Search results for: pipeline route optimisation
1114 The Scenario Analysis of Shale Gas Development in China by Applying Natural Gas Pipeline Optimization Model
Authors: Meng Xu, Alexis K. H. Lau, Ming Xu, Bill Barron, Narges Shahraki
Abstract:
As an emerging unconventional energy, shale gas has been an economically viable step towards a cleaner energy future in U.S. China also has shale resources that are estimated to be potentially the largest in the world. In addition, China has enormous unmet for a clean alternative to substitute coal. Nonetheless, the geological complexity of China’s shale basins and issues of water scarcity potentially impose serious constraints on shale gas development in China. Further, even if China could replicate to a significant degree the U.S. shale gas boom, China faces the problem of transporting the gas efficiently overland with its limited pipeline network throughput capacity and coverage. The aim of this study is to identify the potential bottlenecks in China’s gas transmission network, as well as to examine the shale gas development affecting particular supply locations and demand centers. We examine this through application of three scenarios with projecting domestic shale gas supply by 2020: optimistic, medium and conservative shale gas supply, taking references from the International Energy Agency’s (IEA’s) projections and China’s shale gas development plans. Separately we project the gas demand at provincial level, since shale gas will have more significant impact regionally than nationally. To quantitatively assess each shale gas development scenario, we formulated a gas pipeline optimization model. We used ArcGIS to generate the connectivity parameters and pipeline segment length. Other parameters are collected from provincial “twelfth-five year” plans and “China Oil and Gas Pipeline Atlas”. The multi-objective optimization model uses GAMs and Matlab. It aims to minimize the demands that are unable to be met, while simultaneously seeking to minimize total gas supply and transmission costs. The results indicate that, even if the primary objective is to meet the projected gas demand rather than cost minimization, there’s a shortfall of 9% in meeting total demand under the medium scenario. Comparing the results between the optimistic and medium supply of shale gas scenarios, almost half of the shale gas produced in Sichuan province and Chongqing won’t be able to be transmitted out by pipeline. On the demand side, the Henan province and Shanghai gas demand gap could be filled as much as 82% and 39% respectively, with increased shale gas supply. To conclude, the pipeline network in China is currently not sufficient in meeting the projected natural gas demand in 2020 under medium and optimistic scenarios, indicating the need for substantial pipeline capacity expansion for some of the existing network, and the importance of constructing new pipelines from particular supply to demand sites. If the pipeline constraint is overcame, Beijing, Shanghai, Jiangsu and Henan’s gas demand gap could potentially be filled, and China could thereby reduce almost 25% its dependency on LNG imports under the optimistic scenario.Keywords: energy policy, energy systematic analysis, scenario analysis, shale gas in China
Procedia PDF Downloads 2831113 An Environmental Method for Renovation of Sewer Systems in Building Structures
Authors: Parastou Kharazmi
Abstract:
Degradation of building materials particularly pipelines causes environmental damage during the renovation or replacement, disturbance for people living in the buildings, is time-consuming and last but not least is very costly. Rehabilitation by composite materials is a solution for renovation of degraded pipeline in residential buildings and any other structures which is less costly, faster and causes less damage to the environment. This study provides a brief state of technology, methods, and materials which are being used in Nordic and some other European countries and an investigation on the performance of the relined pipes after they have been in working condition. The investigation was carried by different analyses in laboratory as well as numerous field inspections.Keywords: buildings, pipeline, rehabilitation, polymer materials
Procedia PDF Downloads 2391112 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks
Authors: C. N. Vanitha, M. Usha
Abstract:
In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.Keywords: neural networks, pattern learning, security, wireless sensor networks
Procedia PDF Downloads 4041111 Monitoring Public Transportation in Developing Countries Using Automatic Vehicle Location System: A Case Study
Authors: Ahmed Osama, Hassan A. Mahdy, Khalid A. Kandil, Mohamed Elhabiby
Abstract:
