Search results for: coastal engineering and management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12288

Search results for: coastal engineering and management

378 Developing Customizable Scaffolds With Antimicrobial Properties for Vascular Tissue Regeneration Using Low Temperature Plasma

Authors: Komal Vig, Syamala Soumyakrishnan, Yadav Baral

Abstract:

Bypass surgery, using the autologous vein has been one of the most effective treatments for cardiovascular diseases (CVD). More recently tissue engineering including engineered vascular grafts to synthesize blood vessels is gaining usage. Dacron and ePTFE has been employed for vascular grafts, however, these does not work well for small diameter grafts (<6 mm) due to intimal hyperplasia and thrombosis. In the present study PTFE was treated with LTP to improve the endothelialization of intimal surface of graft. Scaffolds were also modified with polyvinylpyrrolidone coated silver nanoparticles (Ag-PVP) and the antimicrobial peptides, p753 and p359. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds and cell proliferation was determined by the MTT assay. Cells attachment on scaffolds was visualized by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). X ray photoelectron spectroscopic confirmed the introduction of oxygenated functionalities from LTP air plasma. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. The KB test displayed a zone of inhibition for Ag-PVP, p753 and p359 of 19mm, 14mm, and 12mm respectively. To determine toxicity of antimicrobial agents to cells, MTT Assay was performed using HEK293 cells. MTT Assay exhibited that Ag-PVP and the peptides were non-toxic to cells at 100μg/mL and 50μg/mL, respectively. Live/dead analysis and plate count of treated bacteria exhibited bacterial inhibition on develop scaffold compared to non-treated scaffold. SEM was performed to analyze the structural changes of bacteria after treatment with antimicrobial agents. Gene expression studies were conducted on RNA from bacteria treated with Ag-PVP and peptides using qRT-PCR. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies.

Keywords: low temperature plasma, vascular graft, HUVEC cells, antimicrobial

Procedia PDF Downloads 215
377 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 76
376 Study of the Design and Simulation Work for an Artificial Heart

Authors: Mohammed Eltayeb Salih Elamin

Abstract:

This study discusses the concept of the artificial heart using engineering concepts, of the fluid mechanics and the characteristics of the non-Newtonian fluid. For the purpose to serve heart patients and improve aspects of their lives and since the Statistics review according to world health organization (WHO) says that heart disease and blood vessels are the first cause of death in the world. Statistics shows that 30% of the death cases in the world by the heart disease, so simply we can consider it as the number one leading cause of death in the entire world is heart failure. And since the heart implantation become a very difficult and not always available, the idea of the artificial heart become very essential. So it’s important that we participate in the developing this idea by searching and finding the weakness point in the earlier designs and hoping for improving it for the best of humanity. In this study a pump was designed in order to pump blood to the human body and taking into account all the factors that allows it to replace the human heart, in order to work at the same characteristics and the efficiency of the human heart. The pump was designed on the idea of the diaphragm pump. Three models of blood obtained from the blood real characteristics and all of these models were simulated in order to study the effect of the pumping work on the fluid. After that, we study the properties of this pump by using Ansys15 software to simulate blood flow inside the pump and the amount of stress that it will go under. The 3D geometries modeling was done using SOLID WORKS and the geometries then imported to Ansys design modeler which is used during the pre-processing procedure. The solver used throughout the study is Ansys FLUENT. This is a tool used to analysis the fluid flow troubles and the general well-known term used for this branch of science is known as Computational Fluid Dynamics (CFD). Basically, Design Modeler used during the pre-processing procedure which is a crucial step before the start of the fluid flow problem. Some of the key operations are the geometry creations which specify the domain of the fluid flow problem. Next is mesh generation which means discretization of the domain to solve governing equations at each cell and later, specify the boundary zones to apply boundary conditions for the problem. Finally, the pre–processed work will be saved at the Ansys workbench for future work continuation.

Keywords: Artificial heart, computational fluid dynamic heart chamber, design, pump

Procedia PDF Downloads 438
375 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 30
374 Microbiological Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State

Authors: Anyimc, C. J. Aneke, J. O. Orji, O. Nworie, U. C. C. Egbule

Abstract:

The microbial examination and antimicrobial susceptibility profile of microorganism isolated from the salt mining site in Ebonyi state were evaluated in the present study using a standard microbiological technique. A total of 300 samples were randomly collected in three sample groups (A, B, and C) of 100 each. Isolation, Identification and characterization of organization present on the soil samples were determined by culturing, gram-staining and biochemical technique. The result showed the following organisms were isolated with their frequency as follow: Bacillus species (37.3%) and Staphylococcus species(23.5%) had the highest frequency in the whole Sample group A and B while Klebsiella specie (15.7%), Pseudomonas species(13.7%), and Erwinia species (9.8%) had the least. Rhizopus species (42.0%) and Aspergillus species (26.0%) were the highest fungi isolated, followed by Penicillum species (20.0%) while Mucor species (4.0%), and Fusarium species (8.0%) recorded the least. Sample group C showed high microbial population of all the microbial isolates when compared to sample group A and B. Disc diffusion method was used to determine the susceptibility of isolated bacteria to various antibiotics (oxfloxacin, pefloxacin, ciprorex, augumentin, gentamycin, ciproflox, septrin, ampicillin), while agar well diffusion method was used to determine the susceptibility of isolated fungi to some antifungal drugs (metronidazole, ketoconazole, itraconazole fluconazole). The antibacterial activity of the antibiotics used showed that ciproflux has the best inhibitory effect on all the test bacteria. Ketoconazole showed the highest inhibitory effect on the fungal isolates, followed by itraconazole, while metronidazole and fluconazole showed the least inhibitory effect on the entire test fungal isolates. Hence, the multiple drug resistance of most isolates to appropriate drugs of choice are of great public health concern and cells for periodic monitoring of antibiograms to detect possible changing patterns. Microbes isolated in the salt mining site can also be used as a source of gene(s) that can increase salt tolerance in different crop species through genetic engineering.

Keywords: microorganisms, antibacterial, antifungal, resistance, salt mining site, Ebonyi State

Procedia PDF Downloads 279
373 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 478
372 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology

Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi

Abstract:

The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.

Keywords: emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method

Procedia PDF Downloads 232
371 Streamwise Vorticity in the Wake of a Sliding Bubble

Authors: R. O’Reilly Meehan, D. B. Murray

Abstract:

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Keywords: bubbly flow, particle image velocimetry, two-phase flow, wake structures

Procedia PDF Downloads 359
370 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature

Authors: B. Vinod, L. Jsudev

Abstract:

Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 320
369 Operations Training Using Immersive Technologies: A Development Experience

Authors: A. Aman, S. M. Tang, F. H. Alharrassy

Abstract:

Omanisation was established to increase job opportunities for national employment in Sultanate of Oman. With half of the population below 25 years of age, the sultanate is striving to diversify the economy fast enough to meet the burgeoning number of jobseekers annually. On the other hand, training personnel to be competent oil and gas operators and technicians is a difficult task in a complex reservoir structures in Oman using highly advanced and sophisticated extracting processes. Coupled towards Omanisation which encourages nationals into the oil and gas sector so as to create sustainable employment for the local population, the challenge to churn out competent manpower became a daunting task. Immersive technologies provided the impetus to create a new digital media sector which provided job opportunities as well as the learning contents to enhance the competency-based training for the oil and gas sector in the Sultanate. This lead to a win-win-win collaboration amongst the government represented by the Information Technology Authority (ITA), private sector specialised company (represented by ASM Technologies), jobseekers and oil and gas organisations. This is also one of the first private-public partnership model in the Information Communication Technology (ICT) sector in Oman. A pilot phase was conducted for 8 months to develop four virtual applications for training in equipment and process engineering; oil rig familiarisation, Health Safety Environment (HSE) application, turbine application and the mechanical vapour compressor (MVC) water recycling plant in order to enhance the competency level of the trainees. The immersive applications were installed in operational settings which enabled new employees to practice and understand various processes and procedures regarding enhanced oil recovery. Existing employees used the application to review the working principles in order to carry out troubleshooting scenarios. Concurrently, these applications were also developed by local Omani resources within the country. This created job opportunities for job-seekers as well the establishment of a digital media sector. The purpose of this paper is to discuss how immersive technologies can enhance operational competencies, create job and establish a digital media sector in the Sultanate of Oman.

Keywords: immersive, virtual reality, operations training, Omanisation

Procedia PDF Downloads 199
368 Research on Structural Changes in Plastic Deformation during Rolling and Crimping of Tubes

Authors: Hein Win Zaw

Abstract:

Today, the advanced strategies for aircraft production technology potentially need the higher performance, and on the other hand, those strategies and engineering technologies should meet considerable process and reduce of production costs. Thus, professionals who are working in these scopes are attempting to develop new materials to improve the manufacturability of designs, the creation of new technological processes, tools and equipment. This paper discusses about the research on structural changes in plastic deformation during rotary expansion and crimp of pipes. Pipelines are experiencing high pressure and pulsating load. That is why, it is high demands on the mechanical properties of the material, the quality of the external and internal surfaces, preserve cross-sectional shape and the minimum thickness of the pipe wall are taking into counts. In the manufacture of pipes, various operations: distribution, crimping, bending, etc. are used. The most widely used at various semi-products, connecting elements found the process of rotary expansion and crimp of pipes. In connection with the use of high strength materials and less-plastic, these conventional techniques do not allow obtaining high-quality parts, and also have a low economic efficiency. Therefore, research in this field is relevantly considerable to develop in advanced. Rotary expansion and crimp of pipes are accompanied by inhomogeneous plastic deformation, which leads to structural changes in the material, causes its deformation hardening, by this result changes the operational reliability of the product. Parts of the tube obtained by rotary expansion and crimp differ by multiplicity of form and characterized by various diameter in the various section, which formed in the result of inhomogeneous plastic deformation. The reliability of the coupling, obtained by rotary expansion and crimp, is determined by the structural arrangement of material formed by the formation process; there is maximum value of deformation, the excess of which is unacceptable. The structural state of material in this condition is determined by technological mode of formation in the rotary expansion and crimp. Considering the above, objective of the present study is to investigate the structural changes at different levels of plastic deformation, accompanying rotary expansion and crimp, and the analysis of stress concentrators of different scale levels, responsible for the formation of the primary zone of destruction.

Keywords: plastic deformation, rolling of tubes, crimping of tubes, structural changes

Procedia PDF Downloads 308
367 The Introduction of the Revolution Einstein’s Relative Energy Equations in Even 2n and Odd 3n Light Dimension Energy States Systems

Authors: Jiradeach Kalayaruan, Tosawat Seetawan

Abstract:

This paper studied the energy of the nature systems by looking at the overall image throughout the universe. The energy of the nature systems was developed from the Einstein’s energy equation. The researcher used the new ideas called even 2n and odd 3n light dimension energy states systems, which were developed from Einstein’s relativity energy theory equation. In this study, the major methodology the researchers used was the basic principle ideas or beliefs of some religions such as Buddhism, Christianity, Hinduism, Islam, or Tao in order to get new discoveries. The basic beliefs of each religion - Nivara, God, Ether, Atman, and Tao respectively, were great influential ideas on the researchers to use them greatly in the study to form new ideas from philosophy. Since the philosophy of each religion was alive with deep insight of the physical nature relative energy, it connected the basic beliefs to light dimension energy states systems. Unfortunately, Einstein’s original relative energy equation showed only even 2n light dimension energy states systems (if n = 1,…,∞). But in advance ideas, the researchers multiplied light dimension energy by Einstein’s original relative energy equation and get new idea of theoritical physics in odd 3n light dimension energy states systems (if n = 1,…,∞). Because from basic principle ideas or beliefs of some religions philosophy of each religion, you had to add the media light dimension energy into Einstein’s original relative energy equation. Consequently, the simple meaning picture in deep insight showed that you could touch light dimension energy of Nivara, God, Ether, Atman, and Tao by light dimension energy. Since light dimension energy was transferred by Nivara, God, Ether, Atman and Tao, the researchers got the new equation of odd 3n light dimension energy states systems. Moreover, the researchers expected to be able to solve overview problems of all light dimension energy in all nature relative energy, which are developed from Eistein’s relative energy equation.The finding of the study was called 'super nature relative energy' ( in odd 3n light dimension energy states systems (if n = 1,…,∞)). From the new ideas above you could do the summation of even 2n and odd 3n light dimension energy states systems in all of nature light dimension energy states systems. In the future time, the researchers will expect the new idea to be used in insight theoretical physics, which is very useful to the development of quantum mechanics, all engineering, medical profession, transportation, communication, scientific inventions, and technology, etc.

