annealed films showed ‘red-shift’ in the optical spectra after thermal treatment. The Thiourea modified CdS film could be good to provide solar cell application.

Keywords: cadmium sulfide, thin films, nano-crystalline, XRD

Procedia PDF Downloads 319
9557 Effect of Barium Doping on Structural, Morphological, Optical, and Photocatalytic Properties of Sprayed ZnO Thin Films

Authors: Halima Djaaboube, Redha Aouati, Ibtissem Loucif, Yassine Bouachiba, Mouad Chettab, Adel Taabouche, Sihem Abed, Salima Ouendadji, Abderrahmane Bouabellou

Abstract:

Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and therefore the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping, this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.

Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO.

Procedia PDF Downloads 88
9556 Study of Self-Assembled Photocatalyst by Metal-Terpyridine Interactions in Polymer Network

Authors: Dong-Cheol Jeong, Jookyung Lee, Yu Hyeon Ro, Changsik Song

Abstract:

The design and synthesis of photo-active polymeric systems are important in regard to solar energy harvesting and utilization. In this study, we synthesized photo-active polymer, thin films, and polymer gel via iterative self-assembly using reversible metal-terpyridine (M-tpy) interactions. The photocurrent generated in the polymeric thin films with Zn(II) was much higher than those of other films. Apparent diffusion rate constant (kapp) was measured for the electron hopping process via potential-step chronoamperometry. As a result, the kapp for the polymeric thin films with Zn(II) was almost two times larger than those with other metal ions. We found that the anodic photocurrents increased with the inclusion of the multi-walled carbon nanotube (MWNT) layer. Inclusion of MWNTs can provide efficient electron transfer pathways. In addition, polymer gel based on interactions between terpyridine and metal ions was shown the photocatalytic activity. Interestingly, in the Mg-terpyridine gel, the reaction rate of benzylamine to imine photo-oxidative coupling was faster than Fe-terpyridine gel because the Mg-terpyridine gel has two steps electron transfer pathway but Fe-terpyridine gel has three steps electron transfer pathway.

Keywords: terpyridine, photocatalyst, self-assebly, metal-ligand

Procedia PDF Downloads 284
9555 Theoretical Study of Structural, Magnetic, and Magneto-Optical Properties of Ultrathin Films of Fe/Cu (001)

Authors: Mebarek Boukelkoul, Abdelhalim Haroun

Abstract:

By means of the first principle calculation, we have investigated the structural, magnetic and magneto-optical properties of the ultra-thin films of Fen/Cu(001) with (n=1, 2, 3). We adopted a relativistic approach using DFT theorem with local spin density approximation (LSDA). The electronic structure is performed within the framework of the Spin-Polarized Relativistic (SPR) Linear Muffin-Tin Orbitals (LMTO) with the Atomic Sphere Approximation (ASA) method. During the variational principle, the crystal wave function is expressed as a linear combination of the Bloch sums of the so-called relativistic muffin-tin orbitals centered on the atomic sites. The crystalline structure is calculated after an atomic relaxation process using the optimization of the total energy with respect to the atomic interplane distance. A body-centered tetragonal (BCT) pseudomorphic crystalline structure with a tetragonality ratio c/a larger than unity is found. The magnetic behaviour is characterized by an enhanced magnetic moment and a ferromagnetic interplane coupling. The polar magneto-optical Kerr effect spectra are given over a photon energy range extended to 15eV and the microscopic origin of the most interesting features are interpreted by interband transitions. Unlike thin layers, the anisotropy in the ultra-thin films is characterized by a perpendicular magnetization which is perpendicular to the film plane.

Keywords: ultrathin films, magnetism, magneto-optics, pseudomorphic structure

Procedia PDF Downloads 312
9554 Mg Doped CuCrO₂ Thin Oxides Films for Thermoelectric Properties

Authors: I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé

Abstract:

The thermoelectricity is a promising technique to overcome the issues in recovering waste heat to electricity without using moving parts. In fact, the thermoelectric (TE) effect defines as the conversion of a temperature gradient directly into electricity and vice versa. To optimize TE materials, the power factor (PF = σS² where σ is electrical conductivity and S is Seebeck coefficient) must be increased by adjusting the carrier concentration, and/or the lattice thermal conductivity Kₜₕ must be reduced by introducing scattering centers with point defects, interfaces, and nanostructuration. The PF does not show the advantages of the thin film because it does not take into account the thermal conductivity. In general, the thermal conductivity of the thin film is lower than the bulk material due to their microstructure and increasing scattering effects with decreasing thickness. Delafossite type oxides CuᴵMᴵᴵᴵO₂ received main attention for their optoelectronic properties as a p-type semiconductor they exhibit also interesting thermoelectric (TE) properties due to their high electrical conductivity and their stability in room atmosphere. As there are few proper studies on the TE properties of Mg-doped CuCrO₂ thin films, we have investigated, the influence of the annealing temperature on the electrical conductivity and the Seebeck coefficient of Mg-doped CuCrO₂ thin films and calculated the PF in the temperature range from 40 °C to 220 °C. For it, we have deposited Mg-doped CuCrO₂ thin films on fused silica substrates by RF magnetron sputtering. This study was carried out on 300 nm thin films. The as-deposited Mg doped CuCrO₂ thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum. Electrical conductivity and Seebeck coefficient of the thin films have been measured from 40 to 220 °C. The highest electrical conductivity of 0.60 S.cm⁻¹ with a Seebeck coefficient of +329 µV.K⁻¹ at 40 °C have been obtained for the sample annealed at 550 °C. The calculated power factor of optimized CuCrO₂:Mg thin film was 6 µW.m⁻¹K⁻² at 40 °C. Due to the constant Seebeck coefficient and the increasing electrical conductivity with temperature it reached 38 µW.m⁻¹K⁻² at 220 °C that was a quite good result for an oxide thin film. Moreover, the degenerate behavior and the hopping mechanism of CuCrO₂:Mg thin film were elucidated. Their high and constant Seebeck coefficient in temperature and their stability in room atmosphere could be a great advantage for an application of this material in a high accuracy temperature measurement devices.

Keywords: thermoelectric, oxides, delafossite, thin film, power factor, degenerated semiconductor, hopping mode

Procedia PDF Downloads 172
9553 Deposition of Diamond Like Carbon Thin Film by Pulse Laser Deposition for Surgical Instruments

Authors: M. Khalid Alamgir, Javed Ahsan Bhatti, M. Zafarullah Khan

Abstract:

Thin film of amorphous carbon (DLC) was deposited on 316 steel using Nd: YAG laser having energy 300mJ. Pure graphite was used as a target. The vacuum in the deposition chamber was generated in the range of 10-6 mbar by turbo molecular pump. Ratio of sp3 to sp2 content shows amorphous nature of the film. This was confirmed by Raman spectra having two peaks around 1300 cm-1 i.e. D-band to 1700 cm-1 i.e. G-band. If sp3 bonding ratio is high, the films behave like diamond-like whereas, with high sp2, films are graphite-like. The ratio of sp3 and sp2 contents in the film depends upon the deposition method, hydrogen contents and system parameters. The structural study of the film was carried out by XRD. The hardness of the films as measured by Vickers hardness tester and was found to be 28 GPa. The EDX result shows the presence of carbon contents on the surface in high rate and optical microscopy result shows the smoothness of the film on substrate. The film possesses good adhesion and can be used to coat surgical instruments.

Keywords: DLC, thin film, Raman spectroscopy, XRD, EDX

Procedia PDF Downloads 532
9552 In situ Grazing Incidence Small Angle X-Ray Scattering Study of Permalloy Thin Film Growth on Nanorippled Si

Authors: Sarathlal Koyiloth Vayalil, Stephan V. Roth, Gonzalo Santoro, Peng Zhang, Matthias Schwartzkopf, Bjoern Beyersdorff

Abstract:

Nanostructured magnetic thin films have gained significant relevance due to its applications in magnetic storage and recording media. Self-organized arrays of nanoparticles and nanowires can be produced by depositing metal thin films on nano-rippled substrates. The substrate topography strongly affects the film growth giving rise to anisotropic properties (optical, magnetic, electronic transport). Ion-beam erosion (IBE) method can provide large-area patterned substrates with the valuable possibility to widely modify pattern length scale by simply acting on ion beam parameters (i.e. energy, ions, geometry, etc.). In this work, investigation of the growth mechanism of Permalloy thin films on such nano-rippled Si (100) substrates using in situ grazing incidence small angle x-ray scattering measurements (GISAXS) have been done. In situ GISAXS measurements during the deposition of thin films have been carried out at the P03/MiNaXS beam line of PETRA III storage ring of DESY, Hamburg. Nanorippled Si substrates prepared by low energy ion beam sputtering with an average wavelength of 33 nm and 1 nm have been used as templates. It has been found that the film replicates the morphology up to larger thickness regimes and also the growth is highly anisotropic along and normal to the ripple wave vectors. Various growth regimes have been observed. Further, magnetic measurements have been done using magneto-optical Kerr effect by rotating the sample in the azimuthal direction. Strong uniaxial magnetic anisotropy with its easy axis in a direction normal to the ripple wave vector has been observed. The strength of the magnetic anisotropy is found to be decreasing with increasing thin film thickness values. The mechanism of the observed strong uniaxial magnetic anisotropy and its depends on the thickness of the film has been explained by correlating it with the GISAXS results. In conclusion, we have done a detailed growth analysis of Permalloy thin films deposited on nanorippled Si templates and tried to explain the correlation between structure, morphology to the observed magnetic properties.

Keywords: grazing incidence small angle x-ray scattering, magnetic thin films, magnetic anisotropy, nanoripples

Procedia PDF Downloads 292
9551 Influence of the Molar Concentration and Substrate Temperature on Fluorine-Doped Zinc Oxide Thin Films Chemically Sprayed

Authors: J. Ramirez, A. Maldonado, M. de la L. Olvera

Abstract:

The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates, is analyzed in this work. All the starting solutions employed were aged for ten days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum in films deposited from a 0.4 M solution at 500°C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500°C. The attain of ZnO:F thin films, with a resistivity as low as 7.8×10-3 Ώcm (sheet resistance of 130 Ώ/☐ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.

Keywords: zinc oxide, chemical spray, thin films, TCO

Procedia PDF Downloads 478
9550 Magneto-Optical Properties in Transparent Region of Implanted Garnet Films

Authors: Lali Kalanadzde

Abstract:

We investigated magneto-optical Kerr effect in transparent region of implanted ferrite-garnet films for the (YBiCa)3(FeGe)5O12. The implantation process was carried out at room temperature by Ne+ ions with energy of 100 KeV and with various doses (0.5-2.5) 1014 ion/cm2. We discovered that slight deviation of the plane of external alternating magnetic field from plane of sample leads to appearance intensive magneto-optical maximum in transparent region of garnet films ħω=0.5-2.0 eV. In the proceeding, we have also found that the deviation of polarization plane from P- component of incident light leads to the appearance of the similar magneto-optical effects in this region. The research of magnetization processes in transparent region of garnet films showed that the formation of magneto-optical effects in region ħω=0.5-2.3 eV has a rather complex character.

Keywords: ferrite-garnet films, ion implantation, magneto-optical, thin films

Procedia PDF Downloads 273
9549 In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber

Authors: A. Bouloufa, K. Djessas

Abstract:

In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature.

Keywords: buffer layer, In2S3, optical properties, PVD, structural properties

Procedia PDF Downloads 295
9548 Corrosion Behavior of Different Electroplated Systems Coated With Physical Vapor Deposition

Authors: Jorge Santos, Ana V. Girão, F. J. Oliveira, Alexandre C. Bastos

Abstract:

Protective or decorative coatings containing hexavalent chromium compounds are still used on metal and plastic parts. These hexavalent chromium compounds represent a risk to living beings and the environment, and, for this reason, there is a great need to investigate alternatives. Physical Vapor Deposition (PVD) is an environmentally friendly process that allows the deposition of wear and corrosion resistant thin films with excellent optical properties. However, PVD thin films are porous and if deposited onto low corrosion resistant substrates, lead to a degradation risk. The corrosion behavior of chromium-free electroplated coating systems finished with magnetron sputtered PVD thin films was investigated in this work. The electroplated systems consisted of distinct nickel layers deposited on top of a copper interlayer on acrylonitrile butadiene styrene (ABS) plates. Electrochemical and corrosion evaluation was conducted by electrochemical impedance spectroscopy and polarization curves on the different electroplated coating systems, with and without PVD thin film on top. The results show that the corrosion resistance is lower for the electroplated coating systems finished with PVD thin film for extended exposure periods when compared to those without the PVD overlay.

Keywords: PVD, electroplating, corrosion, thin film

Procedia PDF Downloads 115
9547 Physicochemical and Optical Characterization of Rutile TiO2 Thin Films Grown by APCVD Technique

Authors: Dalila Hocine, Mohammed Said Belkaid, Abderahmane Moussi

Abstract:

In this study, pure rutile TiO2 thin films were directly synthesized on silicon substrates by Atmospheric Pressure Chemical Vapor Deposition technique (APCVD) using TiCl4 as precursor. We studied the physicochemical properties and the optical properties of the produced coatings by means of standard characterization techniques of Fourier Transform Infrared Spectroscopy (FTIR) combined with UV-Vis Reflectance Spectrophotometry. The absorption peaks at 423 cm-1 and 610 cm-1 were observed for the rutile TiO2 thin films, by FTIR measurements. The absorption peak at 739 cm-1 due to the vibration of the Ti-O bonds, was also detected. UV-Vis Reflectance Spectrophotometry is employed for measuring the optical band gap from the measurements of the TiO2 films reflectance. The optical band gap was then extracted from the reflectance data for the TiO2 sample. It was estimated to be 3.05 eV which agrees with the band gap of commercial rutile TiO2 sample.

Keywords: titanium dioxide, physicochemical properties, APCVD, FTIR, band gap

Procedia PDF Downloads 370
9546 Segmental Dynamics of Poly(Alkyl Methacrylate) Chain in Ultra-Thin Spin-Cast Films

Authors: Hiroyuki Aoki

Abstract:

Polymeric materials are often used in a form of thin film such as food wrap and surface coating. In such the applications, polymer films thinner than 100 nm have been often used. The thickness of such the ultra-thin film is less than the unperturbed size of a polymer chain; therefore, the polymer chain in an ultra-thin film is strongly constrained. However, the details on the constrained dynamics of polymer molecules in ultra-thin films are still unclear. In the current study, the segmental dynamics of single polymer chain was directly investigated by fluorescence microscopy. The individual chains of poly(alkyl methacrylate) labeled by a perylenediimide dye molecule were observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was directly analyzed. The segmental motion in a thin film with a thickness of 10 nm was found to be suppressed compared to that in a bulk state. The detailed analysis of the molecular motion revealed that the diffusion rate of the in-plane rotation was similar to the thin film and the bulk; on the other hand, the out-of-plane motion was restricted in a thin film. This result indicates that the spatial restriction in an ultra-thin film thinner than the unperturbed chain dimension alters the dynamics of individual molecules in a polymer system.

Keywords: polymer materials, single molecule, molecular motion, fluorescence microscopy, super-resolution techniques

Procedia PDF Downloads 298
9545 Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage

Authors: Mohammed Omar

Abstract:

Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″).

Keywords: PVP, SPR, γ-radiations, XRD

Procedia PDF Downloads 79
9544 Promotion of Renewable Marines Energies in Morocco: Perspectives and Strategies

Authors: Nachtane Mourad, Tarfaoui Mostapha, Saifaoui Dennoun, El Moumen Ahmed

Abstract:

The current energy policy recommends the subject of energy efficiency and to phase out fossil energy as a master question for the prospective years. The kingdom requires restructuring its power equipment by improving the percentage of renewable energy supply and optimizing power systems and storage. Developing energy efficiency, therefore, obliges as a consubstantial objection to reducing energy consumption. The objective of this work is to show the energy transition in Morocco towards renewable energies, in particular, to show the great potential of renewable marine energies in Morocco, This goes back to the advantages of cost and non-pollution in addition to that of the independence of fossil energies. Bearing in mind the necessity of the balance of the Moroccan energy mix, hydraulic and thermal power plants have also been installed which will be added to the power stations already established as a prospect for a balanced network that is flexible to fluctuate demand.