Automatic Vehicle Location systems (AVL) have been used worldwide for more than twenty years and have showed great success in public transportation management and monitoring. Cairo public bus service suffers from several problems such as unscheduled stops, unscheduled route deviations, and inaccurate schedules, which have negative impacts on service reliability. This research aims to study those problems for a selected bus route in Cairo using a prototype AVL system. Experimental trips were run on the selected route; and the locations of unscheduled stops, regions of unscheduled deviations, along with other trip time and speed data were collected. Data was analyzed to demonstrate the reliability of passengers on the unscheduled stops compared to the scheduled ones. Trip time was also modeled to assess the unscheduled stops’ impact on trip time, and to check the accuracy of the applied scheduled trip time. Moreover, frequency and length of the unscheduled route deviations, as well as their impact on the bus stops, were illustrated. Solutions were proposed for the bus service deficiencies using the AVL system. Finally, recommendations were proposed for further research.Keywords: automatic vehicle location, public transportation, unscheduled stops, unscheduled route deviations, inaccurate schedule
Procedia PDF Downloads 3881110 Using a Hybrid Method to Eradicate Bamboo Growth along the Route of Overhead Power Lines
Authors: Miriam Eduful
Abstract:
The Electricity Company of Ghana (ECG) is under obligation, demanded by the Public Utility and Regulation Commission to meet set performance indices. However, in certain parts of the country, bamboo related power interruptions have become a challenge. Growth rate of the bamboo is such that the cost of regular vegetation maintenance along route of the overhead power lines has become prohibitive. To address the problem, several methods and techniques of bamboo eradication have being used. Some of these methods involved application of chemical compounds that are considered inimical and dangerous to the environment. In this paper, three methods of bamboo eradication along the route of the ECG overhead power lines have been investigated. A hybrid method has been found to be very effective and ecologically friendly. The method is locally available and comparatively inexpensive to apply.Keywords: bamboo, eradication, hybrid method, gly gold
Procedia PDF Downloads 3651109 Production Increase of C-Central Wells Baher Essalm-Libya
Authors: Emed Krekshi, Walid Ben Husein
Abstract:
The Bahr Essalam gas-condensate field is located off the Libyan coast and is currently being produced by Mellitah Oil and Gas (MOG). Gas and condensate are produced from the Bahr Essalam reservoir through a mixture of platform and subsea wells, with the subsea wells being gathered at the western manifolds and delivered to the Sabratha platform via a 22-inch pipeline. Gas is gathered and dehydrated on the Sabratha platform and then delivered to the Mellitah gas plant via an existing 36-inch gas export pipeline. The condensate separated on the Sabratha platform will be delivered to the Mellitah gas plant via an existing 10-inch export pipeline. The Bahr Essalam Phase II project includes 2 production wells (CC16 & CC17) at C-Central A connected to the Sabratha platform via a new 10.9 km long 10”/14” production pipeline. Production rates from CC16 and CC17 have exceeded the maximum planned rate of 40 MMSCFD per well. A hydrothermal analysis was conducted to review and Verify input data, focusing on the variation of flowing well head as a function of flowrate.as well as Review available input data against the previous design input data to determine the extent of change. The steady-state and transient simulations performed with Olga yielded coherent results and confirmed the possibility of achieving flow rates of up to 60MMSCFD per well without exceeding the design temperatures, pressures, and velocities.Keywords: Bahr Essalam, Mellitah Oil and Gas, production flow rates, steady and transient
Procedia PDF Downloads 521108 Preparation of Bacterial Cellulose Membranes from Nata de Coco for CO2/CH4 Separation
Authors: Yanin Hosakun, Sujitra Wongkasemjit, Thanyalak Chaisuwan
Abstract:
Carbon dioxide removal from natural gas is an important process because the existence of carbon dioxide in natural gas contributes to pipeline corrosion, reduces the heating value, and takes up volume in the pipeline. In this study, bacterial cellulose was chosen for the CO2/CH4 gas separation membrane due to its unique structure and prominent properties. Additionally, it can simply be obtained by culturing the bacteria so called “Acetobacter xylinum” through fermentation of coconut juice. Bacterial cellulose membranes with and without silver ions were prepared and studied for the separation performance of CO2 and CH4.Keywords: bacterial cellulose, CO2, CH4 separation, membrane, nata de coco
