Search results for: cognitive image dimension
5462 The Effects of Affective Dimension of Face on Facial Attractiveness
Authors: Kyung-Ja Cho, Sun Jin Park
Abstract:
This study examined what effective dimension affects facial attractiveness. Two orthogonal dimensions, sharp-soft and babyish-mature, were used to rate the levels of facial attractiveness in 20’s women. This research also investigated the sex difference on the effect of effective dimension of face on attractiveness. The test subjects composed of 15 males and 18 females. They looked 330 photos of women in 20s. Then they rated the levels of the effective dimensions of faces with sharp-soft and babyish-mature, and the attraction with charmless-charming. The respond forms were Likert scales, the answer was scored from 1 to 9. As a result of multiple regression analysis, the subject reported the milder and younger appearance as more attractive. Both male and female subjects showed the same evaluation. This result means that two effective dimensions have the effect on estimating attractiveness.Keywords: affective dimension of faces, facial attractiveness, sharp-soft, babyish-mature
Procedia PDF Downloads 3375461 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm
Authors: Hooman Torabifard
Abstract:
In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.Keywords: image summarization, particle swarm optimization, image threshold, image processing
Procedia PDF Downloads 1355460 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network
Authors: Pawan Kumar Mishra, Ganesh Singh Bisht
Abstract:
Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.Keywords: resolution, deep-learning, neural network, de-blurring
Procedia PDF Downloads 5185459 Relational Attention Shift on Images Using Bu-Td Architecture and Sequential Structure Revealing
Authors: Alona Faktor
Abstract:
In this work, we present a NN-based computational model that can perform attention shifts according to high-level instruction. The instruction specifies the type of attentional shift using explicit geometrical relation. The instruction also can be of cognitive nature, specifying more complex human-human interaction or human-object interaction, or object-object interaction. Applying this approach sequentially allows obtaining a structural description of an image. A novel data-set of interacting humans and objects is constructed using a computer graphics engine. Using this data, we perform systematic research of relational segmentation shifts.Keywords: cognitive science, attentin, deep learning, generalization
Procedia PDF Downloads 1995458 High Secure Data Hiding Using Cropping Image and Least Significant Bit Steganography
Authors: Khalid A. Al-Afandy, El-Sayyed El-Rabaie, Osama Salah, Ahmed El-Mhalaway
Abstract:
This paper presents a high secure data hiding technique using image cropping and Least Significant Bit (LSB) steganography. The predefined certain secret coordinate crops will be extracted from the cover image. The secret text message will be divided into sections. These sections quantity is equal the image crops quantity. Each section from the secret text message will embed into an image crop with a secret sequence using LSB technique. The embedding is done using the cover image color channels. Stego image is given by reassembling the image and the stego crops. The results of the technique will be compared to the other state of art techniques. Evaluation is based on visualization to detect any degradation of stego image, the difficulty of extracting the embedded data by any unauthorized viewer, Peak Signal-to-Noise Ratio of stego image (PSNR), and the embedding algorithm CPU time. Experimental results ensure that the proposed technique is more secure compared with the other traditional techniques.Keywords: steganography, stego, LSB, crop
Procedia PDF Downloads 2705457 Cognitive Weighted Polymorphism Factor: A New Cognitive Complexity Metric
Authors: T. Francis Thamburaj, A. Aloysius
Abstract:
Polymorphism is one of the main pillars of the object-oriented paradigm. It induces hidden forms of class dependencies which may impact software quality, resulting in higher cost factor for comprehending, debugging, testing, and maintaining the software. In this paper, a new cognitive complexity metric called Cognitive Weighted Polymorphism Factor (CWPF) is proposed. Apart from the software structural complexity, it includes the cognitive complexity on the basis of type. The cognitive weights are calibrated based on 27 empirical studies with 120 persons. A case study and experimentation of the new software metric shows positive results. Further, a comparative study is made and the correlation test has proved that CWPF complexity metric is a better, more comprehensive, and more realistic indicator of the software complexity than Abreu’s Polymorphism Factor (PF) complexity metric.Keywords: cognitive complexity metric, object-oriented metrics, polymorphism factor, software metrics
