Search results for: forage crop
1140 Indigenous Adaptation Strategies for Climate Change: Small Farmers’ Options for Sustainable Crop Farming in South-Western Nigeria
Authors: Emmanuel Olasope Bamigboye, Ismail Oladeji Oladosu
Abstract:
Local people of south-western Nigeria like in other climes, continue to be confronted with the vagaries of changing environments. Through the modification of existing practice and shifting resource base, their strategies for coping with change have enabled them to successfully negotiate the shifts in climate change and the environment. This article analyses indigenous adaptation strategies for climate change with a view to enhancing sustainable crop farming in south –western Nigeria. Multi-stage sampling procedure was used to select 340 respondents from the two major ecological zones (Forest and Derived Savannah) for good geographical spread. The article draws on mixed methods of qualitative research, literature review, field observations, informal interview and multinomial logit regression to capture choice probabilities across the various options of climate change adaptation options among arable crop farmers. The study revealed that most 85.0% of the arable crop farmers were males. It also showed that the use of local climate change adaptation strategies had no relationship with the educational level of the respondents as 77.3% had educational experiences at varying levels. Furthermore, the findings showed that seven local adaptation strategies were commonly utilized by arable crop farmers. Nonetheless, crop diversification, consultation with rainmakers and involvement in non-agricultural ventures were prioritized in the order of 1-3, respectively. Also, multinomial logit analysis result showed that at p ≤ 0.05 level of significance, household size (P<0.08), sex (p<0.06), access to loan(p<0.16), age(p<0.07), educational level (P<0.17) and functional extension contact (P<0.28) were all important in explaining the indigenous climate change adaptation utilized by the arable crops farmers in south-western Nigeria. The study concluded that all the identified local adaptation strategies need to be integrated into the development process for sustainable climate change adaptation.Keywords: crop diversification, climate change, adaptation option, sustainable, small farmers
Procedia PDF Downloads 3021139 Trade Outcomes of Agri-Environmental Regulations’ Heterogeneity: New Evidence from a Gravity Model
Authors: Najla Kamergi
Abstract:
In a world context of increasing interest in environmental issues, this paper investigates the effect of agri-environmental regulations heterogeneity on the volume of crop commodities’ exports using a theoretically justified gravity model of Anderson and van Wincoop (2003) for the 2003–2013 period. Our findings show that the difference in exporter and importer environmental regulations is more relevant to agricultural trade than trade agreements. In fact, the environmental gap between the two partners is decreasing slightly but significantly crop commodities’ exports according to our results. We also note that the sector of fruit and vegetables is more sensitive to this determinant, unlike cereals that remain relatively less affected. Furthermore, high-income countries have more tendency to trade with countries characterized by similar environmental stringency. Further results show that the BRICS are clearly importing from developed countries where the environmental difference is relatively important. It is likely that emerging countries are witnessing a growing demand for high-quality and “green” crop commodities captured by high-income exporters. Surprisingly, our results suggest that low and middle-income countries with the same level of environmental stringency are more likely to trade crop commodities.Keywords: agricultural trade, environment, gravity model, food crops, agri-environmental efficiency, DEA
Procedia PDF Downloads 1401138 Biodiversity of the National Production through Companion Plants Analysis
Authors: Astrid Rivera, Diego Villatoro
Abstract:
The world population increases at an accelerated pace, and it is essential to find solutions to feed the population. Nevertheless, crop diversity has significantly decreased in the last years, and the increase in food production is not the optimal solution. It is essential to consider the origin of the food, the nutriment contributions, among other dimensions. In this regard, biodiversity plays an indispensable role when designing an effective strategy to face the actual food security problems. Consequently, the purpose of this work is to analyze biodiversity in the Mexican national food production and suggest a proper crop selection based on companion plants, for which empirical and experimental knowledge shows a better scenery than current efforts. As a result, we get a set of crop recommendations to increase production in sustainable and nutritive planning. It is essential to explore more feasible options to advance sustainable development goals beyond an economic aspect.Keywords: biodiversity, food security, companion plats, nutrition
Procedia PDF Downloads 2021137 Application of Mathematical Sciences to Farm Management
Authors: Fahad Suleiman
Abstract:
Agriculture has been the mainstay of the nation’s economy in Nigeria. It provides food for the ever rapidly increasing population and raw materials for the industries. People especially the rural dwellers are gainfully employed on their crop farms and small-scale livestock farms for income earning. In farming, availability of funds and time management are one of the major factors that influence the system of farming in Nigeria in which mathematical science knowledge was highly required in order for farms to be managed effectively. Farmers often applied mathematics, almost every day for a variety of tasks, ranging from measuring and weighing, to land marking. This paper, therefore, explores some of the ways math is used in farming. For instance, farmers use arithmetic variety of farm activities such as seed planting, harvesting crop, cultivation and mulching. It is also important in helping farmers to know how much their livestock weighs, how much milk their cows produce and crop yield per acres, among others.Keywords: agriculture, application, economic, farming, mathematics
Procedia PDF Downloads 2561136 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran
Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi
Abstract:
Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.Keywords: crop coefficient, remote sensing, vegetation indices, wheat
Procedia PDF Downloads 4181135 Weeds Density Affects Yield and Quality of Wheat Crop under Different Crop Densities
Authors: Ijaz Ahmad
Abstract:
Weed competition is one of the major biotic constraints in wheat crop productivity. Avena fatua L. and Silybum marianum (L.) Gaertn. are among the worst weeds of wheat, greatly deteriorating wheat quality subsequently reducing its market value. In this connection, two-year experiments were conducted in 2018 & 2019. Different seeding rate wheat viz; 80, 100, 120 and 140 kg ha-1 and different weeds ratio (A. fatua: S. marianum ) sown at the rate 1:8, 2:7, 3:6, 4:5, 5:4, 6:3, 7:2, 8:1 and 0:0 respectively. The weeds ratio and wheat densities are indirectly proportional. However, the wheat seed at the rate of 140 kg ha-1 has minimal weeds interference. Yield losses were 17.5% at weeds density 1:8 while 7.2% at 8:1. However, in wheat density, the highest percent losses were computed on 80 kg ha-1 while the lowest was recorded on 140 kg ha-1. Since due to the large leaf canopy of S. marianum other species can't sustain their growth. Hence, it has been concluded that S. marianum is the hotspot that causes reduction to the yield-related parameters, followed by A. fatua and the other weeds. Due to the morphological mimicry of A. fatua with wheat crop during the vegetative growth stage, it cannot be easily distinguished. Therefore, managing A. fatua and S. marianum before seed setting is recommended for reducing the future weed problem. Based on current studies, it is suggested that sowing wheat seed at the rate of 140 kg ha-1 is recommended to better compete with all the field weeds.Keywords: fat content, holly thistle, protein content, weed competition, wheat, wild oat
Procedia PDF Downloads 2091134 Transmission Dynamics of Lumpy Skin Disease in Ethiopia
Authors: Wassie Molla, Klaas Frankena, Mart De Jong
Abstract:
Lumpy skin disease (LSD) is a severe viral disease of cattle, which often occurs in epidemic form. It is caused by lumpy skin disease virus of the genus capripoxvirus of family poxviridae. Mathematical models play important role in the study of infectious diseases epidemiology. They help to explain the dynamics and understand the transmission of an infectious disease within a population. Understanding the transmission dynamics of lumpy skin disease between animals is important for the implementation of effective prevention and control measures against the disease. This study was carried out in central and north-western part of Ethiopia with the objectives to understand LSD outbreak dynamics, quantify the transmission between animals and herds, and estimate the disease reproduction ratio in dominantly crop-livestock mixed and commercial herd types. Field observation and follow-up study were undertaken, and the transmission parameters were estimated based on a SIR epidemic model in which individuals are susceptible (S), infected and infectious (I), and recovered and immune or dead (R) using the final size and generalized linear model methods. The result showed that a higher morbidity was recorded in infected crop-livestock (24.1%) mixed production system herds than infected commercial production (17.5%) system herds whereas mortality was higher in intensive (4.0%) than crop-livestock (1.5%) system and the differences were statistically significant. The transmission rate among animals and between herds were 0.75 and 0.68 per week, respectively in dominantly crop-livestock production system. The transmission study undertaken in dominantly crop-livestock production system highlighted the presence of statistically significant seasonal difference in LSD transmission among animals. The reproduction numbers of LSD in dominantly crop-livestock production system were 1.06 among animals and 1.28 between herds whereas it varies from 1.03 to 1.31 among animals in commercial production system. Though the R estimated for LSD in different production systems at different localities is greater than 1, its magnitude is low implying that the disease can be easily controlled by implementing the appropriate control measures.Keywords: commercial, crop-livestock, Ethiopia, LSD, reproduction number, transmission
Procedia PDF Downloads 3021133 Climate-Smart Agriculture for Sustainable Maize-Wheat Production: Effects on Crop Productivity, Profitability and Irrigation Water Use
Authors: S. K. Kakraliya, R. D. Jat, H. S. Jat, P. C. Sharma, M. L. Jat
Abstract:
