Search results for: compatible response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5639

Search results for: compatible response

5549 Continuous-Time and Discrete-Time Singular Value Decomposition of an Impulse Response Function

Authors: Rogelio Luck, Yucheng Liu

Abstract:

This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions e⁻⁽ᵗ⁻ ᵀ⁾, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.

Keywords: singular value decomposition, impulse response function, Green’s function , Toeplitz matrix , Hankel matrix

Procedia PDF Downloads 156
5548 The Analysis of Brain Response to Auditory Stimuli through EEG Signals’ Non-Linear Analysis

Authors: H. Namazi, H. T. N. Kuan

Abstract:

Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to auditory stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to auditory stimuli but provide us with very good recommendations for clinical purposes.

Keywords: auditory stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 534
5547 Characteristics Influencing Response of a Base Isolated Building

Authors: Ounis Hadj Mohamed, Ounis Abdelhafid

Abstract:

In order to illustrate the effect of damping on the response of a base-isolated building, a parametric study is led, taking into account the progressive variation of the damping ratio (10% to 30%) under different types of seismic excitations (near and far field). A time history analysis is used to determine the response of the structure in terms of relative displacement and understory drift at various levels of the building. Thus, the results show that the efficiency of the isolator increases with the assumed damping ratio, provided that this latter is less or equal to 20%. Beyond this value, the isolator becomes less convenient. Furthermore, a strong deviation of energy capacity by the LRB (Lead Rubber Bearing) system is recorded.

Keywords: damping, base isolation, LRB, seismic excitation, hysteresis

Procedia PDF Downloads 414
5546 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function

Authors: Ahmed Noor Al-Qayyim

Abstract:

During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.

Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification

Procedia PDF Downloads 347
5545 X-Bracing Configuration and Seismic Response

Authors: Saeed Rahjoo, Babak H. Mamaqani

Abstract:

Concentric bracing systems have been in practice for many years because of their effectiveness in reducing seismic response. Depending on concept, seismic design codes provide various response modification factors (R), which itself consists of different terms, for different types of lateral load bearing systems but configuration of these systems are often ignored in the proposed values. This study aims at considering the effect of different x-bracing diagonal configuration on values of ductility dependent term in R computation. 51 models were created and nonlinear push over analysis has been performed. The main variables of this study were the suitable location of X–bracing diagonal configurations, which establishes better nonlinear behavior in concentric braced steel frames. Results show that some x-bracing diagonal configurations improve the seismic performance of CBF significantly and explicit consideration of lateral load bearing systems seems necessary.

Keywords: bracing configuration, concentrically braced frame (CBF), push over analyses, response reduction factor

Procedia PDF Downloads 350
5544 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements

Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray

Abstract:

Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.

Keywords: MASW, resonant column test, SCPT, site response analysis, torsional shear test

Procedia PDF Downloads 400
5543 Development of a Diagnostic Device to Predict Clinically Significant Inflammation Associated with Cardiac Surgery

Authors: Mohamed Majrashi, Patricia Connolly, Terry Gourlay

Abstract:

Cardiopulmonary bypass is known to cause inflammatory response during open heart surgery. It includes the initiation of different cascades such as coagulation, complement system and cytokines. Although the immune system is body’s key defense mechanism against external assault, when overexpressed, it can be injurious to the patient, particularly in a cohort of patients in which there is a heightened and uncontrolled response. The inflammatory response develops in these patients to an exaggerated level resulting in an autoimmune injury and may lead to poor postoperative outcomes (systemic inflammatory response syndrome and multi-organs failure). Previous studies by this group have suggested a correlation between the level of IL6 measured in patient’s blood before surgery and after polymeric activation and the observed inflammatory response during surgery. Based upon these findings, the present work is aimed at using this response to develop a test which can be used prior to the open heart surgery to identify the high-risk patients before their operation. The work will be accomplished via three main clinical phases including some pilot in-vitro studies, device development and clinical investigation. Current findings from studies using animal blood, employing DEHP and DEHP plasticized PVC materials as the activator, support the earlier results in patient samples. Having established this relationship, ongoing work will focus on developing an activated lateral flow strip technology as a screening device for heightened inflammatory propensity.

