Anti-Site Disorder Effects on the Magnetic Properties of $\mathbf{S m}_{2} \mathbf{N i M n O}_{6}$ Thin Films

Abstract

Authors : Geetanjali Singh, R. J. Choudhary, Anjana Dogra Abstract : Here we report the effects of anti-site disorder, present in the sample, on the magnetic properties of $\mathrm{Sm}_{2} \mathrm{NiMnO}_{6}$ (SNMO) thin films. To our best knowledge, there are no studies available on the thin films of SNMO. Thin films were grown using pulsed laser deposition technique on $\mathrm{SrTiO}_{3}(\mathrm{STO})$ substrate under oxygen pressure of 800 mTorr . X-ray diffraction (XRD) profiles show that the film grown is epitaxial. Field cooled (FC) and zero field cooled (ZFC) magnetization curve increase as we decrease the temperature till $\sim 135 \mathrm{~K}$. A broad dip was observed in both the curves below this temperature which is more dominating in ZFC curve. An additional sharp cusplike shape was observed at low temperature ($\sim 20 \mathrm{~K}$) which is due to the reentrant spin-glass like properties present in the sample. Super-exchange interaction between $\mathrm{Ni}^{2+}-\mathrm{O}-\mathrm{Mn}^{4+}$ is attributed to the FM ordering in these samples. The spin-glass feature is due to anti-site disorder within the homogeneous sample which was stated to be due to the mixed valence states Ni^{3+} and Mn^{3+} present in the sample. Anti-site disorder was found to play very crucial role in different magnetic phases of the sample.

Keywords : double perovskite, pulsed laser deposition, spin-glass, magnetization
Conference Title : ICMMM 2018 : International Conference on Magnetism and Magnetic Materials
Conference Location : Barcelona, Spain
Conference Dates : August 20-21, 2018