Procedia PDF Downloads 2491107 Dynamic Reroute Modeling for Emergency Evacuation: Case Study of Brunswick City, Germany
Authors: Yun-Pang Flötteröd, Jakob Erdmann
Abstract:
The human behaviors during evacuations are quite complex. One of the critical behaviors which affect the efficiency of evacuation is route choice. Therefore, the respective simulation modeling work needs to function properly. In this paper, Simulation of Urban Mobility’s (SUMO) current dynamic route modeling during evacuation, i.e. the rerouting functions, is examined with a real case study. The result consistency of the simulation and the reality is checked as well. Four influence factors (1) time to get information, (2) probability to cancel a trip, (3) probability to use navigation equipment, and (4) rerouting and information updating period are considered to analyze possible traffic impacts during the evacuation and to examine the rerouting functions in SUMO. Furthermore, some behavioral characters of the case study are analyzed with use of the corresponding detector data and applied in the simulation. The experiment results show that the dynamic route modeling in SUMO can deal with the proposed scenarios properly. Some issues and function needs related to route choice are discussed and further improvements are suggested.Keywords: evacuation, microscopic traffic simulation, rerouting, SUMO
Procedia PDF Downloads 1921106 Nitrous Oxide Wastage: Putting Strategies “In the Pipeline” to Reduce Carbon Emissions from Nitrous Oxide
Authors: F. Gallop, C. Ward, M. Zaky, M. Vaghela, R. Sabaratnam
Abstract:
Nitrous oxide (N₂O) has been used in anaesthesia for over 150 years owing to advantageous physical and pharmacological properties. However, with a global warming potential of 310, we have an urgent responsibility to reduce its usage and emission. Anecdotal evidence in our hospital trust suggests minimal N₂O usage, yet our theatres receive a staggering supply. This warranted further investigation. We used a data collection tool to prospectively capture quantitative and qualitative data regarding N₂O cases during one week: this recorded demographics, N₂O indications, clinical management, and total N₂O consumption in litres. In addition, N₂O usage in dental sedation suites and paediatric theatres was separately quantified. Pipeline supply data was acquired from British Oxygen Company accounts. We captured 490 cases. 4% (n=19) used N₂O, 63% (n=12) of these in dental theatres. Common N₂0 indications were induction speed (37%) and rapidly increasing anaesthesia depth (32%). In adult cases, N₂O was always used intraoperatively rather than solely at induction. 74% (n=14) of anaesthetists reported environmental concern over using N₂O. The week’s total N₂O usage was 8109 litres, amounting to 421,668 litres annually. However, the annual N₂O pipeline supply is 2,997,000 litres; an enormous 1.8 million Kg of CO₂. Our results supportively demonstrate that the N₂O pipeline supply greatly exceeds its clinical use. Acknowledging clinical areas not audited, the discrepancy between supply and usage suggests approximately 2.5 million litres of yearly wastage. We consequently recommend terminating the N₂O pipeline supply in minimally used areas, eliminating 1.5 million Kg of CO₂ emissions. High usage clinical areas could consider portable N₂O cylinders as an alternative. In Sweden, N₂O destruction technology is routinely used to minimise CO₂ emissions. Our results support National Health System investment in similar infrastructure.Keywords: anaesthesia, environment, medical gases, nitrous oxide, sustainability
Procedia PDF Downloads 1371105 Primary Resonance in Vortex-Induced Vibration of a Pipeline Close to a Plane Boundary
Authors: Yiming Jin, Ping Dong
Abstract:
The primary resonance of a pipeline close to a plane boundary is investigated in this paper. Based on classic Van der Pol equation and added a nonlinear item, a new wake oscillator model is proposed to predict the vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary. Then, with the multi-scale method, the approximate solution for the case of the primary resonance is obtained. Besides, to study the characteristic of the primary resonance, the effects of the mass ration, frequency, damp ratio and gap ratio on the frequency-response curves of the pipeline are analysed. On the whole, the trend of the numerical results match up with that of the experimental data well and the mass ration, frequency, damp ratio and gap ratio play an important role in the vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary, especially, the smaller is the mass ratio, the larger impact the gap ratio has on the frequency-response curves of the primary resonance.Keywords: primary resonance, gap ratio, vortex-induced vibration, multi-scale method
