Search results for: power law fluid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8117

Search results for: power law fluid

8027 Effect of Sedimentation on Torque Transmission in the Larger Radius Magnetorheological Clutch

Authors: Manish Kumar Thakur, Chiranjit Sarkar

Abstract:

Sedimentation of magnetorheological (MR) fluid affects its working. MR fluid is a smart fluid that has unique qualities such as quick responsiveness and easy controllability. It is used in the MR damper, MR brake, and MR clutch. In this work effect of sedimentation on torque transmission in the shear mode operated MR clutch is investigated. A test rig is developed to test the impact of sedimentation on torque transmission in the MR clutch. Torque transmission capability of MR clutch has been measured under two conditions to confirm the result of sedimentation. The first experiment is done just after filling and the other after one week. It has been observed that transmission torque is decreased after sedimentation. Hence sedimentation affects the working of the MR clutch.

Keywords: clutch, magnetorheological fluid, sedimentation, torque

Procedia PDF Downloads 184
8026 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide

Procedia PDF Downloads 241
8025 Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids

Authors: Devesh Motwani, Amey Kashyap

Abstract:

Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required.

Keywords: economics, guargum, viscofier, CMC, thermal stability

Procedia PDF Downloads 469
8024 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine

Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu

Abstract:

Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.

Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization

Procedia PDF Downloads 161
8023 Magnetic Field Induced Tribological Properties of Magnetic Fluid

Authors: Kinjal Trivedi, Ramesh V. Upadhyay

Abstract:

Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction.

Keywords: four ball tester, magnetic fluid, nanolubricant, tribology

Procedia PDF Downloads 235
8022 Re-Imagining and De-Constructing the Global Security Architecture

Authors: Smita Singh

Abstract:

The paper develops a critical framework to the hegemonic discourses resorted to by the dominant powers in the global security architecture. Within this framework, security is viewed as a discourse through which identities and threats are represented and produced to legitimize the security concerns of few at the cost of others. International security have long been driven and dominated by power relations. Since the end of the Cold War, the global transformations have triggered contestations to the idea of security at both theoretical and practical level. These widening and deepening of the concept of security have challenged the existing power hierarchies at the theoretical level but not altered the substance and actors defining it. When discourses are introduced into security studies, several critical questions erupt: how has power shaped security policies of the globe through language? How does one understand the meanings and impact of those discourses? Who decides the agenda, rules, players and outliers of the security? Language as a symbolic system and form of power is fluid and not fixed. Over the years the dominant Western powers, led by the United States of America have employed various discursive practices such as humanitarian intervention, responsibility to protect, non proliferation, human rights, war on terror and so on to reorient the constitution of identities and interests and hence the policies that need to be adopted for its actualization. These power relations are illustrated in this paper through the narratives used in the nonproliferation regime. The hierarchical security dynamics is a manifestation of the global power relations driven by many factors including discourses.

Keywords: hegemonic discourse, global security, non-proliferation regime, power politics

Procedia PDF Downloads 318
8021 Effects of ECCS on the Cold-Leg Fluid Temperature during SGTR Accidents

Authors: Tadashi Watanabe

Abstract:

The LSTF experiment simulating the SGTR accident at the Mihama Unit-2 reactor is analyzed using the RELAP5/MOD3.3 code. In the accident and thus in the experiment, the ECC water was injected not only into the cold legs but into the upper plenum. Overall transients during the experiment such as pressures and fluid temperatures are simulated well by the code. The cold-leg fluid temperatures are shown to decrease if the upper plenum injection system is connected to the cold leg. It is found that the cold-leg fluid temperatures also decrease if the upper-plenum injection is not used and the cold-leg injection alone is actuated.

Keywords: SGTR, LSTF, RELAP5, ECCS

Procedia PDF Downloads 666
8020 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media

Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh

Abstract:

In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.

Keywords: micro-polar theory, Galerkin method, MEMS, micro-fluid

Procedia PDF Downloads 184
8019 Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow

Authors: Shubham Kumar, Chaitanya Goswami, Sudipto Sarkar

Abstract:

Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.

Keywords: Ansys Fluent, CFD, periodic vortex shedding, pseudoplastic fluid flow

Procedia PDF Downloads 203
8018 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo

Abstract:

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Keywords: impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid

Procedia PDF Downloads 286
8017 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic

Procedia PDF Downloads 163
8016 An Adder with Novel PMOS and NMOS for Ultra Low Power Applications in Deep Submicron Technology

Authors: Ch. Ashok Babu, J. V. R. Ravindra, K. Lalkishore

Abstract:

Power has became a burning issue in modern VLSI design. As the technology advances especially below 45nm, technology of leakage power became a big problem apart of the dynamic power. This paper presents a full adder with novel PMOS and NMOS which consume less power compare to conventional full adder, DTMOS full adder. This paper shows different types of adders and their power consumption, area, and delay. All the experiments have been carried out using Cadence® Virtuoso® design lay out editor which shows power consumption of different types of adders.

