Search results for: accelerated failure time model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31914

Search results for: accelerated failure time model

31824 A Failure Investigations of High-Temperature Hydrogen Attack at Plat Forming Unit Furnace Elbow

Authors: Altoumi Alndalusi

Abstract:

High-temperature hydrogen attack (HTHA) failure is the common phenomena at elevated temperature in hydrogen environment in oil and gas field. The failure occurred once after four years at the internal surface of Platforming elbow. Both visual and microscopic examinations revealed that the failure was initiated due to blistering forming followed by large cracking at the inner surface. Crack morphology showed that the crack depth was about 50% of material wall thickness and its behavior generally was intergranular. This study concluded that the main reason led to failure due to incorrect material selection comparing to the platforming conditions.

Keywords: decarburization, failure, heat affected zone, morphology, partial pressure, plate form

Procedia PDF Downloads 147
31823 Cyclic Evolution of a Two Fluid Diffusive Universe

Authors: Subhayan Maity

Abstract:

Complete scenario of cosmic evolution from emergent phase to late time acceleration (i.e. non-singular ever expanding Universe) is a popular preference in the recent cosmology. Yet one can’t exclude the idea that other type of evolution pattern of the Universe may also be possible. Especially, the bouncing scenario is becoming a matter of interest now a days. The present work is an exhibition of such a different pattern of cosmic evolution where the evolution of Universe has been shown as a cyclic thermodynamic process. Under diffusion mechanism (non-equilibrium thermodynamic process), the cosmic evolution has been modelled as [ emergent - accelerated expansion - decelerated expansion - decelerated contraction - accelerated contraction - emergent] .

Keywords: non-equilibrium thermodynamics, non singular evolution of universe, cyclic evolution, diffusive fluid

Procedia PDF Downloads 132
31822 Overview on the Failure in the Multiphase Mechanical Seal in Centrifugal Pumps

Authors: Aydin Azizi, Ahmed Al. Azizi

Abstract:

Mechanical seals are essential components in centrifugal pumps since they help in controlling leaking out of the liquid that is pumped under pressure. Unlike the common types of packaging, mechanical seals are highly efficient and they reduce leakage by a great extent. However, all multiphase mechanical seals leak and they are subject to failure. Some of the factors that have been recognized to their failure include excessive heating, open seal faces, as well as environment related factors that trigger failure of the materials used to manufacture seals. The proposed research study will explore the failure of multiphase mechanical seal in centrifugal pumps. The objective of the study includes how to reduce the failure in multiphase mechanical seals and to make them more efficient.

Keywords: mechanical seals, centrifugal pumps, multi phase failure, excessive heating

Procedia PDF Downloads 356
31821 A Discrete Element Method-Based Simulation of Toppling Failure Considering Block Interaction

Authors: Hooman Dabirmanesh, Attila M. Zsaki

Abstract:

The toppling failure mode in a rock mass is considerably different from the most common sliding failure type along an existing or an induced slip plane. Block toppling is observed in a rock mass which consists of both a widely-spaced basal cross-joint set and a closely-spaced discontinuity set dipping into the slope. For this case, failure occurs when the structure cannot bear the tensile portion of bending stress, and the columns or blocks overturn by their own weight. This paper presents a particle-based discrete element model of rock blocks subjected to a toppling failure where geometric conditions and interaction among blocks are investigated. A series of parametric studies have been conducted on particles’ size, arrangement and bond contact among of particles which are made the blocks. Firstly, a numerical investigation on a one-block system was verified. Afterward, a slope consisting of multi-blocks was developed to study toppling failure and interaction forces between blocks. The results show that the formation of blocks, especially between the block and basal plane surface, can change the process of failure. The results also demonstrate that the initial configuration of particles used to form the blocks has a significant role in achieving accurate simulation results. The size of particles and bond contacts have a considerable influence to change the progress of toppling failure.

Keywords: block toppling failure, contact interaction, discrete element, particle size, random generation

Procedia PDF Downloads 193
31820 A Modified Estimating Equations in Derivation of the Causal Effect on the Survival Time with Time-Varying Covariates

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

a systematic observation from a defined time of origin up to certain failure or censor is known as survival data. Survival analysis is a major area of interest in biostatistics and biomedical researches. At the heart of understanding, the most scientific and medical research inquiries lie for a causality analysis. Thus, the main concern of this study is to investigate the causal effect of treatment on survival time conditional to the possibly time-varying covariates. The theory of causality often differs from the simple association between the response variable and predictors. A causal estimation is a scientific concept to compare a pragmatic effect between two or more experimental arms. To evaluate an average treatment effect on survival outcome, the estimating equation was adjusted for time-varying covariates under the semi-parametric transformation models. The proposed model intuitively obtained the consistent estimators for unknown parameters and unspecified monotone transformation functions. In this article, the proposed method estimated an unbiased average causal effect of treatment on survival time of interest. The modified estimating equations of semiparametric transformation models have the advantage to include the time-varying effect in the model. Finally, the finite sample performance characteristics of the estimators proved through the simulation and Stanford heart transplant real data. To this end, the average effect of a treatment on survival time estimated after adjusting for biases raised due to the high correlation of the left-truncation and possibly time-varying covariates. The bias in covariates was restored, by estimating density function for left-truncation. Besides, to relax the independence assumption between failure time and truncation time, the model incorporated the left-truncation variable as a covariate. Moreover, the expectation-maximization (EM) algorithm iteratively obtained unknown parameters and unspecified monotone transformation functions. To summarize idea, the ratio of cumulative hazards functions between the treated and untreated experimental group has a sense of the average causal effect for the entire population.

Keywords: a modified estimation equation, causal effect, semiparametric transformation models, survival analysis, time-varying covariate

Procedia PDF Downloads 170
31819 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement

Authors: Fatema-Tuz-Zahura, Raquib Ahsan

Abstract:

Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.

Keywords: flat plate, finite element model, punching shear, reinforcement ratio

Procedia PDF Downloads 248
31818 A Study on the Calculation of Bearing Life of Electric Motor Using Accelerated Life Test

Authors: Youn-Hwan Kim, Hae-Joong Kim, Jae-Won Moon

Abstract:

This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out and it is compared with the bearing life expectancy by ISO 281.

Keywords: acceleration coefficient, bearing, HALT, life expectancy, motor

Procedia PDF Downloads 249
31817 Performance Analysis of LINUX Operating System Connected in LAN Using Gumbel-Hougaard Family Copula Distribution

Authors: V. V. Singh

Abstract:

In this paper we have focused on the study of a Linux operating system connected in a LAN (local area network). We have considered two different topologies STAR topology (subsystem-1) and BUS topology (subsystem-2) which are placed at two different places and connected to a server through a hub. In both topologies BUS topology and STAR topology, we have assumed 'n' clients. The system has two types of failure partial failure and complete failure. Further the partial failure has been categorized as minor partial failure and major partial failure. It is assumed that minor partial failure degrades the subsystem and the major partial failure brings the subsystem to break down mode. The system can completely failed due to failure of server hacking and blocking etc. The system is studied by supplementary variable technique and Laplace transform by taking different types of failure and two types of repairs. The various measures of reliability like availability of system, MTTF, profit function for different parametric values has been discussed.

Keywords: star topology, bus topology, hacking, blocking, linux operating system, Gumbel-Hougaard family copula, supplementary variable

Procedia PDF Downloads 566
31816 Determination of Anchor Lengths by Retaining Walls

Authors: Belabed Lazhar

Abstract:

The dimensioning of the anchored retaining screens passes always by the analysis of their stability. The calculation of anchoring lengths is practically carried out according to the mechanical model suggested by Kranz which is often criticized. The safety is evaluated through the comparison of interior force and external force. The force of anchoring over the length cut behind the failure solid is neglected. The failure surface cuts anchoring in the medium length of sealing. In this article, one proposes a new mechanical model which overcomes these disadvantages (simplifications) and gives interesting results.

Keywords: retaining walls, anchoring, stability, mechanical modeling, safety

Procedia PDF Downloads 346
31815 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 19
31814 Developing Fuzzy Logic Model for Reliability Estimation: Case Study

Authors: Soroor K. H. Al-Khafaji, Manal Mohammad Abed

Abstract:

The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation.

Keywords: fuzzy logic, reliability, repairable systems, FMEA

Procedia PDF Downloads 608
31813 GPU Accelerated Fractal Image Compression for Medical Imaging in Parallel Computing Platform

Authors: Md. Enamul Haque, Abdullah Al Kaisan, Mahmudur R. Saniat, Aminur Rahman

Abstract:

In this paper, we have implemented both sequential and parallel version of fractal image compression algorithms using CUDA (Compute Unified Device Architecture) programming model for parallelizing the program in Graphics Processing Unit for medical images, as they are highly similar within the image itself. There is several improvements in the implementation of the algorithm as well. Fractal image compression is based on the self similarity of an image, meaning an image having similarity in majority of the regions. We take this opportunity to implement the compression algorithm and monitor the effect of it using both parallel and sequential implementation. Fractal compression has the property of high compression rate and the dimensionless scheme. Compression scheme for fractal image is of two kinds, one is encoding and another is decoding. Encoding is very much computational expensive. On the other hand decoding is less computational. The application of fractal compression to medical images would allow obtaining much higher compression ratios. While the fractal magnification an inseparable feature of the fractal compression would be very useful in presenting the reconstructed image in a highly readable form. However, like all irreversible methods, the fractal compression is connected with the problem of information loss, which is especially troublesome in the medical imaging. A very time consuming encoding process, which can last even several hours, is another bothersome drawback of the fractal compression.

Keywords: accelerated GPU, CUDA, parallel computing, fractal image compression

Procedia PDF Downloads 326
31812 Reliability and Availability Analysis of Satellite Data Reception System using Reliability Modeling

Authors: Ch. Sridevi, S. P. Shailender Kumar, B. Gurudayal, A. Chalapathi Rao, K. Koteswara Rao, P. Srinivasulu

Abstract:

System reliability and system availability evaluation plays a crucial role in ensuring the seamless operation of complex satellite data reception system with consistent performance for longer periods. This paper presents a novel approach for the same using a case study on one of the antenna systems at satellite data reception ground station in India. The methodology involves analyzing system's components, their failure rates, system's architecture, generation of logical reliability block diagram model and estimating the reliability of the system using the component level mean time between failures considering exponential distribution to derive a baseline estimate of the system's reliability. The model is then validated with collected system level field failure data from the operational satellite data reception systems that includes failure occurred, failure time, criticality of the failure and repair times by using statistical techniques like median rank, regression and Weibull analysis to extract meaningful insights regarding failure patterns and practical reliability of the system and to assess the accuracy of the developed reliability model. The study mainly focused on identification of critical units within the system, which are prone to failures and have a significant impact on overall performance and brought out a reliability model of the identified critical unit. This model takes into account the interdependencies among system components and their impact on overall system reliability and provides valuable insights into the performance of the system to understand the Improvement or degradation of the system over a period of time and will be the vital input to arrive at the optimized design for future development. It also provides a plug and play framework to understand the effect on performance of the system in case of any up gradations or new designs of the unit. It helps in effective planning and formulating contingency plans to address potential system failures, ensuring the continuity of operations. Furthermore, to instill confidence in system users, the duration for which the system can operate continuously with the desired level of 3 sigma reliability was estimated that turned out to be a vital input to maintenance plan. System availability and station availability was also assessed by considering scenarios of clash and non-clash to determine the overall system performance and potential bottlenecks. Overall, this paper establishes a comprehensive methodology for reliability and availability analysis of complex satellite data reception systems. The results derived from this approach facilitate effective planning contingency measures, and provide users with confidence in system performance and enables decision-makers to make informed choices about system maintenance, upgrades and replacements. It also aids in identifying critical units and assessing system availability in various scenarios and helps in minimizing downtime and optimizing resource allocation.

Keywords: exponential distribution, reliability modeling, reliability block diagram, satellite data reception system, system availability, weibull analysis

Procedia PDF Downloads 78
31811 Testing Method of Soil Failure Pattern of Sand Type as an Effort to Minimize the Impact of the Earthquake

Authors: Luthfi Assholam Solamat

Abstract:

Nowadays many people do not know the soil failure pattern as an important part in planning the under structure caused by the loading occurs. This is because the soil is located under the foundation, so it cannot be seen directly. Based on this study, the idea occurs to do a study for testing the soil failure pattern, especially the type of sand soil under the foundation. The necessity of doing this to the design of building structures on the land which is the initial part of the foundation structure that met with waves/vibrations during an earthquake. If the underground structure is not strong it is feared the building thereon more vulnerable to the risk of building damage. This research focuses on the search of soil failure pattern, which the most applicable in the field with the loading periodic re-testing of a particular time with the help of the integrated video visual observations performed. The results could be useful for planning under the structure in an effort to try the upper structure is minimal risk of the earthquake.

Keywords: soil failure pattern, earthquake, under structure, sand soil testing method

Procedia PDF Downloads 350
31810 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model

Authors: Yoonjung An, Yongtae Park

Abstract:

Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.

Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow

Procedia PDF Downloads 324
31809 A Dam Break Analysis Using MIKE11

Authors: Oussama Derdous, Lakhdar Djemili, Hamza Bouchahed

Abstract:

The consequences of a dam breach can be devastating; both in terms of lives lost and damaged infrastructure and property. Hydraulic modeling provides a clear picture of the possible consequences of partial or complete failure of a dam, which is the key to carry out emergency planning and conduct reliable risk assessments. In this paper, the MIKE11 model developed by the Danish Hydrologic Institute (DHI) was used to simulate the flood wave propagation associated with a potential failure analysis failure of Zardezas dam located in the city of Skikda in the North East of Algeria. MIKE11 results including inundation maps and the representative channel/valley cross-sections depicting flow depth and maximal flow velocities showed that Zardezas reservoir presents a significant risk to downstream areas in the event of a dam failure. These results can be used as the basis of the development of an Emergency Action Plan (EAP).The main objective of this plan is to predict the appropriate steps to avoid or at least decrease the consequences of unexpected failure of Zardezas dam.

Keywords: MIKE11, dam break, inundation maps, emergency action plan

Procedia PDF Downloads 452
31808 Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device

Authors: Wen Liang Chang

Abstract:

In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples.

Keywords: second-hand device, preventive maintenance, replacement time, device failure

Procedia PDF Downloads 462
31807 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model

Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey

Abstract:

This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.

Keywords: air dispersion model, environmental management, SCADA systems, GIS system, integration power system

Procedia PDF Downloads 359
31806 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin

Authors: Mikhail O. Eremin

Abstract:

Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.

Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression

Procedia PDF Downloads 170
31805 A Study on the Application of Accelerated Life Test to Electric Motor for Machine Tools

Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim

Abstract:

This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out, and it is compared with the life expectancy by finite element method (FEM) and bearing theory.

Keywords: acceleration coefficient, bearing, HALT, life expectancy, motor

Procedia PDF Downloads 274
31804 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.

Keywords: DEA, super-efficiency, time lag, multi-periods input

Procedia PDF Downloads 464
31803 The Use of Degradation Measures to Design Reliability Test Plans

Authors: Stephen V. Crowder, Jonathan W. Lane

Abstract:

With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. In this work we present a case study involving an electronic component subject to degradation. The data, consisting of 42 degradation paths of cycles to failure, are first used to estimate a reliability function. Bootstrapping techniques are then used to perform power studies and develop a minimal reliability test plan for future production of this component.

Keywords: degradation measure, time to failure distribution, bootstrap, computational science

Procedia PDF Downloads 522
31802 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network

Authors: Ahmed O. Babaleye, Rafet E. Kurt

Abstract:

The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.

Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis

Procedia PDF Downloads 276
31801 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference

Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo

Abstract:

Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.

Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference

Procedia PDF Downloads 246
31800 Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile

Authors: M. Ezzat, Y. Zaghloul, T. Sorour, A. Hefny, M. Eid

Abstract:

Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter.

Keywords: ultimate capacity, large diameter bored piles, plastic zone, failure, pile load test

Procedia PDF Downloads 140
31799 Implantology Failure: Epidemiological Survey among Tunisian Dentists

Authors: Faten Khanfir, Mohamed Tlili, Ali Medeb Hamrouni, Raki Selmi, M. S. Khalfi, Faten Ben Amor

Abstract:

Introduction: dental implant failure is a major concern for the clinician and the patient. Objectives: The aim of our study is to investigate the way in which 100 Tunisian dentists carried implant treatment for their patients from the early phase of planning and selection of patients to the placement of the implant in order to look for the implant failure factors. Results: significant correlations were found between failure rates > 5 and their corresponding factors as the number of implants placed (p = 0.001<0, 05), smoking (0.046 <0.05), unbalanced diabetes (0.03<0.05), aseptic protocol (= 0.004< 0.05) and the drilling speed (0,002<0.05) Conclusion: It seems that the number of implant placed, smoking, diabetes, aseptic protocol, and the drilling speed may contribute to dental implant failure.

