Search results for: market prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5541

Search results for: market prediction

5451 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: software metrics, fault prediction, cross project, within project.

Procedia PDF Downloads 344
5450 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach

Authors: M. Khoshab, M. J. Sedigh

Abstract:

Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.

Keywords: dynamic system, lag on supply demand, market stability, supply demand model

Procedia PDF Downloads 295
5449 Indicators to Assess the Quality of Health Services

Authors: Muyatdinova Aigul, Aitkaliyeva Madina

Abstract:

The article deals with the evaluation of the quality of medical services on the basis of quality indicators. For this purpose allocated initially the features of the medical services market. The Features of the market directly affect on the evaluation process that takes a multi-level and multi-stakeholder nature. Unlike ordinary goods market assessment of medical services does not only market. Such an assessment is complemented by continuous internal and external evaluation, including experts and accrediting bodies. In the article highlighted the composition of indicators for a comprehensive evaluation

Keywords: health care market, quality of health services, indicators of care quality

Procedia PDF Downloads 437
5448 Analyzing the Market Growth in Application Programming Interface Economy Using Time-Evolving Model

Authors: Hiroki Yoshikai, Shin’ichi Arakawa, Tetsuya Takine, Masayuki Murata

Abstract:

API (Application Programming Interface) economy is expected to create new value by converting corporate services such as information processing and data provision into APIs and using these APIs to connect services. Understanding the dynamics of a market of API economy under the strategies of participants is crucial to fully maximize the values of the API economy. To capture the behavior of a market in which the number of participants changes over time, we present a time-evolving market model for a platform in which API providers who provide APIs to service providers participate in addition to service providers and consumers. Then, we use the market model to clarify the role API providers play in expanding market participants and forming ecosystems. The results show that the platform with API providers increased the number of market participants by 67% and decreased the cost to develop services by 25% compared to the platform without API providers. Furthermore, during the expansion phase of the market, it is found that the profits of participants are mostly the same when 70% of the revenue from consumers is distributed to service providers and API providers. It is also found that when the market is mature, the profits of the service provider and API provider will decrease significantly due to their competition, and the profit of the platform increases.

Keywords: API economy, ecosystem, platform, API providers

Procedia PDF Downloads 91
5447 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm

Authors: Haozhe Xiang

Abstract:

With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.

Keywords: deep learning, graph convolutional network, attention mechanism, LSTM

Procedia PDF Downloads 70
5446 Prediction of CO2 Concentration in the Korea Train Express (KTX) Cabins

Authors: Yong-Il Lee, Do-Yeon Hwang, Won-Seog Jeong, Duckshin Park

Abstract:

Recently, because of the high-speed trains forced ventilation, it is important to control the ventilation. The ventilation is for controlling various contaminants, temperature, and humidity. The high-speed train route is straight to a destination having a high speed. And there are many mountainous areas in Korea. So, tunnel rate is higher then other country. KTX HVAC block off the outdoor air, when entering tunnel. So the high tunnel rate is an effect of ventilation in the KTX cabin. It is important to reduction rate in CO2 concentration prediction. To meet the air quality of the public transport vehicles recommend standards, the KTX cabin of CO2 concentration should be managed. In this study, the concentration change was predicted by CO2 prediction simulation in route to be opened.

Keywords: CO2 prediction, KTX, ventilation, infrastructure and transportation engineering

Procedia PDF Downloads 543
5445 The Tourist Satisfaction on Logo Design of Huay Kon Border Market, Chaloemphrakiat District, Nan Province

Authors: Panupong Chanplin, Wilailuk Mepracha, Sathapath Kilaso

Abstract:

The aims of this research were twofold: 1) to logo design of Huay Kon Border Market, Chaloemphrakiat District, Nan Province and 2) to study the level of tourist satisfaction towards logo design of Huay Kon Border Market, Chaloemphrakiat District, Nan Province. Tourist satisfaction was measured using four criteria: a unique product identity, ease of remembrance, product utility, and beauty/impressiveness. The researcher utilized a probability sampling method via simple random sampling. The sample consisted of 30 tourists in the Huay Kon Border Market. Statistics utilized for data analysis were percentage, mean, and standard deviation. The results suggest that tourist had high levels of satisfaction towards all four criteria of the logo design that was designed to target them. This study proposes that specifically logo designed of Huay Kon Border Market could also be implemented with other real media already available on the market.

Keywords: satisfaction, logo, design, Huay Kon border market

Procedia PDF Downloads 223
5444 Gender Inequality in the Nigerian Labour Market as a Cause of Unemployment among Female Graduates

Authors: Temitope Faloye

Abstract:

The absence of equity and transparency in Nigeria's economic system has resulted in unemployment. Women’s unemployment rate remains higher because women's range of jobs is often narrower due to discriminatory attitudes of employers and gender segregation in the labor market. Gender inequality is one of the strong factors of unemployment, especially in developing countries like Nigeria, where the female gender is marginalized in the labor force market. However, gender equality in terms of labor market access and employment condition has not yet been attained. Feminist theory is considered as an appropriate theory for this study. The study will use a mixed-method design, collecting qualitative and quantitative data to provide answers to the research questions. Therefore, the research study aims to investigate the present situation of gender inequality in the Nigerian labor market.

Keywords: unemployment, gender inequality, gender equality, labor market, female graduate

Procedia PDF Downloads 242
5443 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy

Authors: K. Petcharaporn, S. Kumchoo

Abstract:

The acidity (citric acid) is one of the chemical contents that can refer to the internal quality and the maturity index of tomato. The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR). Spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomatoes.

Keywords: tomato, quality, prediction, transmittance, titratable acidity, citric acid

Procedia PDF Downloads 273
5442 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 128
5441 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients

Authors: Soha A. Bahanshal, Byung G. Kim

Abstract:

Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.

Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission

Procedia PDF Downloads 186
5440 Interactive Effects of Organizational Learning and Market Orientation on New Product Performance

Authors: Qura-tul-aain Khair

Abstract:

Purpose- The purpose of this paper is to empirically examining the strength of association of responsive market orientation and proactive market orientation with new product performance and exploring the possible moderating role of organizational learning based on contingency theory. Design/methodology/approach- Data for this study was collected from FMCG manufacturing industry and services industry, where customers are in contact frequently and responses are recorded on continuous basis. Sample was collected through convenience sampling. The data collected from different marketing department and sales personnel were analysed using SPSS 16 version. Findings- The paper finds that responsive market orientation is more strongly associated with new product performance. The moderator, organizational learning, plays it significant role on the relationship between responsive market orientation and new product performance. Research limitations/implications- this paper has taken sample from just FMCG industry and service industry, more work can be done regarding how different-markets require different market orientation behaviours. Originality/value- This paper will be useful for foreign business looking for investing and expanding in Pakistan, they can find opportunity to get sustained competitive advantage through exploring the proactive side of market orientation and importance of organizational learning.

Keywords: organizational learning, proactive market orientation, responsive market orientation, new product performance

Procedia PDF Downloads 382
5439 Using High Performance Computing for Online Flood Monitoring and Prediction

Authors: Stepan Kuchar, Martin Golasowski, Radim Vavrik, Michal Podhoranyi, Boris Sir, Jan Martinovic

Abstract:

The main goal of this article is to describe the online flood monitoring and prediction system Floreon+ primarily developed for the Moravian-Silesian region in the Czech Republic and the basic process it uses for running automatic rainfall-runoff and hydrodynamic simulations along with their calibration and uncertainty modeling. It takes a long time to execute such process sequentially, which is not acceptable in the online scenario, so the use of high-performance computing environment is proposed for all parts of the process to shorten their duration. Finally, a case study on the Ostravice river catchment is presented that shows actual durations and their gain from the parallel implementation.

Keywords: flood prediction process, high performance computing, online flood prediction system, parallelization

Procedia PDF Downloads 493
5438 Disperse Innovation in the Turning German Energy Market

Authors: J. Gochermann

Abstract:

German energy market is under historical change. Turning-off the nuclear power plants and intensive subsidization of the renewable energies causes a paradigm change from big central energy production and distribution to more local structures, bringing the energy production near to the consumption. The formerly big energy market with only a few big energy plants and grid operating companies is changing into a disperse market with growing numbers of small and medium size companies (SME) generating new value-added products and services. This change in then energy market, in Germany called the “Energiewende”, inverts also the previous innovation system. Big power plants and large grids required also big operating companies. Innovations in the energy market focused mainly on big projects and complex energy technologies. Innovation in the new energy market structure is much more dispersed. Increasing number of SME is now able to develop energy production and storage technologies, smart technologies to control the grids, and numerous new energy related services. Innovation is now regional distributed, which is a remarkable problem for the old big energy companies. The paper will explain the change in the German energy market and the paradigm change as well as the consequences for the innovation structure in the German energy market. It will show examples how SME participate from this change and how innovation systems, as well for the big companies and for SME, can be adapted.

Keywords: changing energy markets, disperse innovation, new value-added products and services, SME

Procedia PDF Downloads 348
5437 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
5436 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian

Abstract:

The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: life prediction, condenser tube, neural network, fuzzy logic

Procedia PDF Downloads 351
5435 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model

Authors: Tarek Aboueldahab, Amin Mohamed Nassar

Abstract:

Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.

Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction

Procedia PDF Downloads 450
5434 Building and Development of the Stock Market Institutional Infrastructure in Russia

Authors: Irina Bondarenko, Olga Vandina

Abstract:

The theory of evolutionary economics is the basis for preparation and application of methods forming the stock market infrastructure development concept. The authors believe that the basis for the process of formation and development of the stock market model infrastructure in Russia is the theory of large systems. This theory considers the financial market infrastructure as a whole on the basis of macroeconomic approach with the further definition of its aims and objectives. Evaluation of the prospects for interaction of securities market institutions will enable identifying the problems associated with the development of this system. The interaction of elements of the stock market infrastructure allows to reduce the costs and time of transactions, thereby freeing up resources of market participants for more efficient operation. Thus, methodology of the transaction analysis allows to determine the financial infrastructure as a set of specialized institutions that form a modern quasi-stable system. The financial infrastructure, based on international standards, should include trading systems, regulatory and supervisory bodies, rating agencies, settlement, clearing and depository organizations. Distribution of financial assets, reducing the magnitude of transaction costs, increased transparency of the market are promising tasks in the solution for questions of services level and quality increase provided by institutions of the securities market financial infrastructure. In order to improve the efficiency of the regulatory system, it is necessary to provide "standards" for all market participants. The development of a clear regulation for the barrier to the stock market entry and exit, provision of conditions for the development and implementation of new laws regulating the activities of participants in the securities market, as well as formulation of proposals aimed at minimizing risks and costs, will enable the achievement of positive results. The latter will be manifested in increasing the level of market participant security and, accordingly, the attractiveness of this market for investors and issuers.

Keywords: institutional infrastructure, financial assets, regulatory system, stock market, transparency of the market

Procedia PDF Downloads 134
5433 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 134
5432 Digital Media Market, Multimedia, and Computer Graphic Analysis Amidst Fluctuating Global and Local Scale Economy

Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke

Abstract:

The study centred on investigating the influence of multimedia systems and computer graphic design on global and local scale economies. Firstly, the study pinpointed the significant participants and top five global digital media distribution in the digital media market. Then, the study investigated whether a tie or variance existed between the digital media vendor and market shares. Also, the paper probed whether the global and local desktop, mobile, and tablet markets differ while assessing the association between the top five digital media and global market shares. Finally, the study explored the extent of growth, economic gains, major setbacks, and opportunities within the industry amidst global and local scale economic flux. A multiple regression analysis method was employed to analyse the significant influence of the top five global digital media on the total market share, and the Analysis of Variance (ANOVA) was used to analyse the global digital media vendor market share data. The findings were intriguing and significant.

Keywords: computer graphics, digital media market, global market share, market size, media vendor, multimedia, social media, systems design

Procedia PDF Downloads 32
5431 Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation

Authors: Pengwei Qiao, Sucai Yang, Wenxia Wei

Abstract:

Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site.

Keywords: accuracy, applicability, partition interpolation, site, soil pollution, uncertainty

Procedia PDF Downloads 145
5430 Uplink Throughput Prediction in Cellular Mobile Networks

Authors: Engin Eyceyurt, Josko Zec

Abstract:

The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.

Keywords: drive test, LTE, machine learning, uplink throughput prediction

Procedia PDF Downloads 157
5429 The Analysis of Underground Economy Transaction Existence of Junk Night Market (JNM) in Malang City

Authors: Sebastiana Viphindratin, Silvi Asna

Abstract:

The under ground economy phenomenon is exist in Indonesia. There are some factors which affect the existence this underground economy activity. One of them is a hierarchy power structure that handles the underground economy existence. The example of the existence of underground economy is the occurring informal market in Indonesia. Malang city is one of the city which has this kind of market. Junk night market (JNM) as an underground economy activity is arising in that city. The JNM is located in Gatot Subroto Sidewalk Street. The JNM is a illegal market which sell thrift, antique, imitation and black market goods. The JNM is interesting topic to be discussed, because this market is running in long time without any policy from local government. The JNM activity has their own “power” that run the market rules. Thus, it is important to analyze how the existence and power structure of JNM actors community are in Malang city. This research using qualitative method with phenomenological approach where we try to understand the phenomenon and related actors deeply. The aim of this research is to know the existence and power structure of JNM actors community in Malang. In JNM, there is no any entry barriers and tax charge from Malang government itself. Price competition also occurs because the buyer can do a bargain with the seller. In maintaining buyer loyalty, the JNM actors also do pre-order system. Even though, this market is an illegal market but the JNM actors also give the goods guarantee (without legal contract) as a formal market. In JNM actor’s community, there is no hierarchy and formal power structure. The role in JNM is managed by informal leaders who come up from the trading activity problems that are sidewalk and parking area dividing. Therefore, can be concluded that even the JNM is illegal market but it can survive with natural market pattern. In JNM development, JNM has positive and negative impact for Malang city. The positive impact of JNM is this market can open a new employment but the negative impact is there is no tax income from that market. Therefore, suggested that the government of Malang city should manage and give appropriate policies in this case.

Keywords: junk night market (JNM), Malang city, underground economy, illegal

Procedia PDF Downloads 407
5428 On the Influence of the Covid-19 Pandemic on Tunisian Stock Market: By Sector Analysis

Authors: Nadia Sghaier

Abstract:

In this paper, we examine the influence of the COVID-19 pandemic on the performance of the Tunisian stock market and 12 sectors over a recent period from 23 March 2020 to 18 August 2021, including several waves and the introduction of vaccination. The empirical study is conducted using cointegration techniques which allows for long and short-run relationships. The obtained results indicate that both daily growth in confirmed cases and deaths have a negative and significant effect on the stock market returns. In particular, this effect differs across sectors. It seems more pronounced in financial, consumer goods and industrials sectors. These findings have important implications for investors to predict the behavior of the stock market or sectors returns and to implement hedging strategies during the COVID-19 pandemic.

Keywords: Tunisian stock market, sectors, COVID-19 pandemic, cointegration techniques

Procedia PDF Downloads 201
5427 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators

Authors: Fathi Abid, Bilel Kaffel

Abstract:

The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.

Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode

Procedia PDF Downloads 339
5426 Smart Beta Portfolio Optimization

Authors: Saud Al Mahdi

Abstract:

Traditionally,portfolio managers have been discouraged from timing the market. This means, for example, that equity managers have been forced to adhere strictly to a benchmark with static or relatively stable components, such as the SP 500 or the Russell 3000. This means that the portfolio’s exposures to all risk factors should mimic as closely as possible the corresponding exposures of the benchmark. The main risk factor, of course, is the market itself. Effectively, a long-only portfolio would be constrained to have a beta 1. More recently, however, managers have been given greater discretion to adjust their portfolio’s risk exposures (in particular, the beta of their portfolio) dynamically to match the manager’s beliefs about future performance of the risk factors themselves. This freedom translates into the manager’s ability to adjust the portfolio’s beta dynamically. These strategies have come to be known as smart beta strategies. Adjusting beta dynamically amounts to attempting to "time" the market; that is, to increase exposure when one anticipates that the market will rise, and to decrease it when one anticipates that the market will fall. Traditionally, market timing has been believed to be impossible to perform effectively and consistently. Moreover, if a majority of market participants do it, their combined actions could destabilize the market. The aim of this project is to investigate so-called smart beta strategies to determine if they really can add value, or if they are merely marketing gimmicks used to sell dubious investment strategies.

Keywords: beta, alpha, active portfolio management, trading strategies

Procedia PDF Downloads 355
5425 External Validation of Risk Prediction Score for Candidemia in Critically Ill Patients: A Retrospective Observational Study

Authors: Nurul Mazni Abdullah, Saw Kian Cheah, Raha Abdul Rahman, Qurratu 'Aini Musthafa

Abstract:

Purpose: Candidemia was associated with high mortality in the critically ill patients. Early candidemia prediction is imperative for preemptive antifungal treatment. This study aimed to externally validate the candidemia risk prediction scores by Jameran et al. (2021) by identifying risk factors of acute kidney injury, renal replacement therapy, parenteral nutrition, and multifocal candida colonization. Methods: This single-center, retrospective observational study included all critically ill patients admitted to the intensive care unit (ICU) in a tertiary referral center from January 2018 to December 2023. The study evaluated the candidemia risk prediction score performance by analysing the occurrence of candidemia within the study period. Patients’ demographic characteristics, comorbidities, SOFA scores, and ICU outcomes were analyzed. Patients who were diagnosed with candidemia prior to ICU admission were excluded. Results: A total of 500 patients were analyzed with 2 dropouts due to incomplete data. Validation analysis showed that the candidemia risk prediction score has a sensitivity of 75.00% (95% CI: 59.66-86.81), specificity of 65.35% (95% CI: 60.78-69.72), positive predictive value of 17.28, and negative predictive value of 96.44. The incidence of candidemia was 8.86%, with no significant differences in demographics or comorbidities except for higher SOFA scoring in the candidemia group. The candidemia group showed significantly longer ICU, hospital LOS, and higher ICU in-hospital mortality. Conclusion: This study concluded the candidemia risk prediction score by Jameran et al. (2021) had good sensitivity and a high negative prediction value. Thus, the risk prediction score was validated for candidemia prediction in critically ill patients.

Keywords: Candidemia, intensive care, acute kidney injury, clinical prediction rule, incidence

Procedia PDF Downloads 7
5424 Study on the Model Predicting Post-Construction Settlement of Soft Ground

Authors: Pingshan Chen, Zhiliang Dong

Abstract:

In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.

Keywords: prediction, model, post-construction settlement, soft ground

Procedia PDF Downloads 425
5423 Technological Improvements and the Challenges They Pose to Market Competition in the Philippines

Authors: Isabel L. Guidote

Abstract:

Continued advancements and innovation in the technological arena may yield both beneficial and detrimental effects to market competition in the Philippines. This paper discusses recent developments in the digital sphere which have resulted in improved access to the Philippine market for both producers and consumers. Acknowledging that these developments are likely to disrupt or alter prevailing market conditions, this paper likewise tackles competition theories of harm that may arise as a result of such technological innovations, with reference to cases decided by foreign competition authorities and the European Commission. As the Philippine moves closer to the digital frontier, it is imperative that producers, consumers, and regulators alike be well-equipped to address the risks and challenges posed by these rapid advancements in technology.

Keywords: antitrust, competition law, market competition, technology

Procedia PDF Downloads 169
5422 Trends and Prospects for the Development of Georgian Wine Market

Authors: E. Kharaishvili, M. Chavleishvili, M. Natsvaladze

Abstract:

The article presents the trends in Georgian wine market development and evaluates the competitive advantages of Georgia to enter the wine market based on its customs, traditions and historical practices combined with modern technologies. In order to analyze the supply of wine, dynamics of vineyard land area and grape varieties are discussed, trends in wine production are presented, trends in export and import are evaluated, local wine market, its micro and macro environments are studied and analyzed based on the interviews with experts and analysis of initial recording materials. For strengthening its position on the international market, the level of competitiveness of Georgian wine is defined, which is evaluated by “ex-ante” and “ex-post” methods, as well as by four basic and two additional factors of the Porter’s diamond method; potential advantages and disadvantages of Georgian wine are revealed. Conclusions are made by identifying the factors that hinder the development of Georgian wine market. Based on the conclusions, relevant recommendations are developed.

Keywords: Georgian wine market, competitive advantage, bio wine, export-import, Porter's diamond model

Procedia PDF Downloads 388