Keywords: average power, leakage power, delay, DTMOS, PDP

Procedia PDF Downloads 389
8015 Design and Experimental Studies of a Centrifugal SWIRL Atomizer

Authors: Hemabushan K., Manikandan

Abstract:

In a swirl atomizer, fluid undergoes a swirling motion as a result of centrifugal force created by opposed tangential inlets in the swirl chamber. The angular momentum of fluid continually increases as it reaches the exit orifice and forms a hollow sheet. Which disintegrates to form ligaments and droplets respectively as it flows downstream. This type of atomizers used in rocket injectors and oil burner furnaces. In this present investigation a swirl atomizer with two opposed tangential inlets has been designed. Water as working fluid, experiments had been conducted for the fluid injection pressures in regime of 0.033 bar to 0.519 bar. The fluid has been pressured by a 0.5hp pump and regulated by a pressure regulator valve. Injection pressure of fluid has been measured by a U-tube mercury manometer. The spray pattern and the droplets has been captured with a high resolution camera in black background with a high intensity flash highlighting the fluid. The unprocessed images were processed in ImageJ processing software for measuring the droplet diameters and its shape characteristics along the downstream. The parameters such as mean droplet diameter and distribution, wave pattern, rupture distance and spray angle were studied for this atomizer. The above results were compared with theoretical results and also analysed for deviation with design parameters.

Keywords: swirl atomizer, injector, spray, SWIRL

Procedia PDF Downloads 490
8014 Water-Controlled Fracturing with Fuzzy-Ball Fluid in Tight Gas Reservoirs of Deep Coal Measures in Sulige

Authors: Xiangchun Wang, Lihui Zheng, Maozong Gan, Peng Zhang, Tong Wu, An Chang

Abstract:

The deep coal measure tight gas reservoir in Sulige is usually reformed by fracturing, because the reservoir thickness is small, the water layers can be easily communicated during fracturing, which will lead to water production of gas wells and lower production of gas wells. Therefore, it is necessary to control water during fracturing in deep coal measure tight gas reservoir. Using fuzzy-ball fluid to control water fracturing can not only increase the output but also reduce the water output. The fuzzy-ball fluid was prepared indoors to carry out evaluation experiments. The fuzzy ball fluid was mixed in equal volume with the pre-fluid and formation water to test its compatibility. The core displacement device was used to test the gas and water breaking through the matrix and fractured cores blocked by fuzzy-ball fluid. The breakthrough pressure of the plunger tests its water blocking performance. The experimental results show that there is no precipitation after the fuzzy-ball fluid is mixed with the pad fluid and the formation water, respectively. The breakthrough pressure gradients of gas and water after the fuzzy-ball fluid plugged the cracks were 0.02MPa/cm and 0.04MPa/cm, respectively, and the breakthrough pressure gradients of gas and water after the matrix was plugged were 0.03MPa/cm and 0.2MPa/cm, respectively, which meet the requirements of field operation. Two wells A and B in the Sulige Gas Field were used on site to implement water control fracturing. After the pre-fluid was injected into the two wells, 50m3 of fuzzy-ball fluid was pumped to plug the water. The construction went smoothly. After water control and fracturing, the average daily output in 161 days was increased by 13.71% and 6.99% compared with that of adjacent wells in the same layer. The adjacent wells were bubbled for 3 times and 63 times respectively, while there was no effusion in A and B construction wells. The results show that fuzzy-ball fluid is a water plugging material suitable for water control fracturing in tight gas wells, and its water control mechanism can also provide a new idea for the development of water control fracturing materials.

Keywords: coal seam, deep layer, fracking, fuzzy-ball fluid, reservoir reconstruction

Procedia PDF Downloads 227
8013 Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall

Authors: Muzna Tariq, Ihtzaz Qamar

Abstract:

In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range.

Keywords: computational fluid dynamics, conduction, conjugate heat transfer, convection, fluid flow, thermocouples

Procedia PDF Downloads 147
8012 Numerical investigation of Hydrodynamic and Parietal Heat Transfer to Bingham Fluid Agitated in a Vessel by Helical Ribbon Impeller

Authors: Mounir Baccar, Amel Gammoudi, Abdelhak Ayadi

Abstract:

The efficient mixing of highly viscous fluids is required for many industries such as food, polymers or paints production. The homogeneity is a challenging operation for this fluids type since they operate at low Reynolds number to reduce the required power of the used impellers. Particularly, close-clearance impellers, mainly helical ribbons, are chosen for highly viscous fluids agitated in laminar regime which is currently heated through vessel wall. Indeed, they are characterized by high shear strains closer to the vessel wall, which causes a disturbing thermal boundary layer and ensures the homogenization of the bulk volume by axial and radial vortices. The hydrodynamic and thermal behaviors of Newtonian fluids in vessels agitated by helical ribbon impellers, has been mostly studied by many researchers. However, rarely researchers investigated numerically the agitation of yield stress fluid by means of helical ribbon impellers. This paper aims to study the effect of the Double Helical Ribbon (DHR) stirrers on both the hydrodynamic and the thermal behaviors of yield stress fluids treated in a cylindrical vessel by means of numerical simulation approach. For this purpose, continuity, momentum, and thermal equations were solved by means of 3D finite volume technique. The effect of Oldroyd (Od) and Reynolds (Re) numbers on the power (Po) and Nusselt (Nu) numbers for the mentioned stirrer type have been studied. Also, the velocity and thermal fields, the dissipation function and the apparent viscosity have been presented in different (r-z) and (r-θ) planes.

Keywords: Bingham fluid, Hydrodynamic and thermal behavior, helical ribbon, mixing, numerical modelling

Procedia PDF Downloads 306
8011 Despiking of Turbulent Flow Data in Gravel Bed Stream

Authors: Ratul Das

Abstract:

The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.

Keywords: acoustic doppler velocimeter, gravel-bed, spike removal, reynolds shear stress, near-bed turbulence, velocity power spectra

Procedia PDF Downloads 299
8010 Transfigurative Changes of Governmental Responsibility

Authors: Ákos Cserny

Abstract:

The unequivocal increase of the area of operation of the executive power can happen with the appearance of new areas to be influenced and its integration in the power, or at the expense of the scopes of other organs with public authority. The extension of the executive can only be accepted within the framework of the rule of law if parallel with this process we get constitutional guarantees that the exercise of power is kept within constitutional framework. Failure to do so, however, may result in the lack, deficit of democracy and democratic sense, and may cause an overwhelming dominance of the executive power. Therefore, the aim of this paper is to present executive power and responsibility in the context of different dimensions.

Keywords: confidence, constitution, executive power, liabiliy, parliamentarism

Procedia PDF Downloads 402
8009 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara

Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum

Abstract:

This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.

Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater

Procedia PDF Downloads 634
8008 Transient Response of Elastic Structures Subjected to a Fluid Medium

Authors: Helnaz Soltani, J. N. Reddy

Abstract:

Presence of fluid medium interacting with a structure can lead to failure of the structure. Since developing efficient computational model for fluid-structure interaction (FSI) problems has broader impact to realistic problems encountered in aerospace industry, ship industry, oil and gas industry, and so on, one can find an increasing need to find a method in order to investigate the effect of fluid domain on structural response. A coupled finite element formulation of problems involving FSI issue is an accurate method to predict the response of structures in contact with a fluid medium. This study proposes a finite element approach in order to study the transient response of the structures interacting with a fluid medium. Since beam and plate are considered to be the fundamental elements of almost any structure, the developed method is applied to beams and plates benchmark problems in order to demonstrate its efficiency. The formulation is a combination of the various structure theories and the solid-fluid interface boundary condition, which is used to represent the interaction between the solid and fluid regimes. Here, three different beam theories as well as three different plate theories are considered to model the solid medium, and the Navier-Stokes equation is used as the theoretical equation governed the fluid domain. For each theory, a coupled set of equations is derived where the element matrices of both regimes are calculated by Gaussian quadrature integration. The main feature of the proposed methodology is to model the fluid domain as an added mass; the external distributed force due to the presence of the fluid. We validate the accuracy of such formulation by means of some numerical examples. Since the formulation presented in this study covers several theories in literature, the applicability of our proposed approach is independent of any structure geometry. The effect of varying parameters such as structure thickness ratio, fluid density and immersion depth, are studied using numerical simulations. The results indicate that maximum vertical deflection of the structure is affected considerably in the presence of a fluid medium.

Keywords: beam and plate, finite element analysis, fluid-structure interaction, transient response

Procedia PDF Downloads 566
8007 Numerical Study of Fluid Flow and Heat Transfer in the Spongy-Porous Media

Authors: Zeinab Sayed Abdel Rehim, M. A. Ziada, H. Salwa El-Deeb

Abstract:

Numerical study of fluid flow, heat transfer and thermal energy storing or released in/from spongy-porous media to predict the thermal performance and characteristics of the porous media as packed bed system is presented in this work. This system is cylindrical channel filled with porous media (carbon foam). The system consists of working fluid (air) and spongy-porous medium; they act as the heat exchanger (heating or cooling modes) where thermal interaction occurs between the working fluid and the porous medium. The spongy-porous media are defined by the different type of porous medium employed in the storing or cooling modes. Two different porous media are considered in this study: Carbon foam, and Silicon rubber. The flow of the working fluid (air) is one dimensional in the axial direction from the top to downward and steady state conditions. The numerical results of transient temperature distribution for both working fluid and the spongy-porous medium phases and the amount of stored/realized heat inside/from the porous medium for each case with respect to the operating parameters and the spongy-porous media characteristics are illustrated.

