Search results for: Chat Generative Pre-training Transformer-3
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 255

Search results for: Chat Generative Pre-training Transformer-3

165 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 132
164 Petroleum Generative Potential of Eocene-Paleocene Sequences of Potwar Basin, Pakistan

Authors: Syed Bilawal Ali Shah

Abstract:

The investigation of the hydrocarbon source rock potential of Eocene-Paleocene formations of Potwar Basin, part of Upper Indus Basin Pakistan, was done using geochemical and petrological techniques. Analysis was performed on forty-five core-cutting samples from two wells. The sequences analysed are Sakesar, Lockhart and Patala formations of Potwar Basin. Patala Formation is one of Potwar Basin's major petroleum-bearing source rocks. The Lockhart Formation samples VR (%Ro) and Tmax data indicate that the formation is early mature to immature for petroleum generation for hydrocarbon generation; samples from the Patala and Sakesar formations, however, have a peak oil generation window and an early maturity (oil window). With 3.37 weight percent mean TOC and HI levels up to 498 mg HC/g TOC, the source rock characteristics of the Sakesar and Patala formations generally exhibit good to very strong petroleum generative potential. The majority of sediments representing Lockhart Formation have 1.5 wt.% mean TOC having fair to good potential with HI values ranging between 203-498 mg HC/g TOC. 1. The analysed sediments of all formations possess primarily mixed Type II/III and Type III kerogen. Analysed sediments indicate that both the Sakesar and Patala formations can possess good oil-generation potential and may act as an oil source rock in the Potwar Basin.

Keywords: Potwar Basin, Patala Shale, Rock-Eval pyrolysis, Indus Basin, VR %Ro

Procedia PDF Downloads 92
163 Development of NO-Ergic Synaptic Transmission in Sympathetic Neurons of Mammals: Immunohistochemical Study

Authors: Konstantin Yu. Moiseev, Antonina F. Budnik, Andrey I. Emanuilov, Petr M. Masliukov

Abstract:

The vast majority of sympathetic ganglionic neurons are catecholaminergic. Some sympathetic neurons lack catecholamines and mostly use acetylcholine as their main neurotransmitter. Some cholinergic postganglionic neurons also express neuronal nitric oxide synthase (nNOS). Preganglionic sympathetic neurons are cholinergic and most of them are also nNOS-immunoreactive (IR). The purpose of this study was to gain further insight into the neuroplasticity of sympathetic neurons during postnatal ontogenesis by comparing the development of pre- and postganglionic neurons expressing nNOS in different mammals. nNOS was investigated by immunohistochemistry in the sympathetic superior cervical ganglion (SCG), stellate ganglion (SG), celiac ganglion (CG) and spinal cord from rats, mice and cats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old and 2-year-old). In rats and mice, nNOS-positive neurons were not found in sympathetic ganglia from birth onwards. In cats, non-catecholaminergic nNOS-IR sympathetic ganglionic neurons are present from the moment of birth. In all studied age groups, substantial populations of nNOS-IR cells (up to 8.3%) was found in the SG, with a much smaller population found in the SCG (<1%) and only few cells observed in the CG. The percentage of nNOS-IR neurons in the CG and SCG did not significantly change during development. The proportion of nNOS-IR neuron profiles in the SG increased in first 20 days of life from 2.3±0.15% to 8.3±0.56%. In the SG, percentages of nNOS-IR sympathetic neurons colocalizing vasoactive intestinal peptide increased in the first 20 days of life. Choline acetyltransferase (ChAT)-IR and calcitonin gene-related peptide-IR neurons were not observed in the sympathetic ganglia of newborn animals and did not appear until 10 days after birth. In the SG of newborn and 10-day-old kittens, the majority of NOS-IR neurons were calbindin (CB)-IR, whereas in the SCG and CG of cats of all age groups and in the SG of 30-day-old and older kittens, the vast majority of NOS-IR neurons lacked CB. In newborn mammals, the most of sympathetic preganglionic neurons in the nucleus intermediolateralis thoracolumbalis pars principalis (nucl.ILp) were nNOS-IR. The percentage of nNOS-IR neurons decreased and the same parameter of ChAT-IR neurons increased during the development. We conclude that the development of nNOS-IR preganglionic and ganglionic sympathetic neurons in different mammals has time and species differences.

Keywords: sympathetic neuron, nitric oxide synthase, immunohistochemistry, development

Procedia PDF Downloads 225
162 A Study on the Application of Generative AI Tools for Chinese Writing Feedback in Non-Fiction Writing Instruction

Authors: Stephanie Liu Lu

Abstract:

The course "University Chinese," an essential component of the curriculum in Hong Kong's higher education institutions, plays a crucial role in enhancing students' creative expression, narrative construction, argumentative prowess, and literary skills through its focus on non-fiction writing. Despite its significance, the comprehensive syllabus, coupled with limited classroom time, often restricts adequate practice opportunities and leads to delayed feedback, negatively impacting students' preparation for assessments. This paper investigates the potential of generative artificial intelligence (AI) tools, such as ChatGPT and POE, to provide personalized and immediate feedback for writing tasks. The primary goal of this research is to evaluate student receptiveness to AI-generated feedback and compare it to traditional feedback provided solely by human instructors. To achieve this, participants will be systematically divided into two groups: one receiving feedback from both instructors and AI tools, and a control group that receives feedback exclusively from instructors. The study will thoroughly analyze the revisions made to texts after receiving feedback, focusing particularly on enhancements in the quality of content and language proficiency across three dimensions: content/theme, language, and structural logic. This investigation aims to determine whether AI tools can enhance the efficiency of teaching practices, encourage autonomous learning, and significantly improve the overall quality of students' written work.

Keywords: AI-generated feedback, Chinese writing, non-fiction writing, student receptiveness

Procedia PDF Downloads 8
161 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 46
160 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 51
159 Optimizing the Residential Design Process Using Automated Technologies

Authors: Milena Nanova, Martin Georgiev, Damyan Damov

Abstract:

Modern residential architecture is increasingly influenced by rapid urbanization, technological advancements, and growing investor expectations. The integration of AI and digital tools such as CAD and BIM (Building Information Modelling) is transforming the design process by improving efficiency, accuracy, and speed. However, urban development faces challenges, including the high competition for viable sites and the time-consuming nature of traditional investment feasibility studies and architectural planning. Finding and analyzing suitable sites for residential development is complicated by intense competition and rising investor demands. Investors require quick assessments of property potential to avoid missing opportunities, while traditional architectural design processes rely on the experience of the team and can be time-consuming, adding pressure to make fast, effective decisions. The widespread use of CAD tools has sped up the drafting process, enhancing both accuracy and efficiency. Digital tools allow designers to manipulate drawings quickly, reducing the time spent on revisions. BIM further advances this by enabling native 3D modelling, where changes to a design in one view are automatically reflected in all others, minimizing errors and saving time. AI is becoming an integral part of architectural design software. While AI is currently being incorporated into existing programs like AutoCAD, Revit, and ArchiCAD, its full potential is reached in parametric modelling. In this process, designers define parameters (e.g., building size, layout, and materials), and the software generates multiple design variations based on those inputs. This method accelerates the design process by automating decisions and enabling the quick generation of alternative solutions. The study utilizes generative design, a specific application of parametric modelling that uses Machine Learning (ML) to explore a wide range of design possibilities based on predefined criteria. It optimizes designs through iterations, testing many variations to find the best solutions. This process is particularly beneficial in the early stages of design, where multiple options are explored before refining the best ones. ML’s ability to handle complex mathematical tasks allows it to generate unconventional yet effective designs that a human designer might overlook. Residential architecture, with its anticipated and typical layouts and modular nature, is especially suitable for generative design. The relationships between rooms and the overall organization of apartment units follow logical patterns, making it an ideal candidate for parametric modelling. Using these tools, architects can quickly explore various apartment configurations, considering factors like apartment sizes, types, and circulation patterns, and identify the most efficient layout for a given site. Parametric modelling and generative design offer significant benefits to residential architecture by streamlining the design process, enabling faster decision-making, and optimizing building layouts. These technologies allow architects and developers to analyze numerous design possibilities, improving outcomes while responding to the challenges of urban development. By integrating ML-driven generative design, the architecture industry can enhance creativity, efficiency, and adaptability in residential projects.

Keywords: architectural design, generative design, parametric models, residential buildings, workflow optimization

Procedia PDF Downloads 11
158 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks

Procedia PDF Downloads 290
157 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 74
156 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector

Authors: Aron Witkowski, Andrzej Wodecki

Abstract:

Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.

Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing

Procedia PDF Downloads 53
155 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 31
154 Mindset Change: Unlocking the Potential for Community-Based Rural Development in Uganda

Authors: Daisy Owomugasho Ndikuno

Abstract:

The paper explores the extent to which mindset change has been critical in the community rural development in Uganda. It is descriptive research with The Parish Development Model as a case study. The results show that rural community development is possible and its success largely depends on harnessing local resources and knowledge; leveraging education, empowerment and awareness; creating sustainable livelihoods and encouraging entrepreneurship and innovation; access to financial resources; and building collaborative networks and partnerships. In all these, the role of mindset change is critical. By instilling a positive, collaborative and innovative mindset, rural communities can overcome challenges and chat a path towards sustainable development.

Keywords: community, development, mindset, change

Procedia PDF Downloads 104
153 Automatic Near-Infrared Image Colorization Using Synthetic Images

Authors: Yoganathan Karthik, Guhanathan Poravi

Abstract:

Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.

Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data

Procedia PDF Downloads 47
152 Money as Motivation Amongst Industrial Sales People in Nigeria

Authors: Mahmoud Rufai Mahmoud

Abstract:

A look at existing literature on sales force motivation reveals lack of consensus on the role monetary rewards play in motivating salespeople. In view of the apparent contradiction inherent in the literature, it follows perhaps, chat sales managers are faced with the dilemma of what role to assign to monetary incentives in the scheme of motivating salespeople. This study investigated the perception of industrial salespeople on the role of money as a motivator. The result shows that salespeople believe that money is an important motivator whose power of motivation is influenced by a complex function of economic, social and psychological variables. Based on the findings, if is recommended that managers need different types of rewards to achieve a given level of motivation.  

Keywords: motivation, salespeople, money, Nigeria

Procedia PDF Downloads 354
151 Generative Design Method for Cooled Additively Manufactured Gas Turbine Parts

Authors: Thomas Wimmer, Bernhard Weigand

Abstract:

The improvement of gas turbine efficiency is one of the main drivers of research and development in the gas turbine market. This has led to elevated gas turbine inlet temperatures beyond the melting point of the utilized materials. The turbine parts need to be actively cooled in order to withstand these harsh environments. However, the usage of compressor air as coolant decreases the overall gas turbine efficiency. Thus, coolant consumption needs to be minimized in order to gain the maximum advantage from higher turbine inlet temperatures. Therefore, sophisticated cooling designs for gas turbine parts aim to minimize coolant mass flow. New design space is accessible as additive manufacturing is maturing to industrial usage for the creation of hot gas flow path parts. By making use of this technology more efficient cooling schemes can be manufacture. In order to find such cooling schemes a generative design method is being developed. It generates cooling schemes randomly which adhere to a set of rules. These assure the sanity of the design. A huge amount of different cooling schemes are generated and implemented in a simulation environment where it is validated. Criteria for the fitness of the cooling schemes are coolant mass flow, maximum temperature and temperature gradients. This way the whole design space is sampled and a Pareto optimum front can be identified. This approach is applied to a flat plate, which resembles a simplified section of a hot gas flow path part. Realistic boundary conditions are applied and thermal barrier coating is accounted for in the simulation environment. The resulting cooling schemes are presented and compared to representative conventional cooling schemes. Further development of this method can give access to cooling schemes with an even better performance having higher complexity, which makes use of the available design space.

Keywords: additive manufacturing, cooling, gas turbine, heat transfer, heat transfer design, optimization

Procedia PDF Downloads 354
150 3D Modeling Approach for Cultural Heritage Structures: The Case of Virgin of Loreto Chapel in Cusco, Peru

Authors: Rony Reátegui, Cesar Chácara, Benjamin Castañeda, Rafael Aguilar

Abstract:

