Search results for: receptor diffusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1661

Search results for: receptor diffusion

521 Children Asthma; The Role of Molecular Pathways and Novel Saliva Biomarkers Assay

Authors: Seyedahmad Hosseini, Mohammadjavad Sotoudeheian

Abstract:

Introduction: Allergic asthma is a heterogeneous immuno-inflammatory disease based on Th-2-mediated inflammation. Histopathologic abnormalities of the airways characteristic of asthma include epithelial damage and subepithelial collagen deposition. Objectives: Human bronchial epithelial cell genome expression of TNF‑α, IL‑6, ICAM‑1, VCAM‑1, nuclear factor (NF)‑κB signaling pathways up-regulate during inflammatory cascades. Moreover, immunofluorescence assays confirmed the nuclear translocation of NF‑κB p65 during inflammatory responses. An absolute LDH leakage assays suggestedLPS-inducedcells injury, and the associated mechanisms are co-incident events. LPS-induced phosphorylation of ERKand JNK causes inflammation in epithelial cells through inhibition of ERK and JNK activation and NF-κB signaling pathway. Furthermore, the inhibition of NF-κB mRNA expression and the nuclear translocation of NF-κB lead to anti-inflammatory events. Likewise, activation of SUMF2 which inhibits IL-13 and reduces Th2-cytokines, NF-κB, and IgE levels to ameliorate asthma. On the other hand, TNFα-induced mucus production reduced NF-κB activation through inhibition of the activation status of Rac1 and IκBα phosphorylation. In addition, bradykinin B2 receptor (B2R), which mediates airway remodeling, regulates through NF-κB. Bronchial B2R expression is constitutively elevated in allergic asthma. In addition, certain NF-κB -dependent chemokines function to recruit eosinophils in the airway. Besides, bromodomain containing 4 (BRD4) plays a significant role in mediating innate immune response in human small airway epithelial cells as well as transglutaminase 2 (TG2), which is detectable in saliva. So, the guanine nucleotide-binding regulatory protein α-subunit, Gα16, expresses a κB-driven luciferase reporter. This response was accompanied by phosphorylation of IκBα. Furthermore, expression of Gα16 in saliva markedly enhanced TNF-α-induced κB reporter activity. Methods: The applied method to form NF-κB activation is the electromobility shift assay (EMSA). Also, B2R-BRD4-TG2 complex detection by immunoassay method within saliva with EMSA of NF-κB activation may be a novel biomarker for asthma diagnosis and follow up. Conclusion: This concept introduces NF-κB signaling pathway as potential asthma biomarkers and promising targets for the development of new therapeutic strategies against asthma.

Keywords: NF-κB, asthma, saliva, T-helper

Procedia PDF Downloads 97
520 High Temperature Oxidation of Additively Manufactured Silicon Carbide/Carbon Fiber Nanocomposites

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao, Robyn L. Bradford, Donald Klosterman

Abstract:

An additive manufacturing process and subsequent pyrolysis cycle were used to fabricate SiC matrix/carbon fiber hybrid composites. The matrix was fabricated using a mixture of preceramic polymer and acrylate monomers, while polyacrylonitrile (PAN) precursor was used to fabricate fibers via electrospinning. The precursor matrix and reinforcing fibers at 0, 2, 5, or 10 wt% were printed using digital light processing, and both were simultaneously pyrolyzed to yield the final ceramic matrix composite structure. After pyrolysis, XRD and SEAD analysis proved the existence of SiC nanocrystals and turbostratic carbon structure in the matrix, while the reinforcement phase was shown to have a turbostratic carbon structure similar to commercial carbon fibers. Thermogravimetric analysis (TGA) in the air up to 1400 °C was used to evaluate the oxidation resistance of this material. TGA results showed some weight loss due to oxidation of SiC and/or carbon up to about 900 °C, followed by weight gain to about 1200 °C due to the formation of a protective SiO2 layer. Although increasing carbon fiber content negatively impacted the total mass loss for the first heating cycle, exposure of the composite to second-run air revealed negligible weight chance. This is explained by SiO2 layer formation, which acts as a protective film that prevents oxygen diffusion. Oxidation of SiC and the formation of a glassy layer has been proven to protect the sample from further oxidation, as well as provide healing of surface cracks and defects, as revealed by SEM analysis.

Keywords: silicon carbide, carbon fibers, additive manufacturing, composite

Procedia PDF Downloads 74
519 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages

Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek

Abstract:

Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.

Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides

Procedia PDF Downloads 145
518 Farmers’ Access to Agricultural Extension Services Delivery Systems: Evidence from a Field Study in India

Authors: Ankit Nagar, Dinesh Kumar Nauriyal, Sukhpal Singh

Abstract:

This paper examines the key determinants of farmers’ access to agricultural extension services, sources of agricultural extension services preferred and accessed by the farmers. An ordered logistic regression model was used to analyