Search results for: real-world data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25117

Search results for: real-world data

25027 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 162
25026 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: text mining, topic extraction, independent, incremental, independent component analysis

Procedia PDF Downloads 309
25025 Open Data for e-Governance: Case Study of Bangladesh

Authors: Sami Kabir, Sadek Hossain Khoka

Abstract:

Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.

Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data

Procedia PDF Downloads 355
25024 Resource Framework Descriptors for Interestingness in Data

Authors: C. B. Abhilash, Kavi Mahesh

Abstract:

Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.

Keywords: RDF, interestingness, knowledge base, semantic data

Procedia PDF Downloads 162
25023 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan

Authors: Dina Ahmad Alkhodary

Abstract:

This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.

Keywords: data, mining, development, business

Procedia PDF Downloads 497
25022 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 493
25021 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 479
25020 Cross-border Data Transfers to and from South Africa

Authors: Amy Gooden, Meshandren Naidoo

Abstract:

Genetic research and transfers of big data are not confined to a particular jurisdiction, but there is a lack of clarity regarding the legal requirements for importing and exporting such data. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.

Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa

Procedia PDF Downloads 125
25019 The Study of Security Techniques on Information System for Decision Making

Authors: Tejinder Singh

Abstract:

Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.

Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data

Procedia PDF Downloads 307
25018 Data Integration with Geographic Information System Tools for Rural Environmental Monitoring

Authors: Tamas Jancso, Andrea Podor, Eva Nagyne Hajnal, Peter Udvardy, Gabor Nagy, Attila Varga, Meng Qingyan

Abstract:

The paper deals with the conditions and circumstances of integration of remotely sensed data for rural environmental monitoring purposes. The main task is to make decisions during the integration process when we have data sources with different resolution, location, spectral channels, and dimension. In order to have exact knowledge about the integration and data fusion possibilities, it is necessary to know the properties (metadata) that characterize the data. The paper explains the joining of these data sources using their attribute data through a sample project. The resulted product will be used for rural environmental analysis.

Keywords: remote sensing, GIS, metadata, integration, environmental analysis

Procedia PDF Downloads 120
25017 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 299
25016 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data

Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin

Abstract:

Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.

Keywords: big data, machine learning, ontology model, urban data model

Procedia PDF Downloads 418
25015 Data-driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship

Procedia PDF Downloads 328
25014 Cryptographic Protocol for Secure Cloud Storage

Authors: Luvisa Kusuma, Panji Yudha Prakasa

Abstract:

Cloud storage, as a subservice of infrastructure as a service (IaaS) in Cloud Computing, is the model of nerworked storage where data can be stored in server. In this paper, we propose a secure cloud storage system consisting of two main components; client as a user who uses the cloud storage service and server who provides the cloud storage service. In this system, we propose the protocol schemes to guarantee against security attacks in the data transmission. The protocols are login protocol, upload data protocol, download protocol, and push data protocol, which implement hybrid cryptographic mechanism based on data encryption before it is sent to the cloud, so cloud storage provider does not know the user's data and cannot analysis user’s data, because there is no correspondence between data and user.

Keywords: cloud storage, security, cryptographic protocol, artificial intelligence

Procedia PDF Downloads 357
25013 Decentralized Data Marketplace Framework Using Blockchain-Based Smart Contract

Authors: Meshari Aljohani, Stephan Olariu, Ravi Mukkamala

Abstract:

Data is essential for enhancing the quality of life. Its value creates chances for users to profit from data sales and purchases. Users in data marketplaces, however, must share and trade data in a secure and trusted environment while maintaining their privacy. The first main contribution of this paper is to identify enabling technologies and challenges facing the development of decentralized data marketplaces. The second main contribution is to propose a decentralized data marketplace framework based on blockchain technology. The proposed framework enables sellers and buyers to transact with more confidence. Using a security deposit, the system implements a unique approach for enforcing honesty in data exchange among anonymous individuals. Before the transaction is considered complete, the system has a time frame. As a result, users can submit disputes to the arbitrators which will review them and respond with their decision. Use cases are presented to demonstrate how these technologies help data marketplaces handle issues and challenges.

Keywords: blockchain, data, data marketplace, smart contract, reputation system

Procedia PDF Downloads 158
25012 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine

Procedia PDF Downloads 308
25011 Discussion on Big Data and One of Its Early Training Application

Authors: Fulya Gokalp Yavuz, Mark Daniel Ward

Abstract:

This study focuses on a contemporary and inevitable topic of Data Science and its exemplary application for early career building: Big Data and Leaving Learning Community (LLC). ‘Academia’ and ‘Industry’ have a common sense on the importance of Big Data. However, both of them are in a threat of missing the training on this interdisciplinary area. Some traditional teaching doctrines are far away being effective on Data Science. Practitioners needs some intuition and real-life examples how to apply new methods to data in size of terabytes. We simply explain the scope of Data Science training and exemplified its early stage application with LLC, which is a National Science Foundation (NSF) founded project under the supervision of Prof. Ward since 2014. Essentially, we aim to give some intuition for professors, researchers and practitioners to combine data science tools for comprehensive real-life examples with the guides of mentees’ feedback. As a result of discussing mentoring methods and computational challenges of Big Data, we intend to underline its potential with some more realization.