Keywords: cardiopulmonary bypass, cytokines, inflammatory response, overexpression

Procedia PDF Downloads 284
5542 Study of the Responding Time for Low Permeability Reservoirs

Authors: G. Lei, P. C. Dong, X. Q. Cen, S. Y. Mo

Abstract:

One of the most significant parameters, describing the effect of water flooding in porous media, is flood-response time, and it is an important index in oilfield development. The responding time in low permeability reservoir is usually calculated by the method of stable state successive substitution neglecting the effect of medium deformation. Numerous studies show that the media deformation has an important impact on the development for low permeability reservoirs and can not be neglected. On the base of streamline tube model, we developed a method to interpret responding time with medium deformation factor. The results show that: the media deformation factor, threshold pressure gradient and well spacing have a significant effect on the flood response time. The greater the media deformation factor, threshold pressure gradient or well spacing is, the lower the flood response time is. The responding time of different streamlines varies. As the angle with the main streamline increases, the water flooding response time delays as a "parabola" shape.

Keywords: low permeability, flood-response time, threshold pressure gradient, medium deformation

Procedia PDF Downloads 499
5541 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: deep learning, generative, knowledge, response generation, retrieval

Procedia PDF Downloads 134
5540 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate

Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar

Abstract:

Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).

Keywords: hardness, RSM, sputtering, TiN XRD

Procedia PDF Downloads 321
5539 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: BNWF method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction

Procedia PDF Downloads 394
5538 From Comfort to Safety: Assessing the Influence of Car Seat Design on Driver Reaction and Performance

Authors: Sabariah Mohd Yusoff, Qamaruddin Adzeem Muhamad Murad

Abstract:

This study investigates the impact of car seat design on driver response time, addressing a critical gap in understanding how ergonomic features influence both performance and safety. Controlled driving experiments were conducted with fourteen participants (11 male, 3 female) across three locations chosen for their varying traffic conditions to account for differences in driver alertness. Participants interacted with various seat designs while performing driving tasks, and objective metrics such as braking and steering response times were meticulously recorded. Advanced statistical methods, including regression analysis and t-tests, were employed to identify design factors that significantly affect driver response times. Subjective feedback was gathered through detailed questionnaires—focused on driving experience and knowledge of response time—and in-depth interviews. This qualitative data was analyzed thematically to provide insights into driver comfort and usability preferences. The study aims to identify key seat design features that impact driver response time and to gain a deeper understanding of driver preferences for comfort and usability. The findings are expected to inform evidence-based guidelines for optimizing car seat design, ultimately enhancing driver performance and safety. The research offers valuable implications for automotive manufacturers and designers, contributing to the development of seats that improve driver response time and overall driving safety.

Keywords: car seat design, driver response time, cognitive driving, ergonomics optimization

Procedia PDF Downloads 24
5537 Evaluation of Flange Effects on the Lateral In-Plane Response of Brick Masonry Walls

Authors: Hizb Ullah Sajid, Muhammad Ashraf, Naveed Ahmad Qaisar Ali, Sikandar Hayat Sajid

Abstract:

This research study investigates experimentally the effects of flanges (transverse walls) on the lateral in-plane response of brick masonry walls. The experimental work included lateral in-plane quasi-static cyclic tests on full-scale walls (both with & without flanges). The flanges were introduced at both ends of the in-plane wall. In particular the damage mechanism, lateral in-plane stiffness & strength, deformability and energy dissipation of the two classes of walls are compared and the differences are quantified to help understand the effects of flanges on the in-plane response of masonry walls. The available analytical models for the in-plane shear strength & deformation evaluation of masonry walls are critically analyzed. Recommendations are made for the lateral in-plane capacity assessment of brick masonry walls including the contribution of transverse walls.

Keywords: brick masonry, damage mechanism, flanges effects, in-plane response

Procedia PDF Downloads 382
5536 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation

Authors: R. J. Chang

Abstract:

A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.

Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise

Procedia PDF Downloads 489
5535 Comparison of 18F-FDG and 11C-Methionine PET-CT for Assessment of Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Carcinoma

Authors: Sonia Mahajan Dinesh, Anant Dinesh, Madhavi Tripathi, Vinod Kumar Ramteke, Rajnish Sharma, Anupam Mondal

Abstract:

Background: Neo-adjuvant chemotherapy plays an important role in treatment of breast cancer by decreasing the tumour load and it offers an opportunity to evaluate response of primary tumour to chemotherapy. Standard anatomical imaging modalities are unable to accurately reflect the response to chemotherapy until several cycles of drug treatment have been completed. Metabolic imaging using tracers like 18F-fluorodeoxyglucose (FDG) as a marker of glucose metabolism or amino acid tracers like L-methyl-11C methionine (MET) have potential role for the measurement of treatment response. In this study, our objective was to compare these two PET tracers for assessment of response to neoadjuvant chemotherapy, in locally advanced breast carcinoma. Methods: In our prospective study, 20 female patients with histology proven locally advanced breast carcinoma underwent PET-CT imaging using FDG and MET before and after three cycles of neoadjuvant chemotherapy (CAF regimen). Thereafter, all patients were taken for MRM and the resected specimen was sent for histo-pathological analysis. Tumour response to the neoadjuvant chemotherapy was evaluated by PET-CT imaging using PERCIST criteria and correlated with histological results. Responses calculated were compared for statistical significance using paired t- test. Results: Mean SUVmax for primary lesion in FDG PET and MET PET was 15.88±11.12 and 5.01±2.14 respectively (p<0.001) and for axillary lymph nodes was 7.61±7.31 and 2.75±2.27 respectively (p=0.001). Statistically significant response in primary tumour and axilla was noted on both FDG and MET PET after three cycles of NAC. Complete response in primary tumour was seen in only 1 patient in FDG and 7 patients in MET PET (p=0.001) whereas there was no histological complete resolution of tumor in any patient. Response to therapy in axillary nodes noted on both PET scans were similar (p=0.45) and correlated well with histological findings. Conclusions: For the primary breast tumour, FDG PET has a higher sensitivity and accuracy than MET PET and for axilla both have comparable sensitivity and specificity. FDG PET shows higher target to background ratios so response is better predicted for primary breast tumour and axilla. Also, FDG-PET is widely available and has the advantage of a whole body evaluation in one study.

Keywords: 11C-methionine, 18F-FDG, breast carcinoma, neoadjuvant chemotherapy

Procedia PDF Downloads 510
5534 Acoustic Induced Vibration Response Analysis of Honeycomb Panel

Authors: Po-Yuan Tung, Jen-Chueh Kuo, Chia-Ray Chen, Chien-Hsing Li, Kuo-Liang Pan

Abstract:

The main-body structure of satellite is mainly constructed by lightweight material, it should be able to withstand certain vibration load during launches. Since various kinds of change possibility in the space, it is an extremely important work to study the random vibration response of satellite structure. This paper based on the reciprocity relationship between sound and structure response and it will try to evaluate the dynamic response of satellite main body under random acoustic load excitation. This paper will study the technical process and verify the feasibility of sonic-borne vibration analysis. One simple plate exposed to the uniform acoustic field is utilized to take some important parameters and to validate the acoustics field model of the reverberation chamber. Then import both structure and acoustic field chamber models into the vibro-acoustic coupling analysis software to predict the structure response. During the modeling process, experiment verification is performed to make sure the quality of numerical models. Finally, the surface vibration level can be calculated through the modal participation factor, and the analysis results are presented in PSD spectrum.

Keywords: vibration, acoustic, modal, honeycomb panel

Procedia PDF Downloads 555
5533 Review and Evaluation of Viscose Damper on Structural Responses

Authors: Ehsan Sadie

Abstract:

Developments in the field of damping technology and advances in the area of dampers in equipping many structures have been the result of efforts and testing by researchers in this field. In this paper, a sample of a two-story building is simulated with the help of SAP2000 software, and the effect of a viscous damper on the performance of the structure is explained. The effect of dampers on the response of the structure is investigated. This response involves the horizontal displacement of floors. In this case, the structure is modeled once without a damper and again with a damper. In this regard, the results are presented in the form of tables and graphs. Since the seismic behavior of the structure is studied, the responses show the appropriate effect of viscous dampers in reducing the displacement of floors, and also the energy dissipation in the structure with dampers compared to structures without dampers is significant. Therefore, it is economical to use viscous dampers in areas that have a higher relative earthquake risk.