Keywords: renewable marine energy, energy transition, efficiency energy, renewable energy

Procedia PDF Downloads 246
9543 Renewable Energy and Ecosystem Services: A Geographi̇cal Classification in Azerbaijan

Authors: Nijat S. İmamverdiyev

Abstract:

The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. It also highlights the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographical assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Here, also explores potential solutions to mitigate the negative effects of renewable energy infrastructure on ecosystem services, such as the use of ecological compensation measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder involvement in decision-making processes.

Keywords: renewable energy, solar energy, climate change, energy production

Procedia PDF Downloads 40
9542 Metal-Semiconductor-Metal Photodetector Based on Porous In0.08Ga0.92N

Authors: Saleh H. Abud, Z. Hassan, F. K. Yam

Abstract:

Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15 min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390 nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.

Keywords: porous InGaN, photoluminescence, SMS photodetector, atomic force microscopy

Procedia PDF Downloads 465
9541 Preparation of CuAlO2 Thin Films on Si or Sapphire Substrate by Sol-Gel Method Using Metal Acetate or Nitrate

Authors: Takashi Ehara, Takayoshi Nakanishi, Kohei Sasaki, Marina Abe, Hiroshi Abe, Kiyoaki Abe, Ryo Iizaka, Takuya Sato

Abstract:

CuAlO2 thin films are prepared on Si or sapphire substrate by sol-gel method using two kinds of sols. One is combination of Cu acetate and Al acetate basic, and the other is Cu nitrate and Al nitrate. In the case of acetate sol, XRD peaks of CuAlO2 observed at annealing temperature of 800-950 ºC on both Si and sapphire substrates. In contrast, in the case of the films prepared using nitrate on Si substrate, XRD peaks of CuAlO2 have been observed only at the annealing temperature of 800-850 ºC. At annealing temperature of 850ºC, peaks of other species have been observed beside the CuAlO2 peaks, then, the CuAlO2 peaks disappeared at annealing temperature of 900 °C with increasing in intensity of the other peaks. Intensity of the other peaks decreased at annealing temperature of 950 ºC with appearance of broad SiO2 peak. In the present, we ascribe these peaks as metal silicide.

Keywords: CuAlO2, silicide, thin Films, transparent conducting oxide

Procedia PDF Downloads 374
9540 Electrochemical Layer by Layer Assembly

Authors: Mao Li, Yuguang Ma, Katsuhiko Ariga

Abstract:

The performance of functional materials is governed by their ability to interact with surrounding environments in a well-defined and controlled manner. Layer-by-Layer (LbL) assembly is one of the most widely used technologies for coating both planar and particulate substrates in a diverse range of fields, including optics, energy, catalysis, separations, and biomedicine. Herein, we introduce electrochemical-coupling layer-by-layer assembly as a novel fabrication methodology for preparing layered thin films. This assembly method not only determines the process properties (such as the time, scalability, and manual intervention) but also directly control the physicochemical properties of the films (such as the thickness, homogeneity, and inter- and intra-layer film organization), with both sets of properties linked to application-specific performance.

Keywords: layer by layer assembly, electropolymerization, carbazole, optical thin film, electronics

Procedia PDF Downloads 353
9539 Sensing Characteristics of Gold Nanoparticles Decorated Sputtered Tin Oxide Thin Films as Nitrogen Oxide Sensor

Authors: Qasem Drmosh, Zain Yamai, Amar Mohamedkhair, Abdulmajid Hendi

Abstract:

In recent years, there has been a growing interest in the reduction of the nitrogen oxides NOx (NO2, NO) gases resulting from automotive or combustion emissions. Recently, metal additives in nanometer dimension onto the surface of SnO2 nanorods, nanowires and nanotubes sensitizer to further increase the sensor response have been used. In contrast, there is a lack study focused on modifying the surface of SnO2 thin films by nanoparticles. The challenge in case of thin films is how to fabricate these nanoparticles on the surfaces in cost-effective method, high purity as well as without hampering electrical and topographical properties. Here in this report, a simple and facile strategy has been demonstrated to acquire high sensitive and fast response NO2 gas sensor. Structural, electrical, morphological, optical, and compositional properties of the fabricated sensors were investigated through different analytical technique including X-ray diffraction (XRD), Field emission scanning emission microscope (FESEM) and X-ray photoelectron spectroscopy (XPS). The sensing performance of the prepared sensors are studied at different temperatures for various concentrations of NO2 and compared with pristine SnO2 film.

