Search results for: random factor
7079 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search
Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur
Abstract:
Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.Keywords: process planning, scheduling, due-date assignment, genetic algorithm, random search
Procedia PDF Downloads 3757078 The Effects of Three Levels of Contextual Inference among adult Athletes
Authors: Abdulaziz Almustafa
Abstract:
Considering the critical role permanence has on predictions related to the contextual interference effect on laboratory and field research, this study sought to determine whether the paradigm of the effect depends on the complexity of the skill during the acquisition and transfer phases. The purpose of the present study was to investigate the effects of contextual interference CI by extending previous laboratory and field research with adult athletes through the acquisition and transfer phases. Male (n=60) athletes age 18-22 years-old, were chosen randomly from Eastern Province Clubs. They were assigned to complete blocked, random, or serial practices. Analysis of variance with repeated measures MANOVA indicated that, the results did not support the notion of CI. There were no significant differences in acquisition phase between blocked, serial and random practice groups. During the transfer phase, there were no major differences between the practice groups. Apparently, due to the task complexity, participants were probably confused and not able to use the advantages of contextual interference. This is another contradictory result to contextual interference effects in acquisition and transfer phases in sport settings. One major factor that can influence the effect of contextual interference is task characteristics as the nature of level of difficulty in sport-related skill.Keywords: contextual interference, acquisition, transfer, task difficulty
Procedia PDF Downloads 4667077 A New Mathematical Method for Heart Attack Forecasting
Authors: Razi Khalafi
Abstract:
Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy.Keywords: heart attack, ECG, random walk, correlation dimension, forecasting
Procedia PDF Downloads 5067076 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm
Authors: Thanh Noi Phan, Martin Kappas, Jan Degener
Abstract:
The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam
Procedia PDF Downloads 3877075 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 1147074 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams
Authors: Sergo Esadze
Abstract:
Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.Keywords: cantilever, random process, seismic load, vertical acceleration
Procedia PDF Downloads 1887073 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.Keywords: solubility, random forest, molecular descriptors, maccs keys
Procedia PDF Downloads 467072 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 2267071 Evaluation of Response Modification Factors in Moment Resisting Frame Buildings Considering Soil Structure Interaction
Authors: K. Farheen, A. Munir
Abstract:
Seismic response of the multi-storey buildings is created by the interaction of both the structure and underlying soil medium. The seismic design philosophy is incorporated using response modification factor 'R'. Current code based values of 'R' factor does not reflect the SSI problem as it is based on fixed base condition. In this study, the modified values of 'R' factor for moment resisting frame (MRF) considering SSI are evaluated. The response of structure with and without SSI has been compared using equivalent linear static and nonlinear static pushover analyses for 10-storied moment resisting frame building. The building is located in seismic zone 2B situated on different soils with shear wave velocity (Vₛ) of 300m/sec (SD) and 1200m/s (SB). Code based 'R' factor value for building frame system has been taken as 5.5. Soil medium is modelled using identical but mutually independent horizontal and vertical springs. It was found that the modified 'R' factor values have been decreased by 47% and 43% for soil SD and SB respectively as compared to that of code based 'R' factor.Keywords: buildings, SSI, shear wave velocity, R factor
Procedia PDF Downloads 2127070 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp
Procedia PDF Downloads 3467069 Using Confirmatory Factor Analysis to Test the Dimensional Structure of Tourism Service Quality
Authors: Ibrahim A. Elshaer, Alaa M. Shaker
Abstract:
Several previous empirical studies have operationalized service quality as either a multidimensional or unidimensional construct. While few earlier studies investigated some practices of the assumed dimensional structure of service quality, no study has been found to have tested the construct’s dimensionality using confirmatory factor analysis (CFA). To gain a better insight into the dimensional structure of service quality construct, this paper tests its dimensionality using three CFA models (higher order factor model, oblique factor model, and one factor model) on a set of data collected from 390 British tourists visited Egypt. The results of the three tests models indicate that service quality construct is multidimensional. This result helps resolving the problems that might arise from the lack of clarity concerning the dimensional structure of service quality, as without testing the dimensional structure of a measure, researchers cannot assume that the significant correlation is a result of factors measuring the same construct.Keywords: service quality, dimensionality, confirmatory factor analysis, Egypt
Procedia PDF Downloads 5917068 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation
Procedia PDF Downloads 1457067 Effects of Family Order and Informal Social Control on Protecting against Child Maltreatment: A Comparative Study of Seoul and Kathmandu
Authors: Thapa Sirjana, Clifton R. Emery
Abstract:
This paper examines the family order and Informal Social Control (ISC) by the extended families as a protective factor against Child Maltreatment. The findings are discussed using the main effects and the interaction effects of family order and informal social control by the extended families. The findings suggest that IPV mothers are associated with child abuse and child neglect. The children are neglected in the home more and physical abuse occurs in the case, if mothers are abused by their husbands. The mother’s difficulties of being abused may lead them to neglect their children. The findings suggest that ‘family order’ is a significant protective factor against child maltreatment. The results suggest that if the family order is neither too high nor too low than that can play a role as a protective factor. Soft type of ISC is significantly associated with child maltreatment. This study suggests that the soft type of ISC by the extended families is a helpful approach to develop child protection in both the countries. This study is analyzed the data collected from Seoul and Kathmandu families and neighborhood study (SKFNS). Random probability cluster sample of married or partnered women in 20 Kathmandu wards and in Seoul 34 dongs were selected using probability proportional to size (PPS) sampling. Overall, the study is to make a comparative study of Korea and Nepal and examine how the cultural differences and similarities associate with the child maltreatment.Keywords: child maltreatment, intimate partner violence, informal social control and family order Seoul, Kathmandu
Procedia PDF Downloads 2477066 A Study of Behavioral Phenomena Using an Artificial Neural Network
Authors: Yudhajit Datta
Abstract:
Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story
Procedia PDF Downloads 3797065 Assessment of Petrophysical Parameters Using Well Log and Core Data
Authors: Khulud M. Rahuma, Ibrahim B. Younis
Abstract:
Assessment of petrophysical parameters are very essential for reservoir engineer. Three techniques can be used to predict reservoir properties: well logging, well testing, and core analysis. Cementation factor and saturation exponent are very required for calculation, and their values role a great effect on water saturation estimation. In this study a sensitive analysis was performed to investigate the influence of cementation factor and saturation exponent variation applying logs, and core analysis. Measurements of water saturation resulted in a maximum difference around fifteen percent.Keywords: porosity, cementation factor, saturation exponent, formation factor, water saturation
Procedia PDF Downloads 6937064 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters
Authors: Eyhab El-Kharashi, Maher El-Dessouki
Abstract:
The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion
Procedia PDF Downloads 5577063 Random Walks and Option Pricing for European and American Options
Authors: Guillaume Leduc
Abstract:
In this paper, we describe a broad setting under which the error of the approximation can be quantified, controlled, and for which convergence occurs at a speed of n⁻¹ for European and American options. We describe how knowledge of the error allows for arbitrarily fast acceleration of the convergence.Keywords: random walk approximation, European and American options, rate of convergence, option pricing
Procedia PDF Downloads 4637062 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling
Authors: K. Soldatova, Y. Galerkin
Abstract:
A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.Keywords: loading factor performance, centrifugal compressor, impeller, modeling
Procedia PDF Downloads 3497061 Exploratory Factor Analysis of Natural Disaster Preparedness Awareness of Thai Citizens
Authors: Chaiyaset Promsri
Abstract:
Based on the synthesis of related literatures, this research found thirteen related dimensions that involved the development of natural disaster preparedness awareness including hazard knowledge, hazard attitude, training for disaster preparedness, rehearsal and practice for disaster preparedness, cultural development for preparedness, public relations and communication, storytelling, disaster awareness game, simulation, past experience to natural disaster, information sharing with family members, and commitment to the community (time of living). The 40-item of natural disaster preparedness awareness questionnaire was developed based on these thirteen dimensions. Data were collected from 595 participants in Bangkok metropolitan and vicinity. Cronbach's alpha was used to examine the internal consistency for this instrument. Reliability coefficient was 97, which was highly acceptable. Exploratory Factor Analysis where principal axis factor analysis was employed. The Kaiser-Meyer-Olkin index of sampling adequacy was .973, indicating that the data represented a homogeneous collection of variables suitable for factor analysis. Bartlett's test of Sphericity was significant for the sample as Chi-Square = 23168.657, df = 780, and p-value < .0001, which indicated that the set of correlations in the correlation matrix was significantly different and acceptable for utilizing EFA. Factor extraction was done to determine the number of factors by using principal component analysis and varimax. The result revealed that four factors had Eigen value greater than 1 with more than 60% cumulative of variance. Factor #1 had Eigen value of 22.270, and factor loadings ranged from 0.626-0.760. This factor was named as "Knowledge and Attitude of Natural Disaster Preparedness". Factor #2 had Eigen value of 2.491, and factor loadings ranged from 0.596-0.696. This factor was named as "Training and Development". Factor #3 had Eigen value of 1.821, and factor loadings ranged from 0.643-0.777. This factor was named as "Building Experiences about Disaster Preparedness". Factor #4 had Eigen value of 1.365, and factor loadings ranged from 0.657-0.760. This was named as "Family and Community". The results of this study provided support for the reliability and construct validity of natural disaster preparedness awareness for utilizing with populations similar to sample employed.Keywords: natural disaster, disaster preparedness, disaster awareness, Thai citizens