Keywords: 2n light dimension energy states systems effect, Ether, even 2n light dimension energy states systems, nature relativity, Nivara, odd 3n light dimension energy states systems, perturbation points energy, relax point energy states systems, stress perturbation energy states systems effect, super relative energy

Procedia PDF Downloads 314
366 Seismic Assessment of Non-Structural Component Using Floor Design Spectrum

Authors: Amin Asgarian, Ghyslaine McClure

Abstract:

Experiences in the past earthquakes have clearly demonstrated the necessity of seismic design and assessment of Non-Structural Components (NSCs) particularly in post-disaster structures such as hospitals, power plants, etc. as they have to be permanently functional and operational. Meeting this objective is contingent upon having proper seismic performance of both structural and non-structural components. Proper seismic design, analysis, and assessment of NSCs can be attained through generation of Floor Design Spectrum (FDS) in a similar fashion as target spectrum for structural components. This paper presents the developed methodology to generate FDS directly from corresponding Uniform Hazard Spectrum (UHS) (i.e. design spectra for structural components). The methodology is based on the experimental and numerical analysis of a database of 27 real Reinforced Concrete (RC) buildings which are located in Montreal, Canada. The buildings were tested by Ambient Vibration Measurements (AVM) and their dynamic properties have been extracted and used as part of the approach. Database comprises 12 low-rises, 10 medium-rises, and 5 high-rises and they are mostly designated as post-disaster\emergency shelters by the city of Montreal. The buildings are subjected to 20 compatible seismic records to UHS of Montreal and Floor Response Spectra (FRS) are developed for every floors in two horizontal direction considering four different damping ratios of NSCs (i.e. 2, 5, 10, and 20 % viscous damping). Generated FRS (approximately 132’000 curves) are statistically studied and the methodology is proposed to generate the FDS directly from corresponding UHS. The approach is capable of generating the FDS for any selection of floor level and damping ratio of NSCs. It captures the effect of: dynamic interaction between primary (structural) and secondary (NSCs) systems, higher and torsional modes of primary structure. These are important improvements of this approach compared to conventional methods and code recommendations. Application of the proposed approach are represented here through two real case-study buildings: one low-rise building and one medium-rise. The proposed approach can be used as practical and robust tool for seismic assessment and design of NSCs especially in existing post-disaster structures.

Keywords: earthquake engineering, operational and functional components, operational modal analysis, seismic assessment and design

Procedia PDF Downloads 190
365 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data

Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang

Abstract:

The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.

Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds

Procedia PDF Downloads 88
364 Structural Health Monitoring-Integrated Structural Reliability Based Decision Making

Authors: Caglayan Hizal, Kutay Yuceturk, Ertugrul Turker Uzun, Hasan Ceylan, Engin Aktas, Gursoy Turan

Abstract:

Monitoring concepts for structural systems have been investigated by researchers for decades since such tools are quite convenient to determine intervention planning of structures. Despite the considerable development in this regard, the efficient use of monitoring data in reliability assessment, and prediction models are still in need of improvement in their efficiency. More specifically, reliability-based seismic risk assessment of engineering structures may play a crucial role in the post-earthquake decision-making process for the structures. After an earthquake, professionals could identify heavily damaged structures based on visual observations. Among these, it is hard to identify the ones with minimum signs of damages, even if they would experience considerable structural degradation. Besides, visual observations are open to human interpretations, which make the decision process controversial, and thus, less reliable. In this context, when a continuous monitoring system has been previously installed on the corresponding structure, this decision process might be completed rapidly and with higher confidence by means of the observed data. At this stage, the Structural Health Monitoring (SHM) procedure has an important role since it can make it possible to estimate the system reliability based on a recursively updated mathematical model. Therefore, integrating an SHM procedure into the reliability assessment process comes forward as an important challenge due to the arising uncertainties for the updated model in case of the environmental, material and earthquake induced changes. In this context, this study presents a case study on SHM-integrated reliability assessment of the continuously monitored progressively damaged systems. The objective of this study is to get instant feedback on the current state of the structure after an extreme event, such as earthquakes, by involving the observed data rather than the visual inspections. Thus, the decision-making process after such an event can be carried out on a rational basis. In the near future, this can give wing to the design of self-reported structures which can warn about its current situation after an extreme event.

Keywords: condition assessment, vibration-based SHM, reliability analysis, seismic risk assessment

Procedia PDF Downloads 112
363 Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept

Authors: Amiya Kumar Pati, Spandan Sahu, Kishanjit Kumar Khatua

Abstract:

River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes.