Procedia PDF Downloads 3691104 Production Increase of C-Central Wells Baher Essalm-Libya
Authors: Walid Ben Husein, Emad Krekshi, Malek Essnni
Abstract:
The Bahr Essalam gas-condensate field is located off the Libyan coast and is currently being produced by Mellitah Oil and Gas (MOG). Gas and condensate are produced from the Bahr Essalam reservoir through a mixture of platform and subsea wells, with the subsea wells being gathered at the western manifolds and delivered to the Sabratha platform via a 22-inch pipeline. Gas is gathered and dehydrated on the Sabratha platform and then delivered to the Mellitah gas plant via an existing 36-inch gas export pipeline. The condensate separated on the Sabratha platform will be delivered to the Mellitah gas plant via an existing 10-inch export pipeline. The Bahr Essalam Phase II project includes 2 production wells (CC16 & CC17) at C-Central A connected to the Sabratha platform via a new 10.9 km long 10”/14” production pipeline. Production rates from CC16 and CC17 have exceeded the maximum planned rate of 40 MMSCFD per well. A hydrothermal analysis was conducted to review and Verify input data, focusing on the variation of flowing well head as a function of flowrate as well as Review available input data against the previous design input data to determine the extent of change. The steady-state and transient simulations performed with Olga yielded coherent results and confirmed the possibility of achieving flow rates of up to 60MMSCFD per well without exceeding the design temperatures, pressures, and velocities.Keywords: Bahr Essalam, Mellitah Oil and Gas, production flow rates, steady state, transient, OLGA.
Procedia PDF Downloads 41103 Deflection Behaviour of Retaining Wall with Pile for Pipeline on Slope of Soft Soil
Authors: Mutadi
Abstract:
Pipes laying on an unstable slope of soft soil are prone to movement. Pipelines that are buried in unstable slope areas will move due to lateral loads from soil movement, which can cause damage to the pipeline. A small-scale laboratory model of the reinforcement system of piles supported by retaining walls was conducted to investigate the effect of lateral load on the reinforcement. In this experiment, the lateral forces of 0.3 kN, 0.35 kN, and 0.4 kN and vertical force of 0.05 kN, 0.1 kN, and 0.15 kN were used. Lateral load from the electric jack is equipped with load cell and vertical load using the cement-steel box. To validate the experimental result, a finite element program named 2-D Plaxis was used. The experimental results showed that with an increase in lateral loading, the displacement of the reinforcement system increased. For a Vertical Load, 0.1 kN and versus a lateral load of 0.3 kN causes a horizontal displacement of 0.35 mm and an increase of 2.94% for loading of 0.35 kN and an increase of 8.82% for loading 0.4 kN. The pattern is the same in the finite element method analysis, where there was a 6.52% increase for 0.35 kN loading and an increase to 23.91 % for 0.4 kN loading. In the same Load, the Reinforcement System is reliable, as shown in Safety Factor on dry conditions were 3.3, 2.824 and 2.474, and on wet conditions were 2.98, 2.522 and 2.235.Keywords: soft soil, deflection, wall, pipeline
Procedia PDF Downloads 1621102 Optimizing Oil Production through 30-Inch Pipeline in Abu-Attifel Field
Authors: Ahmed Belgasem, Walid Ben Hussin, Emad Krekshi, Jamal Hashad
Abstract:
Waxy crude oil, characterized by its high paraffin wax content, poses significant challenges in the oil & gas industry due to its increased viscosity and semi-solid state at reduced temperatures. The wax formation process, which includes precipitation, crystallization, and deposition, becomes problematic when crude oil temperatures fall below the wax appearance temperature (WAT) or cloud point. Addressing these issues, this paper introduces a technical solution designed to mitigate the wax appearance and enhance the oil production process in Abu-Attifil Field via a 30-inch crude oil pipeline. A comprehensive flow assurance study validates the feasibility and performance of this solution across various production rates, temperatures, and operational scenarios. The study's findings indicate that maintaining the crude oil's temperature above a minimum threshold of 63°C is achievable through the strategic placement of two heating stations along the pipeline route. This approach effectively prevents wax deposition, gelling, and subsequent mobility complications, thereby bolstering the overall efficiency, reliability, safety, and economic viability of the production process. Moreover, this solution significantly curtails the environmental repercussions traditionally associated with wax deposition, which can accumulate up to 7,500kg. The research methodology involves a comprehensive flow assurance study to validate the feasibility and performance of the proposed solution. The study considers various production rates, temperatures, and operational scenarios. It includes crude oil analysis to determine the wax appearance temperature (WAT), as well as the evaluation and comparison of operating options for the heating stations. The study's findings indicate that the proposed solution effectively prevents wax deposition, gelling, and subsequent mobility complications. By maintaining the crude oil's temperature above the specified threshold, the solution improves the overall efficiency, reliability, safety, and economic viability of the oil production process. Additionally, the solution contributes to reducing environmental repercussions associated with wax deposition. The research conclusion presents a technical solution that optimizes oil production in the Abu-Attifil Field by addressing wax formation problems through the strategic placement of two heating stations. The solution effectively prevents wax deposition, improves overall operational efficiency, and contributes to environmental sustainability. Further research is suggested for field data validation and cost-benefit analysis exploration.Keywords: oil production, wax depositions, solar cells, heating stations
Procedia PDF Downloads 711101 Optimisation of Photovoltaic Array with DC-DC Converter Groups
Authors: Fatma Soltani
Abstract:
In power electronics the DC-DC converters or choppers are now employed in large areas, particularly in the field of electricity generation by wind and solar energy conversion. Photovoltaic generators (GPV) can deliver maximum power for a point on the characteristic P = f (Vpv), called maximum power point (MPP), or climatic variations, entraiment fluctuation PPM. To remedy this problem is interposed between the generator and receiver a DC-DC converter. The converter is usually used a simple MOSFET chopper. However, the MOSFET can be applied in the field of low power when you need a high switching frequency but becomes highly dissipative when should block large voltages For PV generators medium and high power, the use of IGBT chopper is by far the most recommended. To reduce stress on semiconductor components using several choppers series connected in parallel is known as interleaved chopper. These choppers lead to rotas.Keywords: converter DC-DC entrelaced, photovoltaic generators, IGBT, optimisation
Procedia PDF Downloads 5371100 Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults
Authors: Maria Trimintziou, Michael Sakellariou, Prodromos Psarropoulos
Abstract:
Nowadays, the exploitation of hydrocarbons reserves in deep seas and oceans, in combination with the need to transport hydrocarbons among countries, has made the design, construction and operation of offshore pipelines very significant. Under this perspective, it is evident that many more offshore pipelines are expected to be constructed in the near future. Since offshore pipelines are usually crossing extended areas, they may face a variety of geohazards that impose substantial permanent ground deformations (PGDs) to the pipeline and potentially threaten its integrity. In case of a geohazard area, there exist three options to proceed. The first option is to avoid the problematic area through rerouting, which is usually regarded as an unfavorable solution due to its high cost. The second is to apply (if possible) mitigation/protection measures in order to eliminate the geohazard itself. Finally, the last appealing option is to allow the pipeline crossing through the geohazard area, provided that the pipeline will have been verified against the expected PGDs. In areas with moderate or high seismicity the design of an offshore pipeline is more demanding due to the earthquake-related geohazards, such as landslides, soil liquefaction phenomena, and active faults. It is worthy to mention that although worldwide there is a great experience in offshore geotechnics and pipeline design, the experience in seismic design of offshore pipelines is rather limited due to the fact that most of the pipelines have been constructed in non-seismic regions (e.g. North Sea, West Australia, Gulf of Mexico, etc.). The current study focuses on the seismic design of offshore pipelines against active faults. After an extensive literature review of the provisions of the seismic norms worldwide and of the available analytical methods, the study simulates numerically (through finite-element modeling and strain-based criteria) the distress of offshore pipelines subjected to PGDs induced by active seismic faults at the seabed. Factors, such as the geometrical properties of the fault, the mechanical properties of the ruptured soil formations, and the pipeline characteristics, are examined. After some interesting conclusions regarding the seismic vulnerability of offshore pipelines, potential cost-effective mitigation measures are proposed taking into account constructability issues.Keywords: offhore pipelines, seismic design, active faults, permanent ground deformations (PGDs)