Procedia PDF Downloads 3787060 An Investigation on Overstrength Factor (Ω) of Reinforced Concrete Buildings in Turkish Earthquake Draft Code (TEC-2016)
Authors: M. Hakan Arslan, I. Hakkı Erkan
Abstract:
Overstrength factor is an important parameter of load reduction factor. In this research, the overstrength factor (Ω) of reinforced concrete (RC) buildings and the parameters of Ω in TEC-2016 draft version have been explored. For this aim, 48 RC buildings have been modeled according to the current seismic code TEC-2007 and Turkish Building Code-500-2000 criteria. After modelling step, nonlinear static pushover analyses have been applied to these buildings by using TEC-2007 Section 7. After the nonlinear pushover analyses, capacity curves (lateral load-lateral top displacement curves) have been plotted for 48 RC buildings. Using capacity curves, overstrength factors (Ω) have been derived for each building. The obtained overstrength factor (Ω) values have been compared with TEC-2016 values for related building types, and the results have been interpreted. According to the obtained values from the study, overstrength factor (Ω) given in TEC-2016 draft code is found quite suitable.Keywords: reinforced concrete buildings, overstrength factor, earthquake, static pushover analysis
Procedia PDF Downloads 3567059 Factorization of Computations in Bayesian Networks: Interpretation of Factors
Authors: Linda Smail, Zineb Azouz
Abstract:
Given a Bayesian network relative to a set I of discrete random variables, we are interested in computing the probability distribution P(S) where S is a subset of I. The general idea is to write the expression of P(S) in the form of a product of factors where each factor is easy to compute. More importantly, it will be very useful to give an interpretation of each of the factors in terms of conditional probabilities. This paper considers a semantic interpretation of the factors involved in computing marginal probabilities in Bayesian networks. Establishing such a semantic interpretations is indeed interesting and relevant in the case of large Bayesian networks.Keywords: Bayesian networks, D-Separation, level two Bayesian networks, factorization of computation
Procedia PDF Downloads 5297058 Environmental Fatigue Analysis for Control Rod Drive Mechanisms Seal House
Authors: Xuejiao Shao, Jianguo Chen, Xiaolong Fu
Abstract:
In this paper, the elastoplastic strain correction factor computed by software of ANSYS was modified, and the fatigue usage factor in air was also corrected considering in water under reactor operating condition. The fatigue of key parts on control rod drive mechanisms was analyzed considering the influence of environmental fatigue caused by the coolant in the react pressure vessel. The elastoplastic strain correction factor was modified by analyzing thermal and mechanical loads separately referring the rules of RCC-M 2002. The new elastoplastic strain correction factor Ke(mix) is computed to replace the original Ke computed by the software of ANSYS when evaluating the fatigue produced by thermal and mechanical loads together. Based on the Ke(mix) and the usage cycle and fatigue design curves, the new range of primary plus secondary stresses was evaluated to obtain the final fatigue usage factor. The results show that the precision of fatigue usage factor can be elevated by using modified Ke when the amplify of the primary and secondary stress is large to some extent. One approach has been proposed for incorporating the environmental effects considering the effects of reactor coolant environments on fatigue life in terms of an environmental correction factor Fen, which is the ratio of fatigue life in air at room. To incorporate environmental effects into the RCCM Code fatigue evaluations, the fatigue usage factor based on the current Code design curves is multiplied by the correction factor. The contribution of environmental effects to results is discussed. Fatigue life decreases logarithmically with decreasing strain rate below 10%/s, which is insensitive to strain rate when temperatures below 100°C.Keywords: environmental fatigue, usage factor, elastoplastic strain correction factor, environmental correction
Procedia PDF Downloads 3247057 Cognitive Weighted Polymorphism Factor: A New Cognitive Complexity Metric
Authors: T. Francis Thamburaj, A. Aloysius
Abstract:
Polymorphism is one of the main pillars of the object-oriented paradigm. It induces hidden forms of class dependencies which may impact software quality, resulting in higher cost factor for comprehending, debugging, testing, and maintaining the software. In this paper, a new cognitive complexity metric called Cognitive Weighted Polymorphism Factor (CWPF) is proposed. Apart from the software structural complexity, it includes the cognitive complexity on the basis of type. The cognitive weights are calibrated based on 27 empirical studies with 120 persons. A case study and experimentation of the new software metric shows positive results. Further, a comparative study is made and the correlation test has proved that CWPF complexity metric is a better, more comprehensive, and more realistic indicator of the software complexity than Abreu’s Polymorphism Factor (PF) complexity metric.Keywords: cognitive complexity metric, object-oriented metrics, polymorphism factor, software metrics