Keywords: critical flow, energy concept, open channel flow, sediment, two-flow braided compound channel

Procedia PDF Downloads 104
362 Test Procedures for Assessing the Peel Strength and Cleavage Resistance of Adhesively Bonded Joints with Elastic Adhesives under Detrimental Service Conditions

Authors: Johannes Barlang

Abstract:

Adhesive bonding plays a pivotal role in various industrial applications, ranging from automotive manufacturing to aerospace engineering. The peel strength of adhesives, a critical parameter reflecting the ability of an adhesive to withstand external forces, is crucial for ensuring the integrity and durability of bonded joints. This study provides a synopsis of the methodologies, influencing factors, and significance of peel testing in the evaluation of adhesive performance. Peel testing involves the measurement of the force required to separate two bonded substrates under controlled conditions. This study systematically reviews the different testing techniques commonly applied in peel testing, including the widely used 180-degree peel test and the T-peel test. Emphasis is placed on the importance of selecting an appropriate testing method based on the specific characteristics of the adhesive and the application requirements. The influencing factors on peel strength are multifaceted, encompassing adhesive properties, substrate characteristics, environmental conditions, and test parameters. Through an in-depth analysis, this study explores how factors such as adhesive formulation, surface preparation, temperature, and peel rate can significantly impact the peel strength of adhesively bonded joints. Understanding these factors is essential for optimizing adhesive selection and application processes in real-world scenarios. Furthermore, the study highlights the role of peel testing in quality control and assurance, aiding manufacturers in maintaining consistent adhesive performance and ensuring the reliability of bonded structures. The correlation between peel strength and long-term durability is discussed, shedding light on the predictive capabilities of peel testing in assessing the service life of adhesive bonds. In conclusion, this study underscores the significance of peel testing as a fundamental tool for characterizing adhesive performance. By delving into testing methodologies, influencing factors, and practical implications, this study contributes to the broader understanding of adhesive behavior and fosters advancements in adhesive technology across diverse industrial sectors.

Keywords: adhesively bonded joints, cleavage resistance, elastic adhesives, peel strength

Procedia PDF Downloads 54
361 Influence of Morphology and Coatings in the Tribological Behavior of a Texturised Deterministic Surface by Photochemical Machining

Authors: Juan C. Sanchez, Jose L. Endrino, Alejandro Toro, Hugo A. Estupinan, Glenn Leighton

Abstract:

For years, the reduction of friction and wear has been a matter of interest in the engineering field. Several solutions have been proposed to address this issue, including the use of lubricants and coatings to reduce the frictional forces and to increase the surface wear resistance. Alternatively, texturing processes have been used in a wide variety of materials, in many cases inspired in natural surfaces. Nature has shown how species adapt to the environment and the engineers try to understand natural surfaces for particular applications by analyzing outstanding species such as gecko for high adhesion, lotus leaves for hydrophobicity, sharks for reduced flow resistance and snakes for optimized frictional response. Texturized surfaces have shown a superior performance in terms of the frictional response in many situations, and the control of its behavior greatly depends on the manufacturing process. The focus of this work is to evaluate the tribological behavior of AISI 52100 steel samples texturized by Photochemical Machining (PCM). The surface texture was inspired by several features of the snakeskin such as aspect ratio of fibrils and mean fibril spacing. Two coatings were applied on the texturized surface, namely Diamond-like Carbon (DLC) and Molybdenum Disulphide (MoS₂), and their tribological behavior after pin-on-disk tests were compared with that of the non-texturized and uncovered surfaces. The samples were characterised through Stereoscopic Microscope (SM), Scanning Electron Microscope (SEM), Optical Microscope (OM), Profilometer, Raman Spectrometer (RS) and X-Ray Diffractometer (XRD). The Coefficient of Friction (COF) measured in pin-on-disk tests showed correlations with the sliding direction (relative to the texture features) and the aspect ratio of the texture features. Regarding the coated surfaces, the DLC and MoS₂ coating had a good performance in terms of wear rate and coefficient of friction compared with the uncoated and non-texturized surfaces. On the other hand, for the uncoated surfaces, the texture showed an influence in the tribological performance with respect to the non-texturized surface.

