Search results for: drilled displacement piles (DD)
1111 Ductility Reduction Factors for Displacement Spectra Corresponding to Soft Soil Zone of the Valley of Mexico
Authors: Noé D. Lazos-Gallardo, Sonia E. Ruiz, Federico Valenzuela-Beltran
Abstract:
A simplified mathematical expression to estimate ductility reduction factors of the displacement spectra corresponding to the soft soil zone of Mexico City is proposed. The aim is to allow a better characterization of the displacement spectra and provide a simple expression to be used in displacement based design (DBD). Emphasis is on the Mexico City Building Code. The study is based on the analysis of single degree of freedom (SDOF) systems with elasto-plastic hysteretic behavior. Several seismic ground motions corresponding to subduction events with magnitudes equal to or greater than 6 and recorded in different stations of Mexico City are used. The proposed expression involves the ratio of elastic and inelastic pseudo-aceleration spectra, and depends on factors such the ductility demand and the vibration period of the structural system. The resulting ductility reduction factors obtained in this study are compared with others existing in the literature, and their advantages and disadvantages are discussed.Keywords: displacement based design, displacements spectrum, ductility reduction factors, soft soil
Procedia PDF Downloads 1711110 A Comparative Study between Displacement and Strain Based Formulated Finite Elements Applied to the Analysis of Thin Shell Structures
Authors: Djamal Hamadi, Oussama Temami, Abdallah Zatar, Sifeddine Abderrahmani
Abstract:
The analysis and design of thin shell structures is a topic of interest in a variety of engineering applications. In structural mechanics problems the analyst seeks to determine the distribution of stresses throughout the structure to be designed. It is also necessary to calculate the displacements of certain points of the structure to ensure that specified allowable values are not exceeded. In this paper a comparative study between displacement and strain based finite elements applied to the analysis of some thin shell structures is presented. The results obtained from some examples show the efficiency and the performance of the strain based approach compared to the well known displacement formulation.Keywords: displacement formulation, finite elements, strain based approach, shell structures
Procedia PDF Downloads 4171109 Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile
Authors: M. Ezzat, Y. Zaghloul, T. Sorour, A. Hefny, M. Eid
Abstract:
Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter.Keywords: ultimate capacity, large diameter bored piles, plastic zone, failure, pile load test
Procedia PDF Downloads 1421108 Analysis of a Damage-Control Target Displacement of Reinforced Concrete Bridge Pier for Seismic Design
Authors: Mohd Ritzman Abdul Karim, Zhaohui Huang
Abstract:
A current focus in seismic engineering practice is the development of seismic design approach that focuses on the performance-based design. Performance-based design aims to design the structures to achieve specified performance based on the damage limit states. This damage limit is more restrictive limit than life safety and needs to be carefully estimated to avoid damage in piers due to failure in transverse reinforcement. In this paper, a different perspective of damage limit states has been explored by integrating two damage control material limit state, concrete and reinforcement by introduced parameters such as expected yield stress of transverse reinforcement where peak tension strain prior to bar buckling is introduced in a recent study. The different perspective of damage limit states with modified yield displacement and the modified plastic-hinge length is used in order to predict damage-control target displacement for reinforced concreate (RC) bridge pier. Three-dimensional (3D) finite element (FE) model has been developed for estimating damage target displacement to validate proposed damage limit states. The result from 3D FE analysis was validated with experimental study found in the literature. The validated model then was applied to predict the damage target displacement for RC bridge pier and to validate the proposed study. The tensile strain on reinforcement and compression on concrete were used to determine the predicted damage target displacement and compared with the proposed study. The result shows that the proposed damage limit states were efficient in predicting damage-control target displacement consistent with FE simulations.Keywords: damage-control target displacement, damage limit states, reinforced concrete bridge pier, yield displacement
Procedia PDF Downloads 1541107 Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application
Authors: Juree Hong, Sanggeun Lee, Jungmok Seo, Taeyoon Lee
Abstract:
We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2.Keywords: metal nanoparticle, galvanic displacement reaction, graphene, hydrogen sensor
Procedia PDF Downloads 4221106 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory
Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma
Abstract:
Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.Keywords: petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding
Procedia PDF Downloads 2461105 2D Numerical Analysis for Determination of the Effect of Bored Piles Constructed against the Landslide near Karabuk University Stadium
Authors: Dogan Cetin, Burak Turk, Mahmut Candan
Abstract:
Landslides cause remarkable damage and loss of human life every year around the world. They may be made more likely by factors such as earthquakes, heavy precipitation, and incorrect construction activities near or on slopes. The stadium of Karabük University is located at the bottom of a very high slope. After construction of the stadium, severe deformations were observed on the social activity area surrounding the stadium. Some inclinometers were placed behind the stadium to detect the possible landslide activity. According to measurements of the inclinometers, irregular soil movements were detected at depths between 20 m and 45 m. Also, significant heaves and settlements were observed behind the stadium walls located at the toe of the slope. The heaves indicate that the stadium walls were under threat of a significant landslide. After inclinometer readings and field observations, the potential failure geometry was estimated. The protection system was designed based on numerous numerical analysis performed by 2-D Plaxis software. After the design was completed, protective geotechnical work was started. Before the geotechnical work began, new inclinometers were installed to monitor earth movement during the work and afterward. The total horizontal length of the possible failure surface is 220 m. Geotechnical work included two-row-pile construction and three-row-pile construction on the slope. The bored piles were 120 cm in diameter for two-row-pile construction, and 150 cm in diameter for three-row-pile construction. Pile length is 31.30 m for two-row-pile construction and 31.40 m for three-row-pile construction. The distance between two-row-pile and three-row-pile construction is 60 m. With these bored piles, the landslide was divided into three parts. In this way, the earth's pressure was reduced. After a number of inclinometer readings, it was seen that deformation continued during the work, but after the work was done, the movement reversed, and total deformation stayed in mm dimension. It can be said that the protection work eliminated the possible landslide.Keywords: landslide, landslide protection, inclinometer measurement, bored piles
Procedia PDF Downloads 1441104 SIPINA Induction Graph Method for Seismic Risk Prediction
Authors: B. Selma
Abstract:
The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.Keywords: SIPINA algorithm, seism, focal depth, peak ground acceleration, displacement
Procedia PDF Downloads 3121103 Lateral Capacity of Helical-Pile Groups Subjected to Bearing Combined Loads
Authors: Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Azizb, Mona Fawzy Aldaghma
Abstract:
Helical piles have earned considerable attention as an effective deep foundation alternative due to their rapid installation process and their dual purpose in compression and tension. These piles find common uses as foundations for structures like solar panels, wind turbines, offshore platforms, and some kinds of retaining walls. These structures usually transfer different combinations of loads to their helical-pile foundations in the form of axial and lateral loads. Extensive research has been conducted to investigate and understand the behavior of these piles under the influence of either axial or lateral loads. However, the impacts of loading patterns that may act on the helical piles as combinations of axial compression and lateral loads still need more efforts of research work. This paper presents the results of an experimental (Lab tests) and numerical (PLAXIS-3D) study performed on vertical helical-pile groups under the action of combined loads as axial compression (bearing loads), acting successively with lateral (horizontal) loads. The study aims to clarify the effects of key factors, like helix location and direction of lateral load, on the lateral capacity of helical-pile groups and, consequently, on group efficiency. Besides the variation of helix location and lateral load direction, three patterns of successive bearing combined loads were considered, in which the axial vertical compression load was either zero, V1 or V2, whereas the lateral horizontal loads were varied under each vertical compression load. The study concluded that the lateral capacity of the helical-pile group is significantly affected by helix location within the length of the pile shaft. The optimal lateral performance is achieved with helices at a depth ratio of H/L = 0.4. Furthermore, groups of rectangular plan distribution exhibit greater lateral capacity if subjected to lateral horizontal load in the direction of its long axis. Additionally, the research emphasizes that the presence of vertical compression loading can enhance the lateral capacity of the group. This enhancement depends on the value of the vertical compression load, lateral load direction, and helix location, which highlights the complex interaction effect of these factors on the efficiency of helical-pile groups.Keywords: helical piles, experimental, numerical, lateral loading, group efficiency
Procedia PDF Downloads 301102 Analysis of Bridge-Pile Foundation System in Multi-layered Non-Linear Soil Strata Using Energy-Based Method
Authors: Arvan Prakash Ankitha, Madasamy Arockiasamy
Abstract:
The increasing demand for adopting pile foundations in bridgeshas pointed towardsthe need to constantly improve the existing analytical techniques for better understanding of the behavior of such foundation systems. This study presents a simplistic approach using the energy-based method to assess the displacement responses of piles subjected to general loading conditions: Axial Load, Lateral Load, and a Bending Moment. The governing differential equations and the boundary conditions for a bridge pile embedded in multi-layered soil strata subjected to the general loading conditions are obtained using the Hamilton’s principle employing variational principles and minimization of energies. The soil non-linearity has been incorporated through simple constitutive relationships that account for degradation of soil moduli with increasing strain values.A simple power law based on published literature is used where the soil is assumed to be nonlinear-elastic and perfectly plastic. A Tresca yield surface is assumed to develop the soil stiffness variation with different strain levels that defines the non-linearity of the soil strata. This numerical technique has been applied to a pile foundation in a two - layered soil strata for a pier supporting the bridge and solved using the software MATLAB R2019a. The analysis yields the bridge pile displacements at any depth along the length of the pile. The results of the analysis are in good agreement with the published field data and the three-dimensional finite element analysis results performed using the software ANSYS 2019R3. The methodology can be extended to study the response of the multi-strata soil supporting group piles underneath the bridge piers.Keywords: pile foundations, deep foundations, multilayer soil strata, energy based method
Procedia PDF Downloads 1391101 Laboratory Measurement of Relative Permeability of Immiscible Fluids in Sand
Authors: Khwaja Naweed Seddiqi, Shigeo Honma
Abstract:
Relative permeability is the important parameter controlling the immiscible displacement of multiphase fluids flow in porous medium. The relative permeability for immiscible displacement of two-phase fluids flow (oil and water) in porous medium has been measured in this paper. As a result of the experiment, irreducible water saturation, Swi, residual oil saturation, Sor, and relative permeability curves for Kerosene, Heavy oil and Lubricant oil were determined successfully.Keywords: relative permeability, two-phase flow, immiscible displacement, porous medium
Procedia PDF Downloads 3081100 Behavior of the Foundation of Bridge Reinforced by Rigid and Flexible Inclusions
Authors: T. Karech A. Noui, T. Bouzid
Abstract:
This article presents a comparative study by numerical analysis of the behavior of reinforcements of clayey soils by flexible columns (stone columns) and rigid columns (piles). The numerical simulation was carried out in 3D for an assembly of foundation, columns and a pile of a bridge. Particular attention has been paid to take into account the installation of the columns. Indeed, in practice, due to the compaction of the column, the soil around it sustains a lateral expansion and the horizontal stresses are increased. This lateral expansion of the column can be simulated numerically. This work represents a comparative study of the interaction between the soil on one side, and the two types of reinforcement on the other side, and their influence on the behavior of the soil and of the pile of a bridge.Keywords: piles, stone columns, interaction, foundation, settlement, consolidation
Procedia PDF Downloads 2761099 Design and Analysis of Deep Excavations
Authors: Barham J. Nareeman, Ilham I. Mohammed
Abstract:
Excavations in urban developed area are generally supported by deep excavation walls such as; diaphragm wall, bored piles, soldier piles and sheet piles. In some cases, these walls may be braced by internal braces or tie back anchors. Tie back anchors are by far the predominant method for wall support, the large working space inside the excavation provided by a tieback anchor system has a significant construction advantage. This paper aims to analyze a deep excavation bracing system of contiguous pile wall braced by pre-stressed tie back anchors, which is a part of a huge residential building project, located in Turkey/Gaziantep province. The contiguous pile wall will be constructed with a length of 270 m that consists of 285 piles, each having a diameter of 80 cm, and a center to center spacing of 95 cm. The deformation analysis was carried out by a finite element analysis tool using PLAXIS. In the analysis, beam element method together with an elastic perfect plastic soil model and Soil Hardening Model was used to design the contiguous pile wall, the tieback anchor system, and the soil. The two soil clusters which are limestone and a filled soil were modelled with both Hardening soil and Mohr Coulomb models. According to the basic design, both soil clusters are modelled as drained condition. The simulation results show that the maximum horizontal movement of the walls and the maximum settlement of the ground are convenient with 300 individual case histories which are ranging between 1.2mm and 2.3mm for walls, and 15mm and 6.5mm for the settlements. It was concluded that tied-back contiguous pile wall can be satisfactorily modelled using Hardening soil model.Keywords: deep excavation, finite element, pre-stressed tie back anchors, contiguous pile wall, PLAXIS, horizontal deflection, ground settlement
Procedia PDF Downloads 2531098 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam
Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen
Abstract:
In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks
Procedia PDF Downloads 2081097 Understanding Post-Displacement Earnings Losses: The Role of Wealth Inequality
Authors: M. Bartal
Abstract:
A large empirical evidence points to sizable lifetime earnings losses associated with the displacement of tenured workers. The causes of these losses are still not well-understood. Existing explanations are heavily based on human capital depreciation during non-employment spells. In this paper, a new avenue is explored. Evidence on the role of household liquidity constraints in accounting for the persistence of post-displacement earning losses is provided based on SIPP data. Then, a directed search and matching model with endogenous human capital and wealth accumulation is introduced. The model is computationally tractable thanks to its block-recursive structure and highlights a non-trivial, yet intuitive, interaction between wealth and human capital. Constrained workers tend to accept jobs with low firm-sponsored training because the latter are (endogenously) easier to find. This new channel provides a plausible explanation for why young (highly constrained) workers suffer persistent scars after displacement. Finally, the model is calibrated on US data to show that the interplay between wealth and human capital is crucial to replicate the observed lifecycle pattern of earning losses. JEL— E21, E24, J24, J63.Keywords: directed search, human capital accumulation, job displacement, wealth accumulation
Procedia PDF Downloads 2061096 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads
Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill
Abstract:
Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity
Procedia PDF Downloads 3411095 Electromechanical Behaviour of Chitosan Based Electroactive Polymer
Authors: M. Sarikanat, E. Akar, I. Şen, Y. Seki, O. C. Yılmaz, B. O. Gürses, L. Cetin, O. Özdemir, K. Sever
Abstract:
Chitosan is a natural, nontoxic, polyelectrolyte, cheap polymer. In this study, chitosan based electroactive polymer (CBEAP) was fabricated. Electroactive properties of this polymer were investigated at different voltages. It exhibited excellent tip displacement at low voltages (1, 3, 5, 7 V). Tip displacement was increased as the applied voltage increased. Best tip displacement was investigated as 28 mm at 5V. Characterization of CBEAP was investigated by scanning electron microscope, X-ray diffraction and tensile testing. CBEAP exhibited desired electroactive properties at low voltages. It is suitable for using in artificial muscle and various robotic applications.Keywords: chitosan, electroactive polymer, electroactive properties
Procedia PDF Downloads 5091094 Parametric Study and Design on under Reamed Pile - An Experimental and Numerical Study
Authors: S. Chandrakaran, Aarthy D.
Abstract:
Abstract: Under reamed piles are piles which are of different types like bored cast in-situ pile or bored compaction concrete piles where one or more bulbs are provided. In this paper, the design procedure of under reamed pile by both experimental study and numerical study using PLAXIS 3D Foundation software was studied. The soil chosen for study was M Sand. The Single and double under reamed pile modelling was made using mild steel. The pile load test experiment was conducted in the laboratory and the ultimate compression load for 25 mm settlement on single and double under reamed pile was observed and finally the result was compared with conventional pile (pile without bulb). The parametric influence on under reamed pile was studied by varying the geometrical parameters like diameter of bulbs, spacing between bulbs, position of bulbs and number of bulbs. The results of the numerical model showed that when the diameter of bulb D u =2.5D, the ultimate compression load for an under-reamed pile with a single bulb increased by 55 % compared to a pile without a bulb. It was observed that when the spacing between the bulbs was S=6D u with three different positions of bulb from bottom of pile as D u , 2D u and 3D u , the ultimate compression load increased by 88%, 94% and 73 % respectively, compared to the ultimate compression load for 25 mm settlement on conventional pile and if spacing was more than 6D u , ultimate compression load for 25 mm settlement started to decrease. It was observed that when the bucket length was more than 2D u , the ultimate compressionKeywords: load capcity, under remed bulb . sand, model study, sand
Procedia PDF Downloads 861093 Migration and Displacement: A Study on the Impact of Bangladeshi and Nepali Migration to North-Eastern India
Authors: Sri Mahan Borah
Abstract:
The issue of migration and displacement is considered so sensitive that states have often linked it with their sovereignty, independence and even existence. Therefor, even in the era of globalisation no nation-state is ready to compromise with its territorial boundaries. The problem of migration and displacement has generated a range of socio-political, economic, ethnic, and communal tensions in India in general and northeastern States in particular. In such situation it becomes unpreventable to look over the issue so that a viable elucidation may emerge. The present paper is an attempt to understand the impact of Bangladeshi and Nepali migration to North-Eastern states of India through historical and analytical methods. In this course it will look into the emergence of the migration and displacement problem, its causes, impacts on security and other issues of national interest especially when the migration is illegal and poses multi-layered challenges to the Indian state. The nature of migration from these countries to India has been dissimilar. This is because of their different historical backgrounds, geographical variants, ethno-religious affinities, political systems and bilateral arrangements with India. It concludes inter alia that, India’s borders with Bangladesh and Nepal must be regulated and that resident migrants need to be strategically dealt with, keeping in mind age-old relationships with these countries and, more importantly, the nature and construct of our geography.Keywords: migration, displacement, North-East, India
Procedia PDF Downloads 4021092 Development of Interaction Factors Charts for Piled Raft Foundation
Authors: Abdelazim Makki Ibrahim, Esamaldeen Ali
Abstract:
This study aims at analysing the load settlement behavior and predict the bearing capacity of piled raft foundation a series of finite element models with different foundation configurations and stiffness were established. Numerical modeling is used to study the behavior of the piled raft foundation due to the complexity of piles, raft, and soil interaction and also due to the lack of reliable analytical method that can predict the behavior of the piled raft foundation system. Simple analytical models are developed to predict the average settlement and the load sharing between the piles and the raft in piled raft foundation system. A simple example to demonstrate the applications of these charts is included.Keywords: finite element, pile-raft foundation, method, PLAXIS software, settlement
Procedia PDF Downloads 5551091 The Impact of Combined Loading on Lateral Capacity and Group Efficiency of Helical Piles
Authors: Hesham Hamdy Abdulmohsen, Ahmed Shawky Abdel Aziz, Mona Fawzy Aldaghma
Abstract:
Helical piles have gained significant attention as efficient alternatives for deep foundations due to their rapid installation process and dual functionality in compression and tension. They experience various combinations of axial and lateral loads. While extensive research has explored helical pile behavior under individual axial or lateral loads, the effects of combined axial compression and lateral loads still need further study. This paper compares experimental and numerical (PLAXIS-3D) results for vertical helical-pile groups under combined loads. The study aims to clarify the impact of key factors, including helix location and lateral load direction, on the lateral capacity of helical-pile groups and, consequently, their overall efficiency. The study concludes that the lateral capacity of the helical-pile group significantly depends on the helix location within the pile shaft length. Optimal lateral performance occurs when helices are positioned at a depth ratio of H/L = 0.4. Furthermore, rectangular plan distribution groups exhibit greater lateral capacity when subjected to lateral loads aligned with their long axis. The presence of vertical compression loading enhances the lateral capacity of the group, with the specific enhancement depending on the value of the vertical compression load, lateral load direction, and helix location.Keywords: experimental, numerical model, lateral loading, group efficiency, helical piles
Procedia PDF Downloads 381090 Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks
Authors: Amir Alirezaei, Shahram Vahdani
Abstract:
This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.Keywords: deformation demand, drift, setback, tall building
Procedia PDF Downloads 4221089 A Solution to Analyze the Geosynthetic Reinforced Piled Embankments Considering Pile-Soil Interaction
Authors: Feicheng Liu, Weiming Liao, Jianjing Zhang
Abstract:
A pile-supported embankment with geosynthetic-reinforced mat (PSGR embankment) has been considered as an effective solution to reduce the total and differential settlement of the embankment constructed over soft soil. In this paper, a new simplified method proposed firstly incorporates the load transfer between piles and surrounding soil and the settlement of pile, and also considers arching effect in embankment fill, membrane effect of geosynthetic reinforcement, and subsoil resistance, to evaluate the behavior of PSGR embankment. Subsoil settlement is assumed to consist of two parts:(1) the settlement of subsoil surface between piles equivalent to that of pile caps assuming the geosynthetic reinforcement without deformation yet; (2) the subsoil subsiding along with the geosynthetic deforming, and the deflected geosynthetic being considered as centenary. The force equilibrium, including loads acting on the upper surface of geosynthetic, subsoil resistance, as well as the stress-strain relationship of the geosynthetic reinforcement at the edge of pile cap, is established, thus the expression of subsoil resistance is deduced, and subsequently the tension of geosynthetic and stress concentration ratio between piles can be calculated. The proposed method is validated through observed data from three field tests and also compared with other eight analytical solutions available in the literature. In addition, a sensitive analysis is provided to demonstrate the influence of with/without considering pile-soil interaction for evaluating the performance of PSGR embankment.Keywords: pile-supported embankment, geosynthetic, analytical solution, soil arching effect, the settlement of pile, sensitive analysis