Keywords: NO2 sensor, SnO2, sputtering, thin films

Procedia PDF Downloads 190
9538 Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis

Authors: V. Jelev, P. Petkov, P. Shindov

Abstract:

Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching.

Keywords: metal oxide film, SnO2 film, position sensitive photodetectors (PSD), lateral photovoltaic effect

Procedia PDF Downloads 276
9537 Renewable Energy and Energy Security in Malaysia: A Quantitative Analysis

Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet

Abstract:

Robust economic growth, increasing population, and personal consumption are the main drivers for the rapid increase of energy demand in Malaysia. Increasing demand has compounded the issue of national energy security due to over-dependence on fossil fuel, depleting indigenous domestic conventional energy resources which in turns has increased the country’s energy import dependence. In order to improve its energy security, Malaysia has seriously embarked on a renewable energy journey. Many initiatives on renewable energy have been introduced in the past decade. These strategies have resulted in the exploding growth of renewable energy deployment in Malaysia. Therefore, this study investigated the impact of renewable energy deployment on energy security. Secondary data was used to calculate the energy security indicators. The study also compared the results of applying different energy security indicators namely availability, applicability, affordability and acceptability dimension of energy resources. The evaluation shows that Malaysia will experience slight improvement in availability and acceptability dimension of energy security. This study suggests that energy security level could be further enhanced by efficient utilization of energy, reducing carbon content of energy and facilitating low-carbon industries.

Keywords: energy policy, energy security, Malaysia, renewable energy

Procedia PDF Downloads 213
9536 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary

Abstract:

The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.

Keywords: chemical deposition, CdS, optical properties, surface, thin film

Procedia PDF Downloads 133
9535 Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives

Authors: Fahim Ullah, Muhammad Usman

Abstract:

Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources.

Keywords: energy deficiency, renewable energy, carbon emission, energy trade, PQL analysis

Procedia PDF Downloads 26
9534 Effect of Plasma Discharge Power on Activation Energies of Plasma Poly(Ethylene Oxide) Thin Films

Authors: Sahin Yakut, H. Kemal Ulutas, Deniz Deger

Abstract:

Plasma Assisted Physical Vapor Deposition (PAPVD) method used to produce Poly(ethylene oxide) (pPEO) thin films. Depositions were progressed at various plasma discharge powers as 0, 2, 5 and 30 W for pPEO at 500nm film thicknesses. The capacitance and dielectric dissipation of the thin films were measured at 0,1-107 Hz frequency range and 173-353 K temperature range by an impedance analyzer. Then, alternative conductivity (σac) and activation energies were derived from capacitance and dielectric dissipation. σac of conventional PEO (PEO precursor) was measured to determine the effect of plasma discharge. Differences were observed between the alternative conductivity of PEO’s and pPEO’s depending on plasma discharge power. By this purpose, structural characterization techniques such as Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied on pPEO thin films. Structural analysis showed that density of crosslinking is plasma power dependent. The crosslinking density increases with increasing plasma discharge power and this increase is displayed as increasing dynamic glass transition temperatures at DSC results. Also, shifting of frequencies of some type of bond vibrations, belonging to bond vibrations produced after fragmentation because of plasma discharge, were observed at FTIR results. The dynamic glass transition temperatures obtained from alternative conductivity results for pPEO consistent with the results of DSC. Activation energies exhibit Arrhenius behavior. Activation energies decrease with increasing plasma discharge power. This behavior supports the suggestion expressing that long polymer chains and long oligomers are fragmented into smaller oligomers or radicals.