Keywords: bending frame, displacement criterion, dynamic response spectra, earthquake, non-linear history spectrum, SAP2000 software, structural response, viscous damper

Procedia PDF Downloads 115
5532 Evaluation of Two DNA Vaccine Constructs in Labeo rohita against Edwardsiella tarda

Authors: Ranjeeta Kumari, Makesh M, Gayatri Tripathi, K V Rajendran, Megha Bedekar

Abstract:

A comparative study on DNA immunization with recombinant glyceraldehyde-3-phosphate dehydrogenase (GAPDH) construct of Edwardsiella tarda (pGPD group) and a bicistronic construct expressing GAPDH plus IFN-γ of Labeo rohita as adjuvant (pGPD+IFN group) was undertaken in Labeo rohita along with the control animals. Successful co-expression of two genes that is GAPDH and IFN-γ was confirmed in SSN-1 cells line by RT-qPCR and western blot. The protective immune response of host to DNA vaccine construct was determined by RPS and specific antibody production. Fishes immunized with plasmids via intramuscular injection (I/M) exhibited a considerable relative percentage survivability of 66.66% in pGPD+IFN immunized group and 53.34% in pGPD immunized group after challenge with E. tarda. Antibody response was also significantly high in pGPD+IFN group at all time points under study. This was analysed by competitive ELISA, using anti GAPDH monoclonal antibodies. The experiment revealed that the GAPDH gene of E. tarda is one of the ideal candidates for generating protective immune response in L. rohita. Further addition of Interferon gamma to DNA vaccine construct can enhance the immune response in host.

Keywords: DNA vaccine, Edwardsiella tarda, Labeo rohita, zoonosis, immune response

Procedia PDF Downloads 203
5531 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System

Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha

Abstract:

Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.

Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time

Procedia PDF Downloads 577
5530 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 153
5529 Design and Fabrication of ZSO Nanocomposite Thin Film Based NO2 Gas Sensor

Authors: Bal Chandra Yadav, Rakesh K. Sonker, Anjali Sharma, Punit Tyagi, Vinay Gupta, Monika Tomar

Abstract:

In the present study, ZnO doped SnO2 thin films of various compositions were deposited on the surface of a corning substrate by dropping the two sols containing the precursors for composite (ZSO) with subsequent heat treatment. The sensor materials used for selective detection of nitrogen dioxide (NO2) were designed from the correlation between the sensor composition and gas response. The available NO2 sensors are operative at very high temperature (150-800 °C) with low sensing response (2-100) even in higher concentrations. Efforts are continuing towards the development of NO2 gas sensor aiming with an enhanced response along with a reduction in operating temperature by incorporating some catalysts or dopants. Thus in this work, a novel sensor structure based on ZSO nanocomposite has been fabricated using chemical route for the detection of NO2 gas. The structural, surface morphological and optical properties of prepared films have been studied by using X-ray diffraction (XRD), Atomic force microscopy (AFM), Transmission electron microscope (TEM) and UV-visible spectroscopy respectively. The effect of thickness variation from 230 nm to 644 nm of ZSO composite thin film has been studied and the ZSO thin film of thickness ~ 460 nm was found to exhibit the maximum gas sensing response ~ 2.1×103 towards 20 ppm NO2 gas at an operating temperature of 90 °C. The average response and recovery times of the sensor were observed to be 3.51 and 6.91 min respectively. Selectivity of the sensor was checked with the cross-exposure of vapour CO, acetone, IPA, CH4, NH3 and CO2 gases. It was found that besides the higher sensing response towards NO2 gas, the prepared ZSO thin film was also highly selective towards NO2 gas.