Procedia PDF Downloads 4587056 Reliability Based Performance Evaluation of Stone Column Improved Soft Ground
Authors: A. GuhaRay, C. V. S. P. Kiranmayi, S. Rudraraju
Abstract:
The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (Pf) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (cr) and cohesion of soil (cs) are two most important factors influencing Pf. If the coefficient of variation (COV) of cr exceeds 20%, Pf exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of cs > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables.Keywords: bearing capacity, consolidation, geotechnical random variables, probability of failure, stone columns
Procedia PDF Downloads 3597055 Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load
Authors: Mansour H. Alkmim, Adriano T. Fabro, Marcus V. G. De Morais
Abstract:
In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation.Keywords: generalized pattern search, parameter optimization, random vibration analysis, vibration suppression
Procedia PDF Downloads 2757054 Efficient Internal Generator Based on Random Selection of an Elliptic Curve
Authors: Mustapha Benssalah, Mustapha Djeddou, Karim Drouiche
Abstract:
The random number generation (RNG) presents a significant importance for the security and the privacy of numerous applications, such as RFID technology and smart cards. Since, the quality of the generated bit sequences is paramount that a weak internal generator for example, can directly cause the entire application to be insecure, and thus it makes no sense to employ strong algorithms for the application. In this paper, we propose a new pseudo random number generator (PRNG), suitable for cryptosystems ECC-based, constructed by randomly selecting points from several elliptic curves randomly selected. The main contribution of this work is the increasing of the generator internal states by extending the set of its output realizations to several curves auto-selected. The quality and the statistical characteristics of the proposed PRNG are validated using the Chi-square goodness of fit test and the empirical Special Publication 800-22 statistical test suite issued by NIST.Keywords: PRNG, security, cryptosystem, ECC
Procedia PDF Downloads 4447053 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm
Authors: Ali Nourollah, Mohsen Movahedinejad
Abstract:
In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The merge algorithm has the time complexity of O ((r+s) *l) where r and s are the size of merging polygons and l shows the number of intersecting edges removed from the polygonal chain. It will be shown that 1 < l < r+s. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.
Procedia PDF Downloads 5327052 Matric Suction Effects on Behavior of Unsaturated Soil Slope
Authors: Mohsen Mousivand, Hesam Aminpour
Abstract:
Soil slopes are usually located above the groundwater level that are largely unsaturated. It is possible that unsaturated soil of slope has expanded or collapsed as a result of wetting by rain or other factor that this type of soil behavior can cause serious problems including human and financial damage. The main factor causing this difference in behavior of saturated and unsaturated state of soil is matric suction that is created by interface of the soil and water in the soil pores. So far theoretical studies show that matric suction has important effect on the mechanical behavior of soil although the impact of this factor on slope stability has not been studied. This paper presents a numerical study of effect of matric suction on slope stability. The results of the study indicate that safety factor and stability of soil slope increase due to an increasing of matric suction and in view of matric suction leads to more accurate results and safety factor.Keywords: slope, unsaturated soil, matric suction, stability
Procedia PDF Downloads 3337051 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation
Authors: Yaping Zhao
Abstract:
In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density
Procedia PDF Downloads 5037050 Development of K-Factor for Road Geometric Design: A Case Study of North Coast Road in Java
Authors: Edwin Hidayat, Redi Yulianto, Disi Hanafiah
Abstract:
On the one hand, parameters which are used for determining the number of lane on the new road construction are average annual average daily traffic (AADT) and peak hour factor (K-factor). On the other hand, the value of K-factor listed in the guidelines and manual for road planning in Indonesia is a value of adoption or adaptation from foreign guidelines or manuals. Thus, the value is less suitable for Indonesian condition due to differences in road conditions, vehicle type, and driving behavior. The purpose of this study is to provide an example on how to determine k-factor values at a road segment with particular conditions in north coast road, West Java. The methodology is started with collecting traffic volume data for 24 hours over 365 days using PLATO (Automated Traffic Counter) with the approach of video image processing. Then, the traffic volume data is divided into per hour and analyzed by comparing the peak traffic volume in the 30th hour (or other) with the AADT in the same year. The analysis has resulted that for the 30th peak hour the K-factor is 0.97. This value can be used for planning road geometry or evaluating the road capacity performance for the 4/2D interurban road.Keywords: road geometry, K-factor, annual average daily traffic, north coast road
Procedia PDF Downloads 161