Procedia PDF Downloads 4615456 Secure E-Pay System Using Steganography and Visual Cryptography
Authors: K. Suganya Devi, P. Srinivasan, M. P. Vaishnave, G. Arutperumjothi
Abstract:
Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.Keywords: image security, random LSB, steganography, visual cryptography
Procedia PDF Downloads 3305455 Noise Detection Algorithm for Skin Disease Image Identification
Authors: Minakshi Mainaji Sonawane, Bharti W. Gawali, Sudhir Mendhekar, Ramesh R. Manza
Abstract:
People's lives and health are severely impacted by skin diseases. A new study proposes an effective method for identifying the different forms of skin diseases. Image denoising is a technique for improving image quality after it has been harmed by noise. The proposed technique is based on the usage of the wavelet transform. Wavelet transform is the best method for analyzing the image due to the ability to split the image into the sub-band, which has been used to estimate the noise ratio at the noisy image. According to experimental results, the proposed method presents the best values for MSE, PSNR, and Entropy for denoised images. we can found in Also, by using different types of wavelet transform filters is make the proposed approach can obtain the best results 23.13, 20.08, 50.7 for the image denoising processKeywords: MSE, PSNR, entropy, Gaussian filter, DWT
Procedia PDF Downloads 2165454 Parental Bonding and Cognitive Emotion Regulation
Authors: Fariea Bakul, Chhanda Karmaker
Abstract:
The present study was designed to investigate the effects of parental bonding on adult’s cognitive emotion regulation and also to investigate gender differences in parental bonding and cognitive emotion regulation. Data were collected by using convenience sampling technique from 100 adult students (50 males and 50 females) of different universities of Dhaka city, ages between 20 to 25 years, using Bengali version of Parental Bonding Inventory and Bengali version of Cognitive Emotion Regulation Questionnaire. The obtained data were analyzed by using multiple regression analysis and independent samples t-test. The results revealed that fathers care (β =0.317, p < 0.05) was only significantly positively associated with adult’s cognitive emotion regulation. Adjusted R² indicated that the model explained 30% of the variance in adult’s adaptive cognitive emotion regulation. No significant association was found between parental bonding and less adaptive cognitive emotion regulations. Results from independent samples t-test also revealed that there was no significant gender difference in both parental bonding and cognitive emotion regulations.Keywords: cognitive emotion regulation, parental bonding, parental care, parental over-protection
Procedia PDF Downloads 3735453 Exploration of Two Selected Sculptural Forms in the Department of Fine and Applied Arts, Federal Capital Territory College of Education Zuba-Abuja, Nigeria as Motifs for Wax Print Pattern and Design
Authors: Adeoti Adebowale, Abduljaleel, Ejiogu Fidelis Onyekwo
Abstract:
Form and image development are fundamental to creative expression in visual arts. The form is an element that distinguishes the difference between two-dimension and three-dimension among the branches of visual arts. Particularly, the sculpture is a three-dimensional form, while the textile design is a two-dimensional form of its visual appearance. The visual expression of each of them is embedded in the creative practice of the artist, which is easily understood and interpreted by the viewer. In this research, an attempt is made to explore and analyse sculptural forms adopted as a motif for wax print in textile design, aiming at breeding yet another pattern and motif suitable for various design uses. For instance, the dynamics of sculptural form adaptation into other areas of creativity, such as architecture, pictorial arts and pottery, as well as automobile bodies, is a discernible image everywhere. The research is studio exploratory, while a camera and descriptive analysis were used to process the data. Two sculptural forms were adopted from the Department of Fine and Applied Arts, Federal Capital Territory College of Education Zuba-Abuja, in this study due to the uniqueness of their technique of execution. The findings resulted in ten (10) paper designs showing the dexterity of studio practice in the development of design for various fashion and textile uses. However, the paper concludes that sculptural form is a source of inspiration for generating design concepts for a textile designer.Keywords: exploration, design, motifs, sculptural forms, wax print
Procedia PDF Downloads 705452 Red Green Blue Image Encryption Based on Paillier Cryptographic System