Keywords: ZSO nanocomposite thin film, ZnO tetrapod structure, NO2 gas sensor, sol-gel method

Procedia PDF Downloads 339
5528 Promoting Biofuels in India: Assessing Land Use Shifts Using Econometric Acreage Response Models

Authors: Y. Bhatt, N. Ghosh, N. Tiwari

Abstract:

Acreage response function are modeled taking account of expected harvest prices, weather related variables and other non-price variables allowing for partial adjustment possibility. At the outset, based on the literature on price expectation formation, we explored suitable formulations for estimating the farmer’s expected prices. Assuming that farmers form expectations rationally, the prices of food and biofuel crops are modeled using time-series methods for possible ARCH/GARCH effects to account for volatility. The prices projected on the basis of the models are then inserted to proxy for the expected prices in the acreage response functions. Food crop acreages in different growing states are found sensitive to their prices relative to those of one or more of the biofuel crops considered. The required percentage improvement in food crop yields is worked to offset the acreage loss.

Keywords: acreage response function, biofuel, food security, sustainable development

Procedia PDF Downloads 301
5527 Development and Characterization of Ceramic-Filled Composite Filaments and Functional Structures for Fused Deposition Modeling

Authors: B. Khatri, K. Lappe, M. Habedank, T. Müller, C. Megnin, T. Hanemann

Abstract:

We present a process flow for the development of ceramic-filled polymer composite filaments compatible with the fused deposition modeling (FDM) 3D printing process. Thermoplastic-ceramic composites were developed using acrylonitrile butadiene styrene (ABS) and 10- and 20 vol.% barium titanate (BaTiO3) powder (corresponding to 39.47- and 58.23 wt.% respectively) and characterized for their flow properties. To make them compatible with the existing FDM process, the composites were extruded into filaments. These composite filaments were subsequently structured into tensile stress specimens using a commercially available FDM 3D printer and characterized for their mechanical properties. Rheometric characterization of the material composites revealed non-Newtonian behavior with the viscosity logarithmically decreasing over increasing shear rates, as well as higher viscosities for samples with higher BaTiO3 filler content for a given shear rate (with the ABS+20vol.% BaTiO3 composite being over 50% more viscous compared to pure ABS at a shear rate of 1x〖10〗^3 s^(-1)). Mechanical characterization of the tensile stress specimens exhibited increasingly brittle behavior as well as a linearly decreasing ultimate tensile strength of the material composites with increasing volumetric ratio of BaTiO3 (from σ_max=32.4MPa for pure ABS to σ_max=21.3MPa for ABS+20vol.% BaTiO3). Further studies being undertaken include the development of composites with higher filler concentrations, sintering of the printed composites to yield pure dielectric structures and the determination of the dielectric characteristics of the composites.

Keywords: ceramic composites, fused deposition modeling, material characterization, rapid prototyping

Procedia PDF Downloads 331
5526 Micromechanical Analysis of Interface Properties Effects on Transverse Tensile Response of Fiber-Reinforced Composites

Authors: M. Naderi, N. Iyyer, K. Goel, N. Phan

Abstract:

A micromechanical analysis of the influence of fiber-matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite is investigated. Augmented finite element method (AFEM) is used to provide high-fidelity damage initiation and propagation along the micromechanical analysis. Effects of fiber volume fraction and fiber shapes are also studies in representative volume elements (RVE) to capture the stochastic behavior of the composite under loading. In addition, defects and voids influence on the composite response are investigated in micromechanical analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects.

Keywords: cohesive model, fracture, computational mechanics, micromechanics

Procedia PDF Downloads 291
5525 The Influence of Language on Music Consumption in Japan: An Experimental Study

Authors: Timur Zhukov, Yuko Yamashita

Abstract:

Music as a product of hedonic consumption has been researched at least since the early 20th century, but little light has been shed on how language affects its consumption process. At the intersection of music consumption, language impact, and consumer behavior, this research explores the influence of language on music consumption in Japan. Its aim is to clarify how listening to music in different languages affects the listener’s purchase intention and sharing intention by conducting a survey where respondents listen to three versions of the same song in different languages in random order. It uses an existing framework that views the flow of music consumption as a combination of responses (emotional response, sensory response, imaginal response, analytical responses) affecting the experiential response, which then affects the overall affective response, followed by the need to reexperience and lastly the purchase intention. In this research, the sharing intention has been added to the model to better fit the modern consumption model (e.g., AISAS). This research shows how positive and negative emotions and imaginal and analytical responses change depending on the language and what impact it has on consumer behavior. It concludes by proposing how modern music businesses can learn from the language differences and cater to the needs of the audiences who speak different languages.