Procedia PDF Downloads 1561088 Fracture Crack Monitoring Using Digital Image Correlation Technique
Authors: B. G. Patel, A. K. Desai, S. G. Shah
Abstract:
The main of objective of this paper is to develop new measurement technique without touching the object. DIC is advance measurement technique use to measure displacement of particle with very high accuracy. This powerful innovative technique which is used to correlate two image segments to determine the similarity between them. For this study, nine geometrically similar beam specimens of different sizes with (steel fibers and glass fibers) and without fibers were tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control with a rate of opening of 0.0005 mm/sec. Digital images were captured before loading (unreformed state) and at different instances of loading and were analyzed using correlation techniques to compute the surface displacements, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It was seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.Keywords: Digital Image Correlation, fibres, self compacting concrete, size effect
Procedia PDF Downloads 3871087 Comparison of High Speed Railway Bride Foundation Design
Authors: Hussein Yousif Aziz
Abstract:
This paper discussed the design and analysis of bridge foundation subjected to load of train with three codes, namely AASHTO code, British Standard BS Code 8004 (1986), and Chinese code (TB10002.5-2005).The study focused on the design and analysis of bridge’s foundation manually with the three codes and found which code is better for design and controls the problem of high settlement due to the applied loads. The results showed the Chinese codes are costly that the number of reinforcement bars in the pile cap and piles is more than those with AASHTO code and BS code with the same dimensions. Settlement of the bridge was calculated depending on the data collected from the project site. The vertical ultimate bearing capacity of single pile for three codes is also discussed. Other analyses by using the two-dimensional Plaxis program and other programs like SAP2000 14, PROKON many parameters are calculated. The maximum values of the vertical displacement are close to the calculated ones. The results indicate that the AASHTO code is economics and safer in the bearing capacity of single pile. The purpose of this project is to study out the pier on the basis of the design of the pile foundation. There is a 32m simply supported beam of box section on top of the structure. The pier of bridge is round-type. The main component of the design is to calculate pile foundation and the settlement. According to the related data, we choose 1.0m in diameter bored pile of 48m. The pile is laid out in the rectangular pile cap. The dimension of the cap is 12m 9 m. Because of the interaction factors of pile groups, the load-bearing capacity of simple pile must be checked, the punching resistance of pile cap, the shearing strength of pile cap, and the part in bending of pile cap, all of them are very important to the structure stability. Also, checking soft sub-bearing capacity is necessary under the pile foundation. This project provides a deeper analysis and comparison about pile foundation design schemes. Firstly, here are brief instructions of the construction situation about the Bridge. With the actual construction geological features and the upper load on the Bridge, this paper analyzes the bearing capacity and settlement of single pile. In the paper the Equivalent Pier Method is used to calculate and analyze settlements of the piles.Keywords: pile foundation, settlement, bearing capacity, civil engineering
Procedia PDF Downloads 4191086 Recovery of Petroleum Reservoir by Waterflooding Technique
Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi, Shigeo Honma
Abstract:
Through many types of research and practical studies, it has been identified that the average oil recovery factor of a petroleum reservoir is about 30 to 35 %. This study is focused on enhanced oil recovery by laboratory experiment and graphical investigation based on Buckley-Leverett theory. Horizontal oil displacement by water, in a petroleum reservoir is analyzed under the Buckley-Leverett frontal displacement theory. The extraction and prerequisite of this theory are based and pursued focusing on the key factors that control displacement. The theory is executable to the waterflooding method, which is generally employed in petroleum engineering reservoirs to sustain oil production recovery, and the techniques for evaluating the average water saturation behind the water front and the oil recovery factors in the reservoirs are presented. In this paper, the Buckley-Leverett theory handled to an experimental model and the amount of recoverable oil are investigated to be over 35%. The irreducible water saturation, viz. connate water saturation, in the reservoir is also a significant inspiration for the recovery.Keywords: Buckley-Leverett theory, waterflooding technique, petroleum engineering, immiscible displacement