Authors: Mamadou I. Wade, Henry C. Ogworonjo, Madiha Gul, Mandoye Ndoye, Mohamed Chouikha, Wayne Patterson
Abstract:
In this paper, we present a novel application of the Paillier cryptographic system to the encryption of RGB (Red Green Blue) images. In this method, an RGB image is first separated into its constituent channel images, and the Paillier encryption function is applied to each of the channels pixel intensity values. Next, the encrypted image is combined and compressed if necessary before being transmitted through an unsecured communication channel. The transmitted image is subsequently recovered by a decryption process. We performed a series of security and performance analyses to the recovered images in order to verify their robustness to security attack. The results show that the proposed image encryption scheme produces highly secured encrypted images.Keywords: image encryption, Paillier cryptographic system, RBG image encryption, Paillier
Procedia PDF Downloads 2395451 An Object-Based Image Resizing Approach
Authors: Chin-Chen Chang, I-Ta Lee, Tsung-Ta Ke, Wen-Kai Tai
Abstract:
Common methods for resizing image size include scaling and cropping. However, these two approaches have some quality problems for reduced images. In this paper, we propose an image resizing algorithm by separating the main objects and the background. First, we extract two feature maps, namely, an enhanced visual saliency map and an improved gradient map from an input image. After that, we integrate these two feature maps to an importance map. Finally, we generate the target image using the importance map. The proposed approach can obtain desired results for a wide range of images.Keywords: energy map, visual saliency, gradient map, seam carving
Procedia PDF Downloads 4765450 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.Keywords: rough sets, rough neural networks, cellular automata, image processing
Procedia PDF Downloads 4405449 Calculation of Fractal Dimension and Its Relation to Some Morphometric Characteristics of Iranian Landforms
Authors: Mitra Saberi, Saeideh Fakhari, Amir Karam, Ali Ahmadabadi
Abstract:
Geomorphology is the scientific study of the characteristics of form and shape of the Earth's surface. The existence of types of landforms and their variation is mainly controlled by changes in the shape and position of land and topography. In fact, the interest and application of fractal issues in geomorphology is due to the fact that many geomorphic landforms have fractal structures and their formation and transformation can be explained by mathematical relations. The purpose of this study is to identify and analyze the fractal behavior of landforms of macro geomorphologic regions of Iran, as well as studying and analyzing topographic and landform characteristics based on fractal relationships. In this study, using the Iranian digital elevation model in the form of slopes, coefficients of deposition and alluvial fan, the fractal dimensions of the curves were calculated through the box counting method. The morphometric characteristics of the landforms and their fractal dimension were then calculated for 4criteria (height, slope, profile curvature and planimetric curvature) and indices (maximum, Average, standard deviation) using ArcMap software separately. After investigating their correlation with fractal dimension, two-way regression analysis was performed and the relationship between fractal dimension and morphometric characteristics of landforms was investigated. The results show that the fractal dimension in different pixels size of 30, 90 and 200m, topographic curves of different landform units of Iran including mountain, hill, plateau, plain of Iran, from1.06in alluvial fans to1.17in The mountains are different. Generally, for all pixels of different sizes, the fractal dimension is reduced from mountain to plain. The fractal dimension with the slope criterion and the standard deviation index has the highest correlation coefficient, with the curvature of the profile and the mean index has the lowest correlation coefficient, and as the pixels become larger, the correlation coefficient between the indices and the fractal dimension decreases.Keywords: box counting method, fractal dimension, geomorphology, Iran, landform
Procedia PDF Downloads 845448 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images
Authors: Elham Bagheri, Yalda Mohsenzadeh
Abstract:
Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception
Procedia PDF Downloads 925447 A Conceptual Model of Social Entrepreneurial Intention Based on the Social Cognitive Career Theory
Authors: Anh T. P. Tran, Harald Von Korflesch
Abstract:
Entrepreneurial intention play a major role in entrepreneurship academia and practice. The spectrum ranges from the first model of the so-called Entrepreneurial Event, then the Theory of Planned Behavior, the Theory of Planned Behavior Entrepreneurial Model, and the Social Cognitive Career Theory to some typical empirical studies with more or less diverse results. However, little is known so far about the intentions of entrepreneurs in the social areas of venture creation. It is surprising that, since social entrepreneurship is an emerging field with growing importance. Currently, all around the world, there is a big challenge with a lot of urgent soaring social and environmental problems such as poor households, people with disabilities, HIV/AIDS infected people, the lonely elderly, or neglected children, some of them even actual in the Western countries. In addition, the already existing literature on entrepreneurial intentions demonstrates a high level of theoretical diversity in general, especially the missing link to the social dimension of entrepreneurship. Seeking to fill the mentioned gaps in the social entrepreneurial intentions literature, this paper proposes a conceptual model of social entrepreneurial intentions based on the Social Cognitive Career Theory with two main factors influencing entrepreneurial intentions namely self-efficacy and outcome expectation. Moreover, motives, goals and plans do not arise from empty nothingness, but are shaped by interacting with the environment. Hence, personalities (i.e., agreeableness, conscientiousness, extraversion, neuroticism, openness) as well as contextual factors (e.g., role models, education, and perceived support) are also considered as the antecedents of social entrepreneurship intentions.Keywords: entrepreneurial intention, social cognitive career theory, social entrepreneurial intention, social entrepreneurship
Procedia PDF Downloads 4785446 Constant Dimension Codes via Generalized Coset Construction
Authors: Kanchan Singh, Sheo Kumar Singh
Abstract:
The fundamental problem of subspace coding is to explore the maximum possible cardinality Aq(n, d, k) of a set of k-dimensional subspaces of an n-dimensional vector space over Fq such that the subspace distance satisfies ds(W1, W2) ≥ d for any two distinct subspaces W1, W2 in this set. In this paper, we construct a new class of constant dimension codes (CDCs) by generalizing the coset construction and combining it with CDCs derived from parallel linkage construction and coset construction with an aim to improve the new lower bounds of Aq(n, d, k). We found a remarkable improvement in some of the lower bounds of Aq(n, d, k).Keywords: constant dimension codes, rank metric codes, coset construction, parallel linkage construction
Procedia PDF Downloads 245445 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image
Authors: Abdelkhalek Bakkari
Abstract:
Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image
Procedia PDF Downloads 4815444 A Survey on Types of Noises and De-Noising Techniques
Authors: Amandeep Kaur
Abstract:
Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.Keywords: de-noising techniques, edges, image, image processing
Procedia PDF Downloads 3365443 Detect Circles in Image: Using Statistical Image Analysis
Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee
Abstract:
The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.Keywords: image processing, median filter, projection, scale-space, segmentation, threshold
Procedia PDF Downloads 4335442 Prevalence of Cognitive Decline in Major Depressive Illness
Authors: U. B. Zubair, A. Kiyani
Abstract:
Introduction: Depressive illness predispose individuals to a lot of physical and mental health issues. Anxiety and substance use disorders have been studied widely as comorbidity. Biological symptoms also now considered part of the depressive spectrum. Cognitive abilities also decline or get affected and need to be looked into in detail in depressed patients. Objective: To determine the prevalence of cognitive decline among patients with major depressive illness and analyze the associated socio-demographic factors. Methods: 190 patients of major depressive illness were included in our study to determine the presence of cognitive decline among them. Depression was diagnosed by a consultant psychiatrist by using the ICD-10 criteria for major depressive disorder. British Columbia Cognitive Complaints Inventory (BC-CCI) was the psychometric tool used to determine the cognitive decline. Sociodemographic profile was recorded and the relationship of various factors with cognitive decline was also ascertained. Findings: 70% of the patients suffering from depression included in this study showed the presence of some degree of cognitive decline, while 30% did not show any evidence of cognitive decline when screened through BCCCI. Statistical testing revealed that the female gender was the only socio-demographic parameter linked significantly with the presence of cognitive decline. Conclusion: Decline in cognitive abilities was found in a significant number of patients suffering from major depression in our sample population. Screening for this parameter f mental function should be done in depression clinics to pick it early.Keywords: depression, cognitive decline, prevalence, socio-demographic factors