Nowadays, heritage building information modeling (HBIM) is considered an efficient tool to represent and manage information of cultural heritage (CH). The basis of this tool relies on a 3D model generally obtained from a cloud-to-BIM procedure. There are different methods to create an HBIM model that goes from manual modeling based on the point cloud to the automatic detection of shapes and the creation of objects. The selection of these methods depends on the desired level of development (LOD), level of information (LOI), grade of generation (GOG), as well as on the availability of commercial software. This paper presents the 3D modeling of a stone masonry chapel using Recap Pro, Revit, and Dynamo interface following a three-step methodology. The first step consists of the manual modeling of simple structural (e.g., regular walls, columns, floors, wall openings, etc.) and architectural (e.g., cornices, moldings, and other minor details) elements using the point cloud as reference. Then, Dynamo is used for generative modeling of complex structural elements such as vaults, infills, and domes. Finally, semantic information (e.g., materials, typology, state of conservation, etc.) and pathologies are added within the HBIM model as text parameters and generic models families, respectively. The application of this methodology allows the documentation of CH following a relatively simple to apply process that ensures adequate LOD, LOI, and GOG levels. In addition, the easy implementation of the method as well as the fact of using only one BIM software with its respective plugin for the scan-to-BIM modeling process means that this methodology can be adopted by a larger number of users with intermediate knowledge and limited resources since the BIM software used has a free student license.

Keywords: cloud-to-BIM, cultural heritage, generative modeling, HBIM, parametric modeling, Revit

Procedia PDF Downloads 147
149 ​​An Overview and Analysis of ChatGPT 3.5/4.0​

Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas

Abstract:

This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.

Keywords: artificial intelligence, chat GPT, analysis, education

Procedia PDF Downloads 54
148 Variational Explanation Generator: Generating Explanation for Natural Language Inference Using Variational Auto-Encoder

Authors: Zhen Cheng, Xinyu Dai, Shujian Huang, Jiajun Chen

Abstract:

Recently, explanatory natural language inference has attracted much attention for the interpretability of logic relationship prediction, which is also known as explanation generation for Natural Language Inference (NLI). Existing explanation generators based on discriminative Encoder-Decoder architecture have achieved noticeable results. However, we find that these discriminative generators usually generate explanations with correct evidence but incorrect logic semantic. It is due to that logic information is implicitly encoded in the premise-hypothesis pairs and difficult to model. Actually, logic information identically exists between premise-hypothesis pair and explanation. And it is easy to extract logic information that is explicitly contained in the target explanation. Hence we assume that there exists a latent space of logic information while generating explanations. Specifically, we propose a generative model called Variational Explanation Generator (VariationalEG) with a latent variable to model this space. Training with the guide of explicit logic information in target explanations, latent variable in VariationalEG could capture the implicit logic information in premise-hypothesis pairs effectively. Additionally, to tackle the problem of posterior collapse while training VariaztionalEG, we propose a simple yet effective approach called Logic Supervision on the latent variable to force it to encode logic information. Experiments on explanation generation benchmark—explanation-Stanford Natural Language Inference (e-SNLI) demonstrate that the proposed VariationalEG achieves significant improvement compared to previous studies and yields a state-of-the-art result. Furthermore, we perform the analysis of generated explanations to demonstrate the effect of the latent variable.

Keywords: natural language inference, explanation generation, variational auto-encoder, generative model

Procedia PDF Downloads 152
147 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 90
146 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks

Authors: Muneeb Ullah, Daishihan, Xiadong Young

Abstract:

Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.

Keywords: classification, deep learning, medical images, CXR, GAN.

Procedia PDF Downloads 102
145 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 81
144 An EWMA P-Chart Based on Improved Square Root Transformation

Authors: Saowanit Sukparungsee

Abstract:

Generally, the traditional Shewhart p chart has been developed by for charting the binomial data. This chart has been developed using the normal approximation with condition as low defect level and the small to moderate sample size. In real applications, however, are away from these assumptions due to skewness in the exact distribution. In this paper, a modified Exponentially Weighted Moving Average (EWMA) control chat for detecting a change in binomial data by improving square root transformations, namely ISRT p EWMA control chart. The numerical results show that ISRT p EWMA chart is superior to ISRT p chart for small to moderate shifts, otherwise, the latter is better for large shifts.

Keywords: number of defects, exponentially weighted moving average, average run length, square root transformations

Procedia PDF Downloads 443
143 Communicative Competence versus Language Proficiency

Authors: Pouya Vakili

Abstract:

The aim of present paper is to have a rough comparison between language proficiency and communicative competence, moreover, how different scholars in the field of second language acquisition/assessment have defined competence in different paradigms. Researchers differ, however, in how they view 'competence'. Those who are dealing with generative tradition associated with Chomsky have defined it as linguistic competence (knowledge of the grammar of L2). Other researchers have adopted a broader perspective that is examining how learners acquire communicative competence (knowledge of both the L2 grammar and of how this system is put to use in actual communication).