Keywords: coating, coefficient of friction, deterministic surface, photochemical machining

Procedia PDF Downloads 122
360 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 392
359 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi

Abstract:

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment

Procedia PDF Downloads 122
358 Women’s Colours in Digital Innovation

Authors: Daniel J. Patricio Jiménez

Abstract:

Digital reality demands new ways of thinking, flexibility in learning, acquisition of new competencies, visualizing reality under new approaches, generating open spaces, understanding dimensions in continuous change, etc. We need inclusive growth, where colors are not lacking, where lights do not give a distorted reality, where science is not half-truth. In carrying out this study, the documentary or bibliographic collection has been taken into account, providing a reflective and analytical analysis of current reality. In this context, deductive and inductive methods have been used on different multidisciplinary information sources. Women today and tomorrow are a strategic element in science and arts, which, under the umbrella of sustainability, implies ‘meeting current needs without detriment to future generations’. We must build new scenarios, which qualify ‘the feminine and the masculine’ as an inseparable whole, encouraging cooperative behavior; nothing is exclusive or excluding, and that is where true respect for diversity must be based. We are all part of an ecosystem, which we will make better as long as there is a real balance in terms of gender. It is the time of ‘the lifting of the veil’, in other words, it is the time to discover the pseudonyms, the women who painted, wrote, investigated, recorded advances, etc. However, the current reality demands much more; we must remove doors where they are not needed. Mass processing of data, big data, needs to incorporate algorithms under the perspective of ‘the feminine’. However, most STEM students (science, technology, engineering, and math) are men. Our way of doing science is biased, focused on honors and short-term results to the detriment of sustainability. Historically, the canons of beauty, the way of looking, of perceiving, of feeling, depended on the circumstances and interests of each moment, and women had no voice in this. Parallel to science, there is an under-representation of women in the arts, but not so much in the universities, but when we look at galleries, museums, art dealers, etc., colours impoverish the gaze and once again highlight the gender gap and the silence of the feminine. Art registers sensations by divining the future, science will turn them into reality. The uniqueness of the so-called new normality requires women to be protagonists both in new forms of emotion and thought, and in the experimentation and development of new models. This will result in women playing a decisive role in the so-called "5.0 society" or, in other words, in a more sustainable, more humane world.

Keywords: art, digitalization, gender, science

Procedia PDF Downloads 146
357 Understanding the Basics of Information Security: An Act of Defense

Authors: Sharon Q. Yang, Robert J. Congleton

Abstract:

Information security is a broad concept that covers any issues and concerns about the proper access and use of information on the Internet, including measures and procedures to protect intellectual property and private data from illegal access and online theft; the act of hacking; and any defensive technologies that contest such cybercrimes. As more research and commercial activities are conducted online, cybercrimes have increased significantly, putting sensitive information at risk. Information security has become critically important for organizations and private citizens alike. Hackers scan for network vulnerabilities on the Internet and steal data whenever they can. Cybercrimes disrupt our daily life, cause financial losses, and instigate fear in the public. Since the start of the pandemic, most data related cybercrimes targets have been either financial or health information from companies and organizations. Libraries also should have a high interest in understanding and adopting information security methods to protect their patron data and copyrighted materials. But according to information security professionals, higher education and cultural organizations, including their libraries, are the least prepared entities for cyberattacks. One recent example is that of Steven’s Institute of Technology in New Jersey in the US, which had its network hacked in 2020, with the hackers demanding a ransom. As a result, the network of the college was down for two months, causing serious financial loss. There are other cases where libraries, colleges, and universities have been targeted for data breaches. In order to build an effective defense, we need to understand the most common types of cybercrimes, including phishing, whaling, social engineering, distributed denial of service (DDoS) attacks, malware and ransomware, and hacker profiles. Our research will focus on each hacking technique and related defense measures; and the social background and reasons/purpose of hacker and hacking. Our research shows that hacking techniques will continue to evolve as new applications, housing information, and data on the Internet continue to be developed. Some cybercrimes can be stopped with effective measures, while others present challenges. It is vital that people understand what they face and the consequences when not prepared.

Keywords: cybercrimes, hacking technologies, higher education, information security, libraries

Procedia PDF Downloads 104
356 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications

Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.

Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method

Procedia PDF Downloads 391
355 Effective Doping Engineering of Na₃V₂(PO₄)₂F₃ as a High-Performance Cathode Material for Sodium-Ion Batteries

Authors: Ramon Alberto Paredes Camacho, Li Lu

Abstract:

Sustainable batteries are possible through the development of cheaper and greener alternatives whose most feasible option is epitomized by Sodium-Ion Batteries (SIB). Na₃V₂(PO₄)₂F₃ (NVPF) an important member of the Na-superionic-conductor (NASICON) materials, has recently been in the spotlight due to its interesting electrochemical properties when used as cathode namely, high specific capacity of 128 mA h g-¹, high energy density of 507 W h Kg-¹, increased working potential at which vanadium redox couples can be activated (with an average value around 3.9 V), and small volume variation of less than 2%. These traits grant NVPF an excellent perspective as a cathode material for the next generation of sodium batteries. Unfortunately, because of its low inherent electrical conductivity and a high energy barrier that impedes the mobilization of all the available Na ions per formula, the overall electrochemical performance suffers substantial degradation, finally obstructing its industrial use. Many approaches have been developed to remediate these issues where nanostructural design, carbon coating, and ion doping are the most effective ones. This investigation is focused on enhancing the electrochemical response of NVPF by doping metal ions in the crystal lattice, substituting vanadium atoms. A facile sol-gel process is employed, with citric acid as the chelator and the carbon source. The optimized conditions circumvent fluorine sublimation, ratifying the material’s purity. One of the reasons behind the large ionic improvement is the attraction of extra Na ions into the crystalline structure due to a charge imbalance produced by the valence of the doped ions (+2), which is lower than the one of vanadium (+3). Superior stability (higher than 90% at a current density of 20C) and capacity retention at an extremely high current density of 50C are demonstrated by our doped NVPF. This material continues to retain high capacity values at low and high temperatures. In addition, full cell NVPF//Hard Carbon shows capacity values and high stability at -20 and 60ºC. Our doping strategy proves to significantly increase the ionic and electronic conductivity of NVPF even at extreme conditions, delivering outstanding electrochemical performance and paving the way for advanced high-potential cathode materials.

Keywords: sodium-ion batteries, cathode materials, NASICON, Na3V2(PO4)2F3, Ion doping

Procedia PDF Downloads 31
354 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China

Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan

Abstract:

The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368

Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32

Procedia PDF Downloads 150
353 Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage

Authors: Alena O. Stepanova, Vera S. Chernonosova, Tatyana S. Godovikova, Konstantin A. Bulatov, Andrey Y. Patrushev, Pavel P. Laktionov

Abstract:

Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated.

Keywords: chondroblasts, electrospun scaffolds, hyaline cartilage, photopolymerized gel

Procedia PDF Downloads 253
352 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 331
351 Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment

Authors: Anna Cameron, Chunxia Zhao, Haofei Wang, Yun Liu, Guang Ze Yang

Abstract:

Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type.

Keywords: cancer, extracellular matrix, hydrogel, microfluidic

Procedia PDF Downloads 69
350 Application Reliability Method for the Analysis of the Stability Limit States of Large Concrete Dams

Authors: Mustapha Kamel Mihoubi, Essadik Kerkar, Abdelhamid Hebbouche

Abstract:

According to the randomness of most of the factors affecting the stability of a gravity dam, probability theory is generally used to TESTING the risk of failure and there is a confusing logical transition from the state of stability failed state, so the stability failure process is considered as a probable event. The control of risk of product failures is of capital importance for the control from a cross analysis of the gravity of the consequences and effects of the probability of occurrence of identified major accidents and can incur a significant risk to the concrete dam structures. Probabilistic risk analysis models are used to provide a better understanding the reliability and structural failure of the works, including when calculating stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of the reliability analysis methods including the methods used in engineering. It is in our case of the use of level II methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type FORM (First Order Reliability Method), SORM (Second Order Reliability Method). By way of comparison, a second level III method was used which generates a full analysis of the problem and involving an integration of the probability density function of, random variables are extended to the field of security by using of the method of Mont-Carlo simulations. Taking into account the change in stress following load combinations: normal, exceptional and extreme the acting on the dam, calculation results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities thus causing a significant decrease in strength, especially in the presence of combinations of unique and extreme loads. Shear forces then induce a shift threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case THE increase of uplift in a hypothetical default of the drainage system.

Keywords: dam, failure, limit state, monte-carlo, reliability, probability, sliding, Taylor

Procedia PDF Downloads 299
349 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear

Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro

Abstract:

Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.

Keywords: breathability, sportswear and casual clothing, sustainable design, superhydrophobicity

Procedia PDF Downloads 114