Procedia PDF Downloads 1455441 Effectiveness of Computer-Based Cognitive Training in Improving Attention-Deficit/Hyperactivity Disorder Rehabilitation
Authors: Marjan Ghazisaeedi, Azadeh Bashiri
Abstract:
Background: Attention-Deficit/Hyperactivity Disorder(ADHD), is one of the most common psychiatric disorders in early childhood that in addition to its main symptoms provide significant deficits in the areas of educational, social and individual relationship. Considering the importance of rehabilitation in ADHD patients to control these problems, this study investigated the advantages of computer-based cognitive training in these patients. Methods: This review article has been conducted by searching articles since 2005 in scientific databases and e-Journals and by using keywords including computerized cognitive rehabilitation, computer-based training and ADHD. Results: Since drugs have short term effects and also they have many side effects in the rehabilitation of ADHD patients, using supplementary methods such as computer-based cognitive training is one of the best solutions. This approach has quick feedback and also has no side effects. So, it provides promising results in cognitive rehabilitation of ADHD especially on the working memory and attention. Conclusion: Considering different cognitive dysfunctions in ADHD patients, application of the computerized cognitive training has the potential to improve cognitive functions and consequently social, academic and behavioral performances in patients with this disorder.Keywords: ADHD, computer-based cognitive training, cognitive functions, rehabilitation
Procedia PDF Downloads 2805440 Adaptive Dehazing Using Fusion Strategy
Authors: M. Ramesh Kanthan, S. Naga Nandini Sujatha
Abstract:
The goal of haze removal algorithms is to enhance and recover details of scene from foggy image. In enhancement the proposed method focus into two main categories: (i) image enhancement based on Adaptive contrast Histogram equalization, and (ii) image edge strengthened Gradient model. Many circumstances accurate haze removal algorithms are needed. The de-fog feature works through a complex algorithm which first determines the fog destiny of the scene, then analyses the obscured image before applying contrast and sharpness adjustments to the video in real-time to produce image the fusion strategy is driven by the intrinsic properties of the original image and is highly dependent on the choice of the inputs and the weights. Then the output haze free image has reconstructed using fusion methodology. In order to increase the accuracy, interpolation method has used in the output reconstruction. A promising retrieval performance is achieved especially in particular examples.Keywords: single image, fusion, dehazing, multi-scale fusion, per-pixel, weight map
Procedia PDF Downloads 4655439 Digital Image Steganography with Multilayer Security
Authors: Amar Partap Singh Pharwaha, Balkrishan Jindal
Abstract:
In this paper, a new method is developed for hiding image in a digital image with multilayer security. In the proposed method, the secret image is encrypted in the first instance using a flexible matrix based symmetric key to add first layer of security. Then another layer of security is added to the secret data by encrypting the ciphered data using Pythagorean Theorem method. The ciphered data bits (4 bits) produced after double encryption are then embedded within digital image in the spatial domain using Least Significant Bits (LSBs) substitution. To improve the image quality of the stego-image, an improved form of pixel adjustment process is proposed. To evaluate the effectiveness of the proposed method, image quality metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), entropy, correlation, mean value and Universal Image Quality Index (UIQI) are measured. It has been found experimentally that the proposed method provides higher security as well as robustness. In fact, the results of this study are quite promising.Keywords: Pythagorean theorem, pixel adjustment, ciphered data, image hiding, least significant bit, flexible matrix
Procedia PDF Downloads 3375438 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping
Authors: Adnan A. Y. Mustafa
Abstract:
In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.Keywords: big images, binary images, image matching, image similarity
Procedia PDF Downloads 1985437 Using of the Fractal Dimensions for the Analysis of Hyperkinetic Movements in the Parkinson's Disease