Keywords: Big Data, computation, mentoring, training

Procedia PDF Downloads 362
25010 Towards a Secure Storage in Cloud Computing

Authors: Mohamed Elkholy, Ahmed Elfatatry

Abstract:

Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.

Keywords: access control, data integrity, data confidentiality, Kerberos authentication, cloud security

Procedia PDF Downloads 335
25009 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data

Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah

Abstract:

At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.

Keywords: Semantic Web, linked open data, database, statistic

Procedia PDF Downloads 174
25008 The Role of Data Protection Officer in Managing Individual Data: Issues and Challenges

Authors: Nazura Abdul Manap, Siti Nur Farah Atiqah Salleh

Abstract:

For decades, the misuse of personal data has been a critical issue. Malaysia has accepted responsibility by implementing the Malaysian Personal Data Protection Act 2010 to secure personal data (PDPA 2010). After more than a decade, this legislation is set to be revised by the current PDPA 2023 Amendment Bill to align with the world's key personal data protection regulations, such as the European Union General Data Protection Regulations (GDPR). Among the other suggested adjustments is the Data User's appointment of a Data Protection Officer (DPO) to ensure the commercial entity's compliance with the PDPA 2010 criteria. The change is expected to be enacted in parliament fairly soon; nevertheless, based on the experience of the Personal Data Protection Department (PDPD) in implementing the Act, it is projected that there will be a slew of additional concerns associated with the DPO mandate. Consequently, the goal of this article is to highlight the issues that the DPO will encounter and how the Personal Data Protection Department should respond to this subject. The study result was produced using a qualitative technique based on an examination of the current literature. This research reveals that there are probable obstacles experienced by the DPO, and thus, there should be a definite, clear guideline in place to aid DPO in executing their tasks. It is argued that appointing a DPO is a wise measure in ensuring that the legal data security requirements are met.

Keywords: guideline, law, data protection officer, personal data

Procedia PDF Downloads 78
25007 Data Collection Based on the Questionnaire Survey In-Hospital Emergencies

Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala

Abstract:

The methods identified in data collection are diverse: electronic media, focus group interviews and short-answer questionnaires [1]. The collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses [2]. In this context, we opted to collect good quality data by doing a sizeable questionnaire-based survey on hospital emergencies to improve emergency services and alleviate the problems encountered. At the level of this paper, we will present our study, and we will detail the steps followed to achieve the collection of relevant, consistent and practical data.

Keywords: data collection, survey, questionnaire, database, data analysis, hospital emergencies

Procedia PDF Downloads 108
25006 Federated Learning in Healthcare

Authors: Ananya Gangavarapu

Abstract:

Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.

Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment

Procedia PDF Downloads 141
25005 The Utilization of Big Data in Knowledge Management Creation

Authors: Daniel Brian Thompson, Subarmaniam Kannan

Abstract:

The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.

Keywords: big data, knowledge management, data driven, knowledge creation

Procedia PDF Downloads 116
25004 Survey on Data Security Issues Through Cloud Computing Amongst Sme’s in Nairobi County, Kenya

Authors: Masese Chuma Benard, Martin Onsiro Ronald

Abstract:

Businesses have been using cloud computing more frequently recently because they wish to take advantage of its advantages. However, employing cloud computing also introduces new security concerns, particularly with regard to data security, potential risks and weaknesses that could be exploited by attackers, and various tactics and strategies that could be used to lessen these risks. This study examines data security issues on cloud computing amongst sme’s in Nairobi county, Kenya. The study used the sample size of 48, the research approach was mixed methods, The findings show that data owner has no control over the cloud merchant's data management procedures, there is no way to ensure that data is handled legally. This implies that you will lose control over the data stored in the cloud. Data and information stored in the cloud may face a range of availability issues due to internet outages; this can represent a significant risk to data kept in shared clouds. Integrity, availability, and secrecy are all mentioned.

Keywords: data security, cloud computing, information, information security, small and medium-sized firms (SMEs)

Procedia PDF Downloads 84
25003 Cloud Design for Storing Large Amount of Data

Authors: M. Strémy, P. Závacký, P. Cuninka, M. Juhás

Abstract:

Main goal of this paper is to introduce our design of private cloud for storing large amount of data, especially pictures, and to provide good technological backend for data analysis based on parallel processing and business intelligence. We have tested hypervisors, cloud management tools, storage for storing all data and Hadoop to provide data analysis on unstructured data. Providing high availability, virtual network management, logical separation of projects and also rapid deployment of physical servers to our environment was also needed.

Keywords: cloud, glusterfs, hadoop, juju, kvm, maas, openstack, virtualization

Procedia PDF Downloads 353
25002 Estimation of Missing Values in Aggregate Level Spatial Data

Authors: Amitha Puranik, V. S. Binu, Seena Biju

Abstract:

Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.

Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis

Procedia PDF Downloads 382
25001 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL

Procedia PDF Downloads 161
25000 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia

Authors: Melaku Tsehay

Abstract:

The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.

Keywords: data quality, immunization, verification factor, pastoralist region

Procedia PDF Downloads 123
24999 Identifying Critical Success Factors for Data Quality Management through a Delphi Study

Authors: Maria Paula Santos, Ana Lucas

Abstract:

Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.

Keywords: critical success factors, data quality, data quality management, Delphi, Q-Sort

Procedia PDF Downloads 217
24998 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 559