Keywords: communicative competence, competence, language proficiency, linguistic competence

Procedia PDF Downloads 494
142 Comparative between Different Methodological Procedures Used to Obtain Information on the First Lexical Development in Bilingual Basque-Spanish Children

Authors: Asier Romero Andonegi, Irati De Pablo Delgado

Abstract:

The objective of this study is to explore the different methodological procedures that are used to obtain information on the early linguistic development of children. To this end, two different methodological procedures were carried out on the same sample: on the one hand, the MacArthur-Bates Communicative Development Inventories, in its adaptations in Spanish and Basque; and on the other hand, longitudinal observation through professional software: ELAN and CHAT. The sample consists of 8 Basque children/ages 16 to 30 months with different mother tongue (L1). The results show the usefulness of inventories in obtaining information on the development of early communication and language skills, but also their limitations mostly focused on the interpretive overvaluation of their children’s lexical development.

Keywords: early language development, language evaluation, lexicon, MacArthur-Bates communicative development inventories

Procedia PDF Downloads 159
141 Autism Screening Questionnaire for Daycare Attendees

Authors: David Alejandro Torres-Lopez , Lilia Albores-Gallo, Ronald Soto-Calderon, Roberto Lagunes-Cordoba

Abstract:

Autism Screening Questionnaire for Daycare Attendees (ASQ-DAT) is a screening instrument that assesses the risk of autism in children between 12 and 47 months, being the first free observational instrument created according to the criteria of the DSM-5 that can be applied by teachers in nurseries. The people in charge of answering the questionnaires are the daycare assistants. Its application presents a series of previous activities with which daycare assistants are familiar (dance, games, oral narration and breakfast), which are executed with the children and then answer a questionnaire with dichotomous questions "Yes/No" in approximately 3 minutes per child. The instrument was developed with the participation of nurseries according to the protocols of the creation of psychometric instruments of the Classical Test Theory having as a gold standard ADOS-2 Modules T and 1. The results of the investigation show that the use of ASQ-DAT combined with the application of M-CHAT / RF provides more information about the risk of ASD in young children, which allows improvements in the screening.

Keywords: diagnosis, screening, autism, daycare

Procedia PDF Downloads 223
140 Testing Chat-GPT: An AI Application

Authors: Jana Ismail, Layla Fallatah, Maha Alshmaisi

Abstract:

ChatGPT, a cutting-edge language model built on the GPT-3.5 architecture, has garnered attention for its profound natural language processing capabilities, holding promise for transformative applications in customer service and content creation. This study delves into ChatGPT's architecture, aiming to comprehensively understand its strengths and potential limitations. Through systematic experiments across diverse domains, such as general knowledge and creative writing, we evaluated the model's coherence, context retention, and task-specific accuracy. While ChatGPT excels in generating human-like responses and demonstrates adaptability, occasional inaccuracies and sensitivity to input phrasing were observed. The study emphasizes the impact of prompt design on output quality, providing valuable insights for the nuanced deployment of ChatGPT in conversational AI and contributing to the ongoing discourse on the evolving landscape of natural language processing in artificial intelligence.

Keywords: artificial Inelegance, chatGPT, open AI, NLP

Procedia PDF Downloads 80
139 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization

Procedia PDF Downloads 160
138 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 144
137 Grammatically Coded Corpus of Spoken Lithuanian: Methodology and Development

Authors: L. Kamandulytė-Merfeldienė

Abstract:

The paper deals with the main issues of methodology of the Corpus of Spoken Lithuanian which was started to be developed in 2006. At present, the corpus consists of 300,000 grammatically annotated word forms. The creation of the corpus consists of three main stages: collecting the data, the transcription of the recorded data, and the grammatical annotation. Collecting the data was based on the principles of balance and naturality. The recorded speech was transcribed according to the CHAT requirements of CHILDES. The transcripts were double-checked and annotated grammatically using CHILDES. The development of the Corpus of Spoken Lithuanian has led to the constant increase in studies on spontaneous communication, and various papers have dealt with a distribution of parts of speech, use of different grammatical forms, variation of inflectional paradigms, distribution of fillers, syntactic functions of adjectives, the mean length of utterances.

Keywords: CHILDES, corpus of spoken Lithuanian, grammatical annotation, grammatical disambiguation, lexicon, Lithuanian

Procedia PDF Downloads 238
136 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 100