Authors: Sadegh Marzban, Mohamad Sobhan Sheikh Andalibi, Farnaz Ghassemi, Farzad Towhidkhah
Abstract:
Parkinson's disease (PD), which is characterized by the tremor at rest, rigidity, akinesia or bradykinesia and postural instability, affects the quality of life of involved individuals. The concept of a fractal is most often associated with irregular geometric objects that display self-similarity. Fractal dimension (FD) can be used to quantify the complexity and the self-similarity of an object such as tremor. In this work, we are aimed to propose a new method for evaluating hyperkinetic movements such as tremor, by using the FD and other correlated parameters in patients who are suffered from PD. In this study, we used 'the tremor data of Physionet'. The database consists of fourteen participants, diagnosed with PD including six patients with high amplitude tremor and eight patients with low amplitude. We tried to extract features from data, which can distinguish between patients before and after medication. We have selected fractal dimensions, including correlation dimension, box dimension, and information dimension. Lilliefors test has been used for normality test. Paired t-test or Wilcoxon signed rank test were also done to find differences between patients before and after medication, depending on whether the normality is detected or not. In addition, two-way ANOVA was used to investigate the possible association between the therapeutic effects and features extracted from the tremor. Just one of the extracted features showed significant differences between patients before and after medication. According to the results, correlation dimension was significantly different before and after the patient's medication (p=0.009). Also, two-way ANOVA demonstrates significant differences just in medication effect (p=0.033), and no significant differences were found between subject's differences (p=0.34) and interaction (p=0.97). The most striking result emerged from the data is that correlation dimension could quantify medication treatment based on tremor. This study has provided a technique to evaluate a non-linear measure for quantifying medication, nominally the correlation dimension. Furthermore, this study supports the idea that fractal dimension analysis yields additional information compared with conventional spectral measures in the detection of poor prognosis patients.Keywords: correlation dimension, non-linear measure, Parkinson’s disease, tremor
Procedia PDF Downloads 2445436 Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images
Authors: Enver Kucukkulahli, Pakize Erdogmus, Kemal Polat
Abstract:
The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software.Keywords: image segmentation, clustering, GUI, 2D MRI
Procedia PDF Downloads 3775435 Medical Image Compression Based on Region of Interest: A Review
Authors: Sudeepti Dayal, Neelesh Gupta
Abstract:
In terms of transmission, bigger the size of any image, longer the time the channel takes for transmission. It is understood that the bandwidth of the channel is fixed. Therefore, if the size of an image is reduced, a larger number of data or images can be transmitted over the channel. Compression is the technique used to reduce the size of an image. In terms of storage, compression reduces the file size which it occupies on the disk. Any image is based on two parameters, region of interest and non-region of interest. There are several algorithms of compression that compress the data more economically. In this paper we have reviewed region of interest and non-region of interest based compression techniques and the algorithms which compress the image most efficiently.Keywords: compression ratio, region of interest, DCT, DWT
Procedia PDF Downloads 3765434 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function
Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana
Abstract:
Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.Keywords: HSV space, histology, enhancement, image
Procedia PDF Downloads 3295433 An Efficient Encryption Scheme Using DWT and Arnold Transforms
Authors: Ali Abdrhman M. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The color image is decomposed into red, green, and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using a key image that has same original size and is generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours of color image recovery can be obtained with accepted level of distortion using Canny edge detector. Experiments have demonstrated that proposed algorithm can fully encrypt 2D color image and completely reconstructed without any distortion. It has shown that the color image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: color image, wavelet transform, edge detector, Arnold transform, lossy image encryption
Procedia PDF Downloads 486