Keywords: AISAS, consumer behavior, first language, music consumption, second language

Procedia PDF Downloads 133
5524 Analysis of the Transcriptional Response of Rhazia stricta to Jasmonic Acid Induction

Authors: Nahid H. Hajrah, Jamal S. M. Sabir, Neil Hall

Abstract:

The jasmonic pathway is ubiquitous in plants and is crucial to plant development. It Is involved in fertility, ripening, and sex determination as well as in response to environmental stresses such as herbivory, pathogen drought or temperature shock. Essentially the jasmonic pathway acts to shut down growth in order to induce defence pathways. These pathways include the production of secondary metabolites which have evolved to defend against herbivores and pathogens but are of increasing interest due to their roll in medicine and biotechnology. Here we describe the transcriptional response of Rhazia stricta (a poisonous shrub widely used in traditional medicine) to jasmonic acid, in order to better characterize the genes involved in secondary metabolite production and its response to stress. We observe coordinated upregulation of flavonoid biosynthesis pathway leading to flavonols, flavones and anthocyanins but no similar coordination of the monoterpene indole alkaloid pathway.

Keywords: medicinal plants, Rhazia stricta, jasmonic acid, transcriptional analysis

Procedia PDF Downloads 143
5523 Seismic Hazard Assessment of Offshore Platforms

Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou

Abstract:

This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.

Keywords: hazard analysis, offshore platforms, earthquakes, safety

Procedia PDF Downloads 147
5522 The Robot Physician's (Rp - 7) Management and Care in Unstable ICU Oncology Patients

Authors: Alisher Agzamov, Hanan Al Harbi

Abstract:

BACKGROUND: The timely assessment and treatment of ICU Surgical and Medical Oncology patients is important for Oncology surgeons and Medical Oncologists and Intensivists. We hypothesized that the use of Robot Physician’s (RP - 7) ICU management and care in ICU can improve ICU physician rapid response to unstable ICU Oncology patients. METHODS: This is a prospective study using a before-after, cohort-control design to test the effectiveness of RP. We have used RP to make multidisciplinary ICU rounds in the ICU and for Emergency cases. Data concerning several aspects of the RP interaction including the latency of the response, the problem being treated, the intervention that was ordered, and the type of information gathered using the RP were documented. The effect of RP on ICU length of stay and cost was assessed. RESULTS: The use of RP was associated with a reduction in latency of attending physician face-to-face response for routine and urgent pages compared to conventional care (RP: 10.2 +/- 3.3 minutes vs conventional: 220 +/- 80 minutes). The response latencies to Oncology Emergency (8.0 +/- 2.8 vs 150 +/- 55 minutes) and for Respiratory Failure (12 +/- 04 vs 110 +/- 45 minutes) were reduced (P < .001), as was the LOS for patients with AML (5 days) and ARDS (10 day). There was an increase in ICU occupancy by 20 % compared with the prerobot era, and there was an ICU cost savings of KD2.5 million attributable to the use of RP. CONCLUSION: The use of RP enabled rapid face-to-face ICU Intensivist - physician response to unstable ICU Oncology patients and resulted in decreased ICU cost and LOS.

Keywords: robot physician, oncology patients, rp - 7 in icu management, cost and icu occupancy

Procedia PDF Downloads 80
5521 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 116
5520 A Mathematical-Based Formulation of EEG Fluctuations

Authors: Razi Khalafi

Abstract:

Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.

Keywords: Brain, stimuli, partial differential equation, response, eeg signal

Procedia PDF Downloads 433