Procedia PDF Downloads 2571085 Impact of Natural Period and Epicentral Distance on Storey Lateral Displacements
Authors: Saida Dorbani, M'hammed Badaoui, Djilali Benouar
Abstract:
This paper deals with the effect of the building design and epicentral distance on the storey lateral displacement, for several reinforced concrete buildings (6, 9 and 12 stories), with three floor plans: symmetric, mono symmetric, and unsymmetrical. These structures are subjected to seismic accelerations from the Boumerdes earthquake (Algeria, May 21st, Mw=6.5). The objective of this study is to highlight the impact of the fundamental period and epicentral distance on storey displacements for a given earthquake. The seismic lateral displacement is carried out in both longitudinal and transverse direction by the response spectrum method.Keywords: natural period, epicenter distance, reinforced concrete buildings, storey displacement
Procedia PDF Downloads 2611084 Three-Dimensional Finite Element Analysis of Geogrid-Reinforced Piled Embankments on Soft Clay
Authors: Mahmoud Y. Shokry, Rami M. El-Sherbiny
Abstract:
This paper aims to highlight the role of some parameters that may be of a noticeable impact on numerical analysis/design of embankments. It presents the results of a three-dimensional (3-D) finite element analysis of a monitored earth embankment that was constructed on soft clay formation stabilized by cast in-situ piles using software PLAXIS 3D. A comparison between the predicted and the monitored responses is presented to assess the adequacy of the adopted numerical model. The model was used in the targeted parametric study. Moreover, a comparison was performed between the results of the 3-D analyses and the analytical solutions. This paper concluded that the effect of using mono pile caps led to decrease both the total and differential settlement and increased the efficiency of the piled embankment system. The study of using geogrids revealed that it can contribute in decreasing the settlement and maximizing the part of the embankment load transferred to piles. Moreover, it was found that increasing the stiffness of the geogrids provides higher values of tensile forces and hence has more effective influence on embankment load carried by piles rather than using multi-number of layers with low values of geogrid stiffness. The efficiency of the piled embankments system was also found to be greater when higher embankments are used rather than the low height embankments. The comparison between the numerical 3-D model and the theoretical design methods revealed that many analytical solutions are conservative and non-accurate rather than the 3-D finite element numerical models.Keywords: efficiency, embankment, geogrids, soft clay
Procedia PDF Downloads 3201083 Minimizing the Drilling-Induced Damage in Fiber Reinforced Polymeric Composites
Authors: S. D. El Wakil, M. Pladsen
Abstract:
Fiber reinforced polymeric (FRP) composites are finding wide-spread industrial applications because of their exceptionally high specific strength and specific modulus of elasticity. Nevertheless, it is very seldom to get ready-for-use components or products made of FRP composites. Secondary processing by machining, particularly drilling, is almost always required to make holes for fastening components together to produce assemblies. That creates problems since the FRP composites are neither homogeneous nor isotropic. Some of the problems that are encountered include the subsequent damage in the region around the drilled hole and the drilling – induced delamination of the layer of ply, that occurs both at the entrance and the exit planes of the work piece. Evidently, the functionality of the work piece would be detrimentally affected. The current work was carried out with the aim of eliminating or at least minimizing the work piece damage associated with drilling of FPR composites. Each test specimen involves a woven reinforced graphite fiber/epoxy composite having a thickness of 12.5 mm (0.5 inch). A large number of test specimens were subjected to drilling operations with different combinations of feed rates and cutting speeds. The drilling induced damage was taken as the absolute value of the difference between the drilled hole diameter and the nominal one taken as a percentage of the nominal diameter. The later was determined for each combination of feed rate and cutting speed, and a matrix comprising those values was established, where the columns indicate varying feed rate while and rows indicate varying cutting speeds. Next, the analysis of variance (ANOVA) approach was employed using Minitab software, in order to obtain the combination that would improve the drilling induced damage. Experimental results show that low feed rates coupled with low cutting speeds yielded the best results.Keywords: drilling of composites, dimensional accuracy of holes drilled in composites, delamination and charring, graphite-epoxy composites
Procedia PDF Downloads 3881082 Viability of Slab Sliding System for Single Story Structure
Authors: C. Iihoshi, G. A. MacRae, G. W. Rodgers, J. G. Chase
Abstract:
Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure.Keywords: earthquake, isolation, slab, sliding
Procedia PDF Downloads 246