Keywords: activation energy, dielectric spectroscopy, organic thin films, plasma polymer

Procedia PDF Downloads 278
9533 Anti-Site Disorder Effects on the Magnetic Properties of Sm₂NiMnO₆ Thin Films

Authors: Geetanjali Singh, R. J. Choudhary, Anjana Dogra

Abstract:

Here we report the effects of anti-site disorder, present in the sample, on the magnetic properties of Sm₂NiMnO₆ (SNMO) thin films. To our best knowledge, there are no studies available on the thin films of SNMO. Thin films were grown using pulsed laser deposition technique on SrTiO₃ (STO) substrate under oxygen pressure of 800 mTorr. X-ray diffraction (XRD) profiles show that the film grown is epitaxial. Field cooled (FC) and zero field cooled (ZFC) magnetization curve increase as we decrease the temperature till ~135K. A broad dip was observed in both the curves below this temperature which is more dominating in ZFC curve. An additional sharp cusplike shape was observed at low temperature (~20 K) which is due to the re-entrant spin-glass like properties present in the sample. Super-exchange interaction between Ni²⁺-O-Mn⁴⁺ is attributed to the FM ordering in these samples. The spin-glass feature is due to anti-site disorder within the homogeneous sample which was stated to be due to the mixed valence states Ni³⁺ and Mn³⁺ present in the sample. Anti-site disorder was found to play very crucial role in different magnetic phases of the sample.

Keywords: double perovskite, pulsed laser deposition, spin-glass, magnetization

Procedia PDF Downloads 234
9532 A Review of Renewable Energy Conditions in Iran Country

Authors: Ehsan Atash Zaban, Mehdi Beyk

Abstract:

In recent years, concerns over the depletion of non-renewable fuels and environmental pollution have led countries around the world to look for alternative energy sources for these fuels. An energy source that can have the necessary reliability, be a suitable alternative to fossil fuels, be technologically achievable, comply with environmental standards to the maximum, and at the same time cause countries to meet domestic consumption for electricity production. Iran is one of the richest countries in the world in terms of various energy sources because, on the one hand, it has extensive sources of fossil and non-renewable fuels such as oil and gas, and on the other hand, it has great potential for renewable energy. In this paper, the potential of renewable energy in Iran, which includes solar, wind, geothermal, hydrogen technology, and biomass, has been reviewed and analyzed.

Keywords: renewable energy, solar stations, wind, biomass, hydropower

Procedia PDF Downloads 60
9531 Chemical Vapor Deposition (CVD) of Molybdenum Disulphide (MoS2) Monolayers

Authors: Omar Omar, Yuan Jun, Hong Jinghua, Jin Chuanhong

Abstract:

In this work molybdenum dioxide (MoO2) and sulphur powders are used to grow MoS2 mono layers at elevated temperatures T≥800 °C. Centimetre scale continues thin films with grain size up to 410 µm have been grown using chemical vapour deposition. To our best knowledge, these domains are the largest that have been grown so far. Advantage of our approach is not only because of the high quality films with large domain size one can produce, but also the procedure is potentially less hazardous than other methods tried. The thin films have been characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy.

Keywords: molybdenum disulphide (MoS2), monolayers, chemical vapour deposition (CVD), growth and characterization

Procedia PDF Downloads 302
9530 Role of Renewable Energy in Foreign Policy of China

Authors: Alina Gilmanova

Abstract:

China’s dependency on coal for energy is causing pollution in China and abroad. To supply the increasing energy demand and being under the pressure from international society to reduce the emissions, China was pushed to develop renewable energy. The increasing subsidies in Renewable energy sources (RES) led not only to the price-cutting but also affecting the international trade in green technology sector. In order to evaluate the role of RES in foreign policy of China, I am going to give an (i) overview of RES development in China and examine the cooperation between China and (ii) developed, (ii) developing and emerging countries. The conclusive remarks are intended to address the question of how the present Chinese renewable energy development is impacting its foreign policy and international society.

Keywords: renewable energy, China, foreign affairs, brics, cooperation

Procedia PDF Downloads 610
9529 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique

Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi

Abstract:

This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity (  ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.

Keywords: CuAlS2, evaporation, sulfurisation, thickness, resistivity, crystalline

Procedia PDF Downloads 456