Keywords: fluid flow, heat transfer, numerical analysis, spongy-porous media, thermal performance, transient conditions

Procedia PDF Downloads 545
8006 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions

Authors: M. Y. Malika, Farzana, Abdul Rehman

Abstract:

The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.

Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution

Procedia PDF Downloads 588
8005 Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations

Authors: Lei Bi, Yunpeng Jiao, Chunjiang Liu, Jianhua Chen, Wei Ge

Abstract:

Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems.

Keywords: energy consumption statistic, gas-solid fluidization, CFD-DEM, regime transition, heat transfer mechanism

Procedia PDF Downloads 68
8004 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board

Authors: Anil Kumar Pandey

Abstract:

Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.

Keywords: power integrity, power-aware signal integrity analysis, electromagnetic simulation, channel simulation

Procedia PDF Downloads 436
8003 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel

Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun

Abstract:

The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.

Keywords: experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow

Procedia PDF Downloads 307
8002 Effects of Magnetic Field Strength on Fluid Flow Behavior in a Constricted Channel

Authors: Ashkan Javadzadegan, Aitak Javadzadegan, Babak Fakhim

Abstract:

One of possible ways to retard movement of fluid is through applying an external magnetic field. In this regard, this study is focused on the effect of a uniform transverse magnetic field on fluid flow behavior inside a channel with a local symmetric constriction. Also, Ellis Non-Newtonian model is implemented to address the effects of shear-dependent viscosity. According to the results, the flow separation downstream of the constriction can be controlled by applying an external magnetic field and/or manipulating the shear-thinning degree of fluid. It is also demonstrated that pressure drop increases by an increase in the strength of the magnetic field.

Keywords: magnetic field, non-Newtonian, separation, shear thinning

Procedia PDF Downloads 432
8001 All Optical Wavelength Conversion Based On Four Wave Mixing in Optical Fiber

Authors: Surinder Singh, Gursewak Singh Lovkesh

Abstract:

We have designed wavelength conversion based on four wave mixing in an optical fiber at 10 Gb/s. The power of converted signal increases with increase in signal power. The converted signal power is investigated as a function of input signal power and pump power. On comparison of converted signal power at different value of input signal power, we observe that best converted signal power is obtained at -2 dBm input signal power for both up conversion as well as for down conversion. Further, FWM efficiency, quality factor is observed for increase in input signal power and optical fiber length.

Keywords: FWM, optical fiiber, wavelngth converter, quality

Procedia PDF Downloads 579
8000 Reservoir Fluids: Occurrence, Classification, and Modeling

Authors: Ahmed El-Banbi

Abstract:

Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.

Keywords: PVT models, fluid types, PVT properties, fluids classification

Procedia PDF Downloads 72
7999 Fluid Structure Interaction of Offshore Concrete Columns under Explosion Loads

Authors: Ganga K. V. Prakhya, V. Karthigeyan

Abstract:

The paper describes the influences of the fluid and structure interaction in concrete structures that support large oil platforms in the North Sea. The dynamic interaction of the fluid both in 2D and 3D are demonstrated through a Computational Fluid Dynamics analysis in the event of explosion following a gas leak inside of the concrete column. The structural response characteristics of the column in water under dynamic conditions are quite complex involving axial, radial and circumferential modes. Fluid structure interaction (FSI) modelling showed that there are some frequencies of the column in water which are not found for a column in air. For example, it was demonstrated that one of the axial breathing modes can never be simulated without the use of FSI models. The occurrence of a shift in magnitude and time of pressure from explosion following gas leak along the height of the shaft not only excited the modes of vibration involving breathing (axial), bending and squashing (radial) modes but also magnified the forces in the column. FSI models revealed that dynamic effects resulted in dynamic amplification of loads. The results are summarized from a detailed study that was carried out by the first author for the Offshore Safety Division of Health & Safety Executive United Kingdom.

Keywords: concrete, explosion, fluid structure interaction, offshore structures

Procedia PDF Downloads 188
7998 Unsteady MHD Thin Film Flow of a Third-Grade Fluid with Heat Transfer and Slip Boundary Condition Down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

An investigation is made for unsteady MHD thin film flow of a third grade fluid down an inclined plane with slip boundary condition. The non-linear partial differential equation governing the flow and heat transfer are evaluated numerically using computer software called Maple to obtain velocity and temperature profile. The effect of slip and other various physical parameter on both velocity and temperature profile obtained are studied through several graphs.

Keywords: non-Newtonian fluid, MHD flow, third-grade fluid, Maple, slip boundary condition, heat transfer

Procedia PDF Downloads 455