Keywords: failure, implants, survey, risk, osseointegration

Procedia PDF Downloads 175
31798 Effect of UV/Ozone Treatment on the Adhesion Strength of Polymeric Systems

Authors: Marouen Hamdi, Johannes A. Poulis

Abstract:

This study investigates the impact of UV/ozone treatment on the adhesion of ethylene propylene diene methylene (EPDM) rubber, polyvinyl chloride (PVC), and acrylonitrile butadiene styrene (ABS) materials. The experimental tests consist of contact angle measurements, standardized adhesion tests, and spectroscopic and microscopic observations. Also, commonly-used surface free energy models were applied to characterize the wettability of the materials. Preliminary results show that the treatment enhances the wettability of the examined polymers. Also, it considerably improved the adhesion strength of PVC and ABS and shifted their failure modes from adhesive to cohesive, without a significant effect on EPDM. Spectroscopic characterization showed significant oxidation-induced changes in the chemical structures of treated PVC and ABS surfaces. Also, new morphological changes (microcracks, micro-holes, and wrinkles) were observed on these two materials using the SEM. These chemical and morphological changes on treated PVC and ABS promote more reactivity and mechanical interlocking with the adhesive, which explains the improvement in their adhesion strength. After characterizing the adhesion strength of the systems, accelerated ageing tests in controlled environment chambers will be conducted to determine the effect of temperature, moisture, and UV radiation on the performance of the polymeric bonded joints.

Keywords: accelerated tests, adhesion strength, ageing of polymers, UV/ozone treatment

Procedia PDF Downloads 145
31797 Study on Water Level Management Criteria of Reservoir Failure Alert System

Authors: B. Lee, B. H. Choi

Abstract:

The loss of safety for reservoirs brought about by climate change and facility aging leads to reservoir failures, which results in the loss of lives and property damage in downstream areas. Therefore, it is necessary to provide a reservoir failure alert system for downstream residents to detect the early signs of failure (with sensors) in real-time and perform safety management to prevent and minimize possible damage. 10 case studies were carried out to verify the water level management criteria of four levels (attention, caution, alert, serious). Peak changes in water level data were analysed. The results showed that ‘Caution’ and ‘Alert’ were closed to 33% and 66% of difference in level between flood water level and full water level. Therefore, it is adequate to use initial water level management criteria of reservoir failure alert system for the first year. Acknowledgment: This research was supported by a grant (2017-MPSS31-002) from 'Supporting Technology Development Program for Disaster Management' funded by the Ministry of the Interior and Safety(MOIS)

Keywords: alert system, management criteria, reservoir failure, sensor

Procedia PDF Downloads 195
31796 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model

Procedia PDF Downloads 451
31795 Improving Part-Time Instructors’ Academic Outcomes with Gamification

Authors: Jared R. Chapman

Abstract:

This study introduces a type of motivational information system called an educational engagement information system (EEIS). An EEIS draws on principles of behavioral economics, motivation theory, and learning cognition theory to design information systems that help students want to improve their performance. This study compares academic outcomes for course sections taught by part- and full-time instructors both with and without an EEIS. Without an EEIS, students in the part-time instructor's course sections demonstrated significantly higher failure rates (a 143.8% increase) and dropout rates (a 110.4% increase) with significantly fewer students scoring a B- or higher (39.8% decrease) when compared to students in the course sections taught by a full-time instructor. It is concerning that students in the part-time instructor’s course without an EEIS had significantly lower academic outcomes, suggesting less understanding of the course content. This could impact retention and continuation in a major. With an EEIS, when comparing part- and full-time instructors, there was no significant difference in failure and dropout rates or in the number of students scoring a B- or higher in the course. In fact, with an EEIS, the failure and dropout rates were statistically identical for part- and full-time instructor courses. When using an EEIS (compared with not using an EEIS), the part-time instructor showed a 62.1% decrease in failures, a 61.4% decrease in dropouts, and a 41.7% increase in the number of students scoring a B- or higher in the course. We are unaware of other interventions that yield such large improvements in academic performance. This suggests that using an EEIS such as Delphinium may compensate for part-time instructors’ limitations of expertise, time, or rewards that can have a negative impact on students’ academic outcomes. The EEIS had only a minimal impact on failure rates (7.7% decrease) and dropout rates (18.8% decrease) for the full-time instructor. This suggests there is a ceiling effect for the improvements that an EEIS can make in student performance. This may be because experienced instructors are already doing the kinds of things that an EEIS does, such as motivating students, tracking grades, and providing feedback about progress. Additionally, full-time instructors have more time to dedicate to students outside of class than part-time instructors and more rewards for doing so. Using adjunct and other types of part-time instructors will likely remain a prevalent practice in higher education management courses. Given that using part-time instructors can have a negative impact on student graduation and persistence in a field of study, it is important to identify ways we can augment part-time instructors’ performance. We demonstrated that when part-time instructors use an EEIS, it can result in significantly lower students’ failure and dropout rates and an increase in the rate of students earning a B- or above; and bring their students’ performance to parity with the performance of students taught by a full-time instructor.

Keywords: gamification, engagement, motivation, academic outcomes

Procedia PDF Downloads 63