Procedia PDF Downloads 5861099 Computational Models for Accurate Estimation of Joint Forces
Authors: Ibrahim Elnour Abdelrahman Eltayeb
Abstract:
Computational modelling is a method used to investigate joint forces during a movement. It can get high accuracy in the joint forces via subject-specific models. However, the construction of subject-specific models remains time-consuming and expensive. The purpose of this paper was to identify what alterations we can make to generic computational models to get a better estimation of the joint forces. It appraised the impact of these alterations on the accuracy of the estimated joint forces. It found different strategies of alterations: joint model, muscle model, and an optimisation problem. All these alterations affected joint contact force accuracy, so showing the potential for improving the model predictions without involving costly and time-consuming medical images.Keywords: joint force, joint model, optimisation problem, validation
Procedia PDF Downloads 1681098 Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene
Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi
Abstract:
In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis, tensile tests in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.Keywords: failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery
Procedia PDF Downloads 691097 Part Performance Improvement through Design Optimisation of Cooling Channels in the Injection Moulding Process
Authors: M. A. Alhubail, A. I. Alateyah, D. Alenezi, B. Aldousiri
Abstract:
In this study conformal cooling channel (CCC) was employed to dissipate heat of, Polypropylene (PP) parts injected into the Stereolithography (SLA) insert to form tensile and flexural test specimens. The direct metal laser sintering (DMLS) process was used to fabricate a mould with optimised CCC, while optimum parameters of injection moulding were obtained using Optimal-D. The obtained results show that optimisation of the cooling channel layout using a DMLS mould has significantly shortened cycle time without sacrificing the part’s mechanical properties. By applying conformal cooling channels, the cooling time phase was reduced by 20 seconds, and also defected parts were eliminated.Keywords: optimum parameters, injection moulding, conformal cooling channels, cycle time
Procedia PDF Downloads 2261096 Hub Port Positioning and Route Planning of Feeder Lines for Regional Transportation Network
Authors: Huang Xiaoling, Liu Lufeng
Abstract:
In this paper, we seek to determine one reasonable local hub port and optimal routes for a containership fleet, performing pick-ups and deliveries, between the hub and spoke ports in a same region. The relationship between a hub port, and traffic in feeder lines is analyzed. A new network planning method is proposed, an integrated hub port location and route design, a capacitated vehicle routing problem with pick-ups, deliveries and time deadlines are formulated and solved using an improved genetic algorithm for positioning the hub port and establishing routes for a containership fleet. Results on the performance of the algorithm and the feasibility of the approach show that a relatively small fleet of containerships could provide efficient services within deadlines.Keywords: route planning, hub port location, container feeder service, regional transportation network
Procedia PDF Downloads 4461095 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model
Authors: Youngjae Jin, Daeshik Kim
Abstract:
This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning
Procedia PDF Downloads 4451094 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks
Authors: Ahmed Negm, George Aggidis, Xiandong Ma
Abstract:
With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management
Procedia PDF Downloads 901093 Dark Tourism and Local Development. Creating a Dark Urban Route
Authors: Christos N. Tsironis, Loanna Mitaftsi
Abstract:
Currently, the various forms of tours and touristic visits to destinations associated with the “dark” facets of the past constitute one of the most dynamic fields of touristic initiatives and economic development. This analysis focuses on the potential development of urban dark routes. It aims a) to shed light to touristic, social, and ethical considerations and to describe some of the trends and links combining heritage and dark tourism in post-pandemic societies and b) to explore the possibilities of developing a new and polymorphic form of dark tourism in Thessaloniki, Greece, a distinctive heritage destination. The analysis concludes with a detailed dark route designed to serve a new, polymorphic and sustainable touristic product that describes a dark past with places, sights, and monuments and narrates stories and events stigmatized by death, disaster, and violence throughout the city’s history.Keywords: dark tourism, dark urban route, local development, polymorphic tourism
Procedia PDF Downloads 2111092 Mechanism of Failure of Pipeline Steels in Sour Environment
Authors: Abhishek Kumar
Abstract:
X70 pipeline steel was electrochemically charged with hydrogen for different durations in order to find crack nucleation and propagation sites. After 3 hours charging, suitable regions for crack initiation and propagation were found. These regions were studied by OM, SEM, EDS and later Vicker hardness test was done. The results brought out that HIC cracks nucleated from regions rich of inclusions and further propagated through the segregation area of some elements, such as manganese, carbon, silicon and sulfur. It is worth-mentioning that all these potential sites for crack nucleation and propagation appeared at the centre of cross section of the specimens. Additionally, cracked area has harder phase than the non-cracked area which was confirmed by hardness test.Keywords: X70 steel, morphology of inclusions, SEM/EDS/OM, simulation, statistical data
Procedia PDF Downloads 3161091 Spatial Interpolation Technique for the Optimisation of Geometric Programming Problems
Authors: Debjani Chakraborty, Abhijit Chatterjee, Aishwaryaprajna
Abstract:
Posynomials, a special type of polynomials, having singularities, pose difficulties while solving geometric programming problems. In this paper, a methodology has been proposed and used to obtain extreme values for geometric programming problems by nth degree polynomial interpolation technique. Here the main idea to optimise the posynomial is to fit a best polynomial which has continuous gradient values throughout the range of the function. The approximating polynomial is smoothened to remove the discontinuities present in the feasible region and the objective function. This spatial interpolation method is capable to optimise univariate and multivariate geometric programming problems. An example is solved to explain the robustness of the methodology by considering a bivariate nonlinear geometric programming problem. This method is also applicable for signomial programming problem.Keywords: geometric programming problem, multivariate optimisation technique, posynomial, spatial interpolation
Procedia PDF Downloads 3691090 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference
Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo
Abstract:
Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference
Procedia PDF Downloads 2491089 Modeling Average Paths Traveled by Ferry Vessels Using AIS Data
Authors: Devin Simmons
Abstract:
At the USDOT’s Bureau of Transportation Statistics, a biannual census of ferry operators in the U.S. is conducted, with results such as route mileage used to determine federal funding levels for operators. AIS data allows for the possibility of using GIS software and geographical methods to confirm operator-reported mileage for individual ferry routes. As part of the USDOT’s work on the ferry census, an algorithm was developed that uses AIS data for ferry vessels in conjunction with known ferry terminal locations to model the average route travelled for use as both a cartographic product and confirmation of operator-reported mileage. AIS data from each vessel is first analyzed to determine individual journeys based on the vessel’s velocity, and changes in velocity over time. These trips are then converted to geographic linestring objects. Using the terminal locations, the algorithm then determines whether the trip represented a known ferry route. Given a large enough dataset, routes will be represented by multiple trip linestrings, which are then filtered by DBSCAN spatial clustering to remove outliers. Finally, these remaining trips are ready to be averaged into one route. The algorithm interpolates the point on each trip linestring that represents the start point. From these start points, a centroid is calculated, and the first point of the average route is determined. Each trip is interpolated again to find the point that represents one percent of the journey’s completion, and the centroid of those points is used as the next point in the average route, and so on until 100 points have been calculated. Routes created using this algorithm have shown demonstrable improvement over previous methods, which included the implementation of a LOESS model. Additionally, the algorithm greatly reduces the amount of manual digitizing needed to visualize ferry activity.Keywords: ferry vessels, transportation, modeling, AIS data
Procedia PDF Downloads 1751088 TAXAPRO, A Streamlined Pipeline to Analyze Shotgun Metagenomes
Authors: Sofia Sehli, Zainab El Ouafi, Casey Eddington, Soumaya Jbara, Kasambula Arthur Shem, Islam El Jaddaoui, Ayorinde Afolayan, Olaitan I. Awe, Allissa Dillman, Hassan Ghazal
Abstract:
The ability to promptly sequence whole genomes at a relatively low cost has revolutionized the way we study the microbiome. Microbiologists are no longer limited to studying what can be grown in a laboratory and instead are given the opportunity to rapidly identify the makeup of microbial communities in a wide variety of environments. Analyzing whole genome sequencing (WGS) data is a complex process that involves multiple moving parts and might be rather unintuitive for scientists that don’t typically work with this type of data. Thus, to help lower the barrier for less-computationally inclined individuals, TAXAPRO was developed at the first Omics Codeathon held virtually by the African Society for Bioinformatics and Computational Biology (ASBCB) in June 2021. TAXAPRO is an advanced metagenomics pipeline that accurately assembles organelle genomes from whole-genome sequencing data. TAXAPRO seamlessly combines WGS analysis tools to create a pipeline that automatically processes raw WGS data and presents organism abundance information in both a tabular and graphical format. TAXAPRO was evaluated using COVID-19 patient gut microbiome data. Analysis performed by TAXAPRO demonstrated a high abundance of Clostridia and Bacteroidia genera and a low abundance of Proteobacteria genera relative to others in the gut microbiome of patients hospitalized with COVID-19, consistent with the original findings derived using a different analysis methodology. This provides crucial evidence that the TAXAPRO workflow dispenses reliable organism abundance information overnight without the hassle of performing the analysis manually.Keywords: metagenomics, shotgun metagenomic sequence analysis, COVID-19, pipeline, bioinformatics
Procedia PDF Downloads 2151087 Generating 3D Anisotropic Centroidal Voronoi Tessellations
Authors: Alexandre Marin, Alexandra Bac, Laurent Astart
Abstract:
New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Elements Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular, polyhedral meshes have many advantages. One way to build such meshes consists of constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, e.g., elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: First, we introduce a new gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.Keywords: anisotropic Voronoi diagrams, meshes for numerical simulations, optimisation, volumic polyhedral meshing
Procedia PDF Downloads 1131086 Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques
Authors: Syed Tahir Shah, Fazal Muhammad, Syed Kashif Shah, Maleeha Gul
Abstract:
In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time.Keywords: natural gas, pipeline network, UFG, transmission pack, AGA
Procedia PDF Downloads 931085 Challenges in the Construction of a 6M Diameter and 1.6km Long Tunnel Under Crossing a Channel in the West of Singapore
Authors: David Loh, Wan Chee Wai, Pei Nan, Chen Zhe
Abstract:
To increase the conveyance capacity to Western Singapore and to meet Singapore’s long-term water needs in a more cost-effective manner, four new transmission pipelines consisting of two 2200 mm diameter water pipes and two 1200mm diameter water pipes will be needed by 2024 to convey water from a Water Reclamation Plant to existing networks in the west region of Singapore. Out of the several possible routes studied, the most cost-effective and technically feasible route was selected to lay the proposed 1.6km-long pipelines that cross a channel via a 6m diameter subsea tunnel. This paper outlines the challenges the team faced throughout the project thus far. It also examined the difficulties such as (1) construction of a 56m-deep launching shaft near a highly sensitive 700mm diameter Gas Transmission Pipeline (GTP) and at a location with high groundwater; (2) manpower and supply disruptions caused by the COVID-19 pandemic situation.Keywords: underwater tunnel, subsea engineering, subsea tunnel construction, waterpipe construction
Procedia PDF Downloads 26