The traditional rice-wheat (RW) system in the IGP of South Asia is tillage, water, energy, and capital intensive. Coupled with more pumping of groundwater over the years to meet the high irrigation water requirement of the RW system has resulted in over-exploitation of groundwater. Replacement of traditional rice with less water crops such as maize under climate-smart agriculture (CSA) based management (tillage, crop establishment and residue management) practices are required to promote sustainable intensification. Furthermore, inefficient nutrient management practices are responsible for low crop yields and nutrient use efficiencies in maize-wheat (MW) system. A 7-year field experiment was conducted in farmer’s participatory strategic research mode at Taraori, Karnal, India to evaluate the effects of tillage and crop establishment (TCE) methods, residue management, mungbean integration, and nutrient management practices on crop yields, water productivity and profitability of MW system. The main plot treatments included four combinations of TCE, residue and mungbean integration [conventional tillage (CT), conventional tillage with mungbean (CT + MB), permanent bed (PB) and permanent bed with MB (PB + MB] with three nutrient management practices [farmer’s fertilizer practice (FFP), recommended dose of fertilizer (RDF) and site-specific nutrient management (SSNM)] using Nutrient Expert® as subplot treatments. System productivity, water use efficiency (WUE) and net returns under PB + MB were significantly increased by 25–30%, 28–31% and 35–40% compared to CT respectively, during seven years of experimentation. The integration of MB in MW system contributed ~25and ~ 28% increases in system productivity and net returns compared with no MB, respectively. SSNM based nutrient management increased the mean (averaged across 7 yrs) system productivity by 12- 15% compared with FFP. The study revealed that CSA based sustainable intensification (PB + MB) and SSNM approach provided opportunities for enhancing crop productivity, WUE and profitability of the MW system in India.Keywords: Conservation Agriculture, Precision water and nutrient management, Permanent beds, Crop yields
Procedia PDF Downloads 1351132 Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China
Authors: Enze Zhang
Abstract:
One of the most challenging steps in implementing virtual water content (VWC) analysis of crops is to get properly the total volume of consumptive water use (CWU) and, therefore, the choice of a reliable crop CWU estimation method. In practice, lots of previous researches obtaining CWU of crops follow a classical procedure for calculating crop evapotranspiration which is determined by multiplying reference evapotranspiration by appropriate coefficient, such as crop coefficient and water stress coefficients. However, this manner of calculation requires lots of field experimental data at point scale and more seriously, when current growing conditions differ from the standard conditions, may easily produce deviation between the calculated CWU and the actual CWU. Since evapotranspiration caused by crop planting always plays a vital role in surface water-energy balance in an agricultural region, this study decided to alternatively estimates crop evapotranspiration by Budyko framework. After brief introduce the development process of Budyko framework. We choose a modified Budyko framework under unsteady-state to better evaluated the actual CWU and apply it in an agricultural irrigation area in North China Plain which rely on underground water for irrigation. With the agricultural statistic data, this calculated CWU was further converted into VWC and its subdivision of crops at the annual scale. Results show that all the average values of VWC, VWC_blue and VWC_green show a downward trend with increased agricultural production and improved acreage. By comparison with the previous research, VWC calculated by Budyko framework agree well with part of the previous research and for some other research the value is greater. Our research also suggests that this methodology and findings may be reliable and convenient for investigation of virtual water throughout various agriculture regions of the world.Keywords: virtual water content, Budyko framework, consumptive water use, crop evapotranspiration
Procedia PDF Downloads 3361131 Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields
Authors: Bing-Bing E. Goh
Abstract:
Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management.Keywords: winter wheat, remote sensing, crop monitoring, multivariate analysis
Procedia PDF Downloads 1661130 The First Transcriptome Assembly of Marama Bean: An African Orphan Crop
Authors: Ethel E. Phiri, Lionel Hartzenberg, Percy Chimwamuromba, Emmanuel Nepolo, Jens Kossmann, James R. Lloyd
Abstract:
Orphan crops are underresearched and underutilized food plant species that have not been categorized as major food crops, but have the potential to be economically and agronomically significant. They have been documented to have the ability to tolerate extreme environmental conditions. However, limited research has been conducted to uncover their potential as food crop species. The New Partnership for Africa’s Development (NEPAD) has classified Marama bean, Tylosema esculentum, as an orphan crop. The plant is one of the 101 African orphan crops that must have their genomes sequenced, assembled, and annotated in the foreseeable future. Marama bean is a perennial leguminous plant that primarily grows in poor, arid soils in southern Africa. The plants produce large tubers that can weigh as much as 200kg. While the foliage provides fodder, the tuber is carbohydrate rich and is a staple food source for rural communities in Namibia. Also, the edible seeds are protein- and oil-rich. Marama Bean plants respond rapidly to increased temperatures and severe water scarcity without extreme consequences. Advances in molecular biology and biotechnology have made it possible to effectively transfer technologies between model- and major crops to orphan crops. In this research, the aim was to assemble the first transcriptomic analysis of Marama Bean RNA-sequence data. Many model plant species have had their genomes sequenced and their transcriptomes assembled. Therefore the availability of transcriptome data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this research will eventually evaluate the potential use of Marama Bean as a crop species to improve its value in agronomy. data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this researc will eventually evaluate the potential use of Marama bean as a crop species to improve its value in agronomy.Keywords: 101 African orphan crops, RNA-Seq, Tylosema esculentum, underutilised crop plants
Procedia PDF Downloads 3611129 Biological Methods to Control Parasitic Weed Phelipanche ramosa L. Pomel in the Field Tomato Crop
Authors: F. Lops, G. Disciglio, A. Carlucci, G. Gatta, L. Frabboni, A. Tarantino, E. Tarantino
Abstract:
Phelipanche ramosa L. Pomel is a root holoparasitic weed plant of many cultivations, particularly of tomato (Lycopersicum esculentum L.) crop. In Italy, Phelipanche problem is increasing, both in density and in acreage. The biological control of this parasitic weed involves the use of living organisms as numerous fungi and bacteria that can infect the parasitic weed, while it may improve the crop growth. This paper deals with the biocontrol with microorganism, including Arbuscular mycorrhizal (AM) fungi and fungal pathogens as Fusarium oxisporum spp. Colonization of crop roots by AM fungi can provide protection of crops against parasitic weeds because of a reduction in their seed germination and attachment, while F. oxisporum, isolated from diseased broomrape tubercles, proved to be highly virulent on P. ramosa. The experimental trial was carried out in open field at Foggia province (Apulia Region, Southern Italy), during the spring-summer season 2016, in order to evaluate the effect of four biological treatments: AM fungi and Fusarium oxisporum applied in the soil alone or combined together, and Rizosum Max® product, compared with the untreated control, to reduce the P. ramosa infestation in processing tomato crop. The principal results to be drawn from this study under field condition, in contrast of those reported previously under laboratory and greenhouse conditions, show that both AM fungi and F. oxisporum do not provide the reduction of the number of emerged shoots of P. ramosa. This can arise probably from the low efficacy seedling of the agent pathogens for the control of this parasite in the field. On the contrary, the Rizosum Max® product, containing AM fungi and some rizophere bacteria combined with several minerals and organic substances, appears to be most effective for the reduction of P. ramosa infestation.Keywords: Arbuscular mycorrhized fungi, biocontrol methods, Phelipanche ramosa, tomato crop
Procedia PDF Downloads 4641128 Different Tillage Possibilities for Second Crop in Green Bean Farming
Authors: Yilmaz Bayhan, Emin Güzel, Ömer Barış Özlüoymak, Ahmet İnce, Abdullah Sessiz
Abstract:
In this study, determining of reduced tillage techniques in green bean farming as a second crop after harvesting wheat was targeted. To this aim, four different soil tillage methods namely, heavy-duty disc harrow (HD), rotary tiller (ROT), heavy-duty disc harrow plus rotary tiller (HD+ROT) and no-tillage (NT) (seeding by direct drill) were examined. Experiments were arranged in a randomized block design with three replications. The highest green beans yields were obtained in HD+ROT and NT as 5,862.1 and 5,829.3 Mg/ha, respectively. The lowest green bean yield was found in HD as 3,076.7 Mg/ha. The highest fuel consumption was measured 30.60 L ha-1 for HD+ROT whereas the lowest value was found 7.50 L ha-1 for NT. No tillage method gave the best results for fuel consumption and effective power requirement. It is concluded that no-tillage method can be used in second crop green bean in the Thrace Region due to economic and erosion conditions.Keywords: green bean, soil tillage, yield, vegetative
Procedia PDF Downloads 3771127 Effect of Deficit Irrigation on Barley Yield and Water Productivity through Field Experiment and Modeling at Koga Irrigation Scheme, Amhara Region, Ethiopia
Authors: Bekalu Melis Alehegn, Dagnenet Sultan Alemu
Abstract:
The insufficiency of water is the most severe restraint for the expansion of agriculture in arid and semi-arid areas. An important strategy for increasing water productivity and improving water productivity deficit irrigation at different growth stages is important to advance the yield and Water Productivity of barley in water scarce areas. A field experiment was conducted at the Koga irrigation scheme in Ethiopia to examine barley yield response to different irrigation regimes and validate the aqua crop model. The experimental setup comprised six randomized treatments (T) with three replications for one irrigation season because of financial limitations. The irrigation regimes were selected 100%, 75%, and 50% application levels in different growth stages of gross irrigation requirements using trial and error in order to select the optimal water application level. The treatments were: no stress at all (T1), 25% stressed during all crop stages (T2), 50% stressed at all stages (T3), 50% stressed at the development stage (T4), 50% stressed at mid-stage (T5) and 50% stress at initial and late season (T6). The agronomic parameters, including canopy cover, biomass, and grain yield, were collected to compare the ground-based crop yield and the aqua crop model. The results showed that the initial and late stages and stress 25% through the whole season were the right time for practice deficit irrigation without significant yield reduction. The highest (2.62kg/m³) and the lowest (2.03 kg/m³) water productivity were found under T3 and T4, respectively. The stress of 50% at the mid-growth stage and stress 50% of the full irrigation water requirement at all growth stages significantly (α=5%) affected the canopy expansion, biomass and yield production. The aqua Crop model performed well in simulating the yield of barley for most of the treatments (R2 = 0.84 and RMSE = 0.7 t ha–¹).Keywords: aqua crop, barley, deficit irrigation, irrigation regimes, water productivity
Procedia PDF Downloads 321126 Impact of Drought in Farm Level Income in the United States
Authors: Anil Giri, Kyle Lovercamp, Sankalp Sharma
Abstract:
Farm level incomes fluctuate significantly due to extreme weather events such as drought. In the light of recent extreme weather events it is important to understand the implications of extreme weather events, flood and drought, on farm level incomes. This study examines the variation in farm level incomes for the United States in drought and no- drought years. Factoring heterogeneity in different enterprises (crop, livestock) and geography this paper analyzes the impact of drought in farm level incomes at state and national level. Livestock industry seems to be affected more by the lag in production of input feed for production, crops, as preliminary results show. Furthermore, preliminary results also show that while crop producers are not affected much due to drought, as price and quantity effect worked on opposite direction with same magnitude, that was not the case for livestock and horticulture enterprises. Results also showed that even when price effect was not as high the crop insurance component helped absorb much of shock for crop producers. Finally, the effect was heterogeneous for different states more on the coastal states compared Midwest region. This study should generate a lot of interest from policy makers across the world as some countries are actively seeking to increase subsidies in their agriculture sector. This study shows how subsidies absorb the shocks for one enterprise more than others. Finally, this paper should also be able to give an insight to economists to design/recommend policies such that it is optimal given the production level of different enterprises in different countries.Keywords: farm level income, United States, crop, livestock
Procedia PDF Downloads 2851125 Assessment of Major Feed Resources and Its Utilization in Manaslu Conservation Area Nepal
Authors: Sabita Subedi, Bhojan Dhakal, Shankar Raj Pant, Naba Raj Devkota
Abstract:
An assessment was made about the available feed resources, its utilization pattern, specifically, roughage and concentrate, produced from the Manaslu Conservation Area (MCA) of Nepal to formulate the appropriate strategies in satisfying the annual dietary requirements of the livestock covering its present production and management scenarios. A comparative study was done by employing a purposively conducted survey to deduct the distribution of forage sources in the area. Findings revealed that natural vegetation, seasonally available crop residues, and dried grasses were major feed resources, whereas their contribution to the total supply varied significantly (p < 0.01). The amount of feed obtained from various sources was calculated by standard conversion and using primary household data. Findings revealed that farmers practice significantly higher (p < 0.01) number of grazing days and hours per day for large ruminants such as Yak and Chauries as compared to small ruminants such as goats and sheep. The findings also indicated seasonal variations of feed supply, whereas January to March is the period of short supply (p < 0.01). It was relatively in good supply from June to September though average roughage and crude protein supplement for the animals was far below than optimum requirements. These scenarios suggest the need for immediate attention to improve the range productivity in the MCA as the deteriorating situations of the rangelands may raise questions on the sustainability of livestock herders.Keywords: altitude, carrying capacity, dietary requirement, feed resources, rangeland, ruminant
Procedia PDF Downloads 2051124 Agile Real-Time Field Programmable Gate Array-Based Image Processing System for Drone Imagery in Digital Agriculture
Authors: Sabiha Shahid Antora, Young Ki Chang
Abstract:
Along with various farm management technologies, imagery is an important tool that facilitates crop assessment, monitoring, and management. As a consequence, drone imaging technology is playing a vital role to capture the state of the entire field for yield mapping, crop scouting, weed detection, and so on. Although it is essential to inspect the cultivable lands in real-time for making rapid decisions regarding field variable inputs to combat stresses and diseases, drone imagery is still evolving in this area of interest. Cost margin and post-processing complexions of the image stream are the main challenges of imaging technology. Therefore, this proposed project involves the cost-effective field programmable gate array (FPGA) based image processing device that would process the image stream in real-time as well as providing the processed output to support on-the-spot decisions in the crop field. As a result, the real-time FPGA-based image processing system would reduce operating costs while minimizing a few intermediate steps to deliver scalable field decisions.Keywords: real-time, FPGA, drone imagery, image processing, crop monitoring
Procedia PDF Downloads 1171123 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space
Authors: Xin Chen
Abstract:
It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency
Procedia PDF Downloads 801122 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling
Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha
Abstract:
The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat
Procedia PDF Downloads 581121 Utilization of Traditional Medicine for Treatment of Selected Illnesses among Crop-Farming Households in Edo State, Nigeria
Authors: Adegoke A. Adeyelu, Adeola T. Adeyelu, S. D. Y. Alfred, O. O. Fasina
Abstract:
This study examines the use of traditional medicines for the treatment of selected illnesses among crop-farming households in Edo State, Nigeria. A sample size of ninety (90) households were randomly selected for the study. Data were collected with a structured questionnaire alongside focus group discussions (FGD). Result shows that the mean age was 50 years old, the majority (76.7%) of the sampled farmers were below 60 years old. The majority (80.0%) of the farmers were married, about (92.2%) had formal education. It exposes that the majority of the respondents (76.7%) had household size of between 1-10 persons, about 55.6% had spent 11 years and above in crop farming. malaria (8th ), waist pains (7th ), farm injuries ( 6th ), cough (5th), acute headache(4th), skin infection (3rd), typhoid (2nd) and tuberculosis (1st ) were the most and least treated illness. Respondents (80%) had spent N10,000.00 ($27) and less on treatment of illnesses, 8.9% had spent N10,000.00-N20,000.0027 ($27-$55) 4.4% had spent between N20,100-N30,000.00 ($27-$83) while 6.7% had spent more than N30,100.00 ($83) on treatment of illnesses in the last one (1) year prior to the study. Age, years of farming, farm size, household size, level of income, cost of treatment, level of education, social network, and culture are some of the statistically significant factors influencing the utilization of traditional medicine. Farmers should be educated on methods of preventing illnesses, which is far cheaper than the curative.Keywords: crop farming-households, selected illnesses, traditional medicines, Edo State
Procedia PDF Downloads 2121120 Genetic Identification of Crop Cultivars Using Barcode System
Authors: Kesavan Markkandan, Ha Young Park, Seung-Il Yoo, Sin-Gi Park, Junhyung Park
Abstract:
For genetic identification of crop cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, PCR based, co-dominant and relatively abundant. However, new InDels need to be developed for genetic studies of new varieties due to the difference of allele frequencies in InDels among the population groups. These new varieties are evolved with low levels of genetic diversity in specific genome loci with high recombination rate. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a variation block (VB), where the genomes split by all assumed recombination sites. Firstly, VBs in crop cultivars were mined for transferability to VB-specific InDel markers. Secondly, putative InDels in the VB regions were identified for the development of barcode system by analyzing particular cultivar’s whole genome data. Thirdly, common VB-specific InDels from all cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the selected markers was assessed with other cultivars, and the barcode system that allows a clear distinction among those cultivars is described. The same approach can be applicable for other commercial crops. Hence, VB-based genetic identification not only minimize the molecular markers but also useful for assessing cultivars and for marker-assisted breeding in other crop species.Keywords: variation block, polymorphism, InDel marker, genetic identification
Procedia PDF Downloads 3831119 The Effect of Alternative Organic Fertilizer and Chemical Fertilizer on Nitrogen and Yield of Peppermint (Mentha peperita)
Authors: Seyed Ali Mohammad, Modarres Sanavy, Hamed Keshavarz, Ali Mokhtassi-Bidgoli
Abstract:
One of the biggest challenges for the current and future generations is to produce sufficient food for the world population with the existing limited available water resources. Peppermint is a specialty crop used for food and medicinal purposes. Its main component is menthol. It is used predominantly for oral hygiene, pharmaceuticals, and foods. Although drought stress is considered as a negative factor in agriculture, being responsible for severe yield losses; medicinal plants grown under semi-arid conditions usually produce higher concentrations of active substances than same species grown under moderate climates. Nitrogen (N) fertilizer management is central to the profitability and sustainability of forage crop production. Sub-optimal N supply will result in poor yields, and excess N application can lead to nitrate leaching and environmental pollution. In order to determine the response of peppermint to drought stress and different fertilizer treatments, a field experiment with peppermint was conducted in a sandy loam soil at a site of the Tarbiat Modares University, Agriculture Faculty, Tehran, Iran. The experiment used a complete randomized block design, with six rates of fertilizer strategies (F1: control, F2: Urea, F3: 75% urea + 25% vermicompost, F4: 50% urea + 50% vermicompost, F5: 25% urea + 75% vermicompost and F6: vermicompost) and three irrigation regime (S1: 45%, S2: 60% and S3: 75% FC) with three replication. The traits such as nitrogen, chlorophyll, carotenoids, anthocyanin, flavonoid and fresh biomass were studied. The results showed that the treatments had a significant effect on the studied traits as drought stress reduced photosynthetic pigment concentration. Also, drought stress reduced fresh yield of peppermint. Non stress condition had the greater amount of chlorophyll and fresh yield more than other irrigation treatments. The highest concentration of chlorophyll and the fresh biomass was obtained in F2 fertilizing treatments. Sever water stress (S1) produced decreased photosynthetic pigment content fresh yield of peppermint. Supply of N could improve photosynthetic capacity by enhancing photosynthetic pigment content. Perhaps application of vermicompost significantly improved the organic carbon, available N, P and K content in soil over urea fertilization alone. To get sustainable production of peppermint, application of vermicompost along with N through synthetic fertilizer is recommended for light textured sandy loam soils.Keywords: fresh yield, peppermint, synthetic nitrogen, vermicompost, water stress
Procedia PDF Downloads 2191118 MigrationR: An R Package for Analyzing Bird Migration Data Based on Satellite Tracking
Authors: Xinhai Li, Huidong Tian, Yumin Guo
Abstract:
Bird migration is fantastic natural phenomenon. In recent years, the use of GPS transmitters has generated a vast amount of data, and the Movebank platform has made these data publicly accessible. For researchers, what they need are data analysis tools. Although there are approximately 90 R packages dedicated to animal movement analysis, the capacity for comprehensive processing of bird migration data remains limited. Hence, we introduce a novel package called migrationR. This package enables the calculation of movement speed, direction, changes in direction, flight duration, daily and annual movement distances. Furthermore, it can pinpoint the starting and ending dates of migration, estimate nest site locations and stopovers, and visualize movement trajectories at various time scales. migrationR distinguishes individuals through NMDS (non-metric multidimensional scaling) coordinates based on movement variables such as speed, flight duration, path tortuosity, and migration timing. A distinctive aspect of the package is the development of a hetero-occurrences species distribution model that takes into account the daily rhythm of individual birds across different landcover types. Habitat use for foraging and roosting differs significantly for many waterbirds. For example, White-naped Cranes at Poyang Lake in China typically forage in croplands and roost in shallow water areas. Both of these occurrence types are of equal importance. Optimal habitats consist of a combination of crop lands and shallow waters, whereas suboptimal habitats lack both, which necessitates birds to fly extensively. With migrationR, we conduct species distribution modeling for foraging and roosting separately and utilize the moving distance between crop lands and shallow water areas as an index of overall habitat suitability. This approach offers a more nuanced understanding of the habitat requirements for migratory birds and enhances our ability to analyze and interpret their movement patterns effectively. The functions of migrationR are demonstrated using our own tracking data of 78 White-naped Crane individuals from 2014 to 2023, comprising over one million valid locations in total. migrationR can be installed from a GitHub repository by executing the following command: remotes::install_github("Xinhai-Li/migrationR").Keywords: bird migration, hetero-occurrences species distribution model, migrationR, R package, satellite telemetry
Procedia PDF Downloads 731117 Effect of Fertilization and Combined Inoculation with Azospirillum brasilense and Pseudomonas fluorescens on Rhizosphere Microbial Communities of Avena sativa (Oats) and Secale Cereale (Rye) Grown as Cover Crops
Authors: Jhovana Silvia Escobar Ortega, Ines Eugenia Garcia De Salamone
Abstract:
Cover crops are an agri-technological alternative to improve all properties of soils. Cover crops such as oats and rye could be used to reduce erosion and favor system sustainability when they are grown in the same agricultural cycle of the soybean crop. This crop is very profitable but its low contribution of easily decomposable residues, due to its low C/N ratio, leaves the soil exposed to erosive action and raises the need to reduce its monoculture. Furthermore, inoculation with the plant growth promoting rhizobacteria contributes to the implementation, development and production of several cereal crops. However, there is little information on its effects on forage crops which are often used as cover crops to improve soil quality. In order to evaluate the effect of combined inoculation with Azospirillum brasilense and Pseudomonas fluorescens on rhizosphere microbial communities, field experiments were conducted in the west of Buenos Aires province, Argentina, with a split-split plot randomized complete block factorial design with three replicates. The factors were: type of cover crop, inoculation and fertilization. In the main plot two levels of fertilization 0 and 7 40-0-5 (NPKS) were established at sowing. Rye (Secale cereale cultivar Quehué) and oats (Avena sativa var Aurora.) were sown in the subplots. In the sub-subplots two inoculation treatments are applied without and with application of a combined inoculant with A. brasilense and P. fluorescens. Due to the growth of cover crops has to be stopped usually with the herbicide glyphosate, rhizosphere soil of 0-20 and 20-40 cm layers was sampled at three sampling times which were: before glyphosate application (BG), a month after glyphosate application (AG) and at soybean harvest (SH). Community level of physiological profiles (CLPP) and Shannon index of microbial diversity (H) were obtained by multivariate analysis of Principal Components. Also, the most probable number (MPN) of nitrifiers and cellulolytics were determined using selective liquid media for each functional group. The CLPP of rhizosphere microbial communities showed significant differences between sampling times. There was not interaction between sampling times and both, types of cover crops and inoculation. Rhizosphere microbial communities of samples obtained BG had different CLPP with respect to the samples obtained in the sampling times AG and SH. Fertilizer and depth of sampling also caused changes in the CLPP. The H diversity index of rhizosphere microbial communities of rye in the sampling time BG were higher than those associated with oats. The MPN of both microbial functional types was lower in the deeper layer since these microorganisms are mostly aerobic. The MPN of nitrifiers decreased in rhizosphere of both cover crops only AG. At the sampling time BG, the NMP of both microbial types were larger than those obtained for AG and SH. This may mean that the glyphosate application could cause fairly permanent changes in these microbial communities which can be considered bio-indicators of soil quality. Inoculation and fertilizer inputs could be included to improve management of these cover crops because they can have a significant positive effect on the sustainability of the agro-ecosystem.Keywords: community level of physiological profiles, microbial diversity, plant growth promoting rhizobacteria, rhizosphere microbial communities, soil quality, system sustainability
Procedia PDF Downloads 4091116 Orange Leaves and Rice Straw on Methane Emission and Milk Production in Murciano-Granadina Dairy Goat Diet
Authors: Tamara Romero, Manuel Romero-Huelva, Jose V. Segarra, Jose Castro, Carlos Fernandez
Abstract:
Many foods resulting from processing and manufacturing end up as waste, most of which is burned, dumped into landfills or used as compost, which leads to wasted resources, and environmental problems due to unsuitable disposal. Using residues of the crop and food processing industries to feed livestock has the advantage to obviating the need for costly waste management programs. The main residue generated in citrus cultivations and rice crop are pruning waste and rice straw, respectively. Within Spain, the Valencian Community is one of the world's oldest citrus and rice production areas. The objective of this experiment found out the effects of including orange leaves and rice straw as ingredients in the concentrate diets of goats, on milk production and methane (CH₄) emissions. Ten Murciano-Granadina dairy goats (45 kg of body weight, on average) in mid-lactation were selected in a crossover design experiment, where each goat received two treatments in 2 periods. Both groups were fed with 1.7 kg pelleted mixed ration; one group (n= 5) was a control (C) and the other group (n= 5) used orange leaves and rice straw (OR). The forage was alfalfa hay, and it was the same for the two groups (1 kg of alfalfa was offered by goat and day). The diets employed to achieve the requirements during lactation period for caprine livestock. The goats were allocated to individual metabolism cages. After 14 days of adaptation, feed intake and milk yield were recorded daily over a 5 days period. Physico-chemical parameters and somatic cell count in milk samples were determined. Then, gas exchange measurements were recorded individually by an open-circuit indirect calorimetry system using a head box. The data were analyzed by mixed model with diet and digestibility as fixed effect and goat as random effect. No differences were found for dry matter intake (2.23 kg/d, on average). Higher milk yield was found for C diet than OR (2.3 vs. 2.1 kg/goat and day, respectively) and, greater milk fat content was observed for OR than C (6.5 vs. 5.5%, respectively). The cheese extract was also greater in OR than C (10.7 vs. 9.6%). Goats fed OR diet produced significantly fewer CH₄ emissions than C diet (27 vs. 30 g/d, respectively). These preliminary results (LIFE Project LOWCARBON FEED LIFE/CCM/ES/000088) suggested that the use of these waste by-products was effective in reducing CH₄ emission without detrimental effect on milk yield.Keywords: agricultural waste, goat, milk production, methane emission
Procedia PDF Downloads 1521115 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1201114 Land Suitability Scaling and Modeling for Assessing Crop Suitability in Some New Reclaimed Areas, Egypt
Authors: W. A. M. Abdel Kawy, Kh. M. Darwish
Abstract:
Adequate land use selection is an essential step towards achieving sustainable development. The main object of this study is to develop a new scale for land suitability system, which can be compatible with the local conditions. Furthermore, it aims to adapt the conventional land suitability systems to match the actual environmental status in term of soil types, climate and other conditions to evaluate land suitability for newly reclaimed areas. The new system suggests calculation of land suitability considering 20 factors affecting crop selection grouping into five categories; crop-agronomic, land management, development, environmental conditions and socio – economic status. Each factor is summed by each other to calculate the total points. The highest rating for each factor indicates the highest preference for the evaluated crop. The highest rated crops for each group are those with the highest points for the actual suitability. This study was conducted to assess the application efficiency of the new land suitability scale in recently reclaimed sites in Egypt. Moreover, 35 representative soil profiles were examined, and soil samples were subjected to some physical and chemical analysis. Actual and potential suitabilities were calculated by using the new land suitability scale. Finally, the obtained results confirmed the applicability of a new land suitability system to recommend the most promising crop rotation that can be applied in the study areas. The outputs of this research revealed that the integration of different aspects for modeling and adapting a proposed model provides an effective and flexible technique, which contribute to improve land suitability assessment for several crops to be more accurate and reliable.Keywords: analytic hierarchy process, land suitability, multi-criteria analysis, new reclaimed areas, soil parameters
Procedia PDF Downloads 1421113 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops
Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan
Abstract:
In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis
Procedia PDF Downloads 3851112 Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India
Authors: S. K. Kakraliya, H. S. Jat, Manish Kakraliya, P. C. Sharma, M. L. Jat
Abstract:
The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system.Keywords: Sub-surface drip, Crop residue, Crop yield , Zero tillage
Procedia PDF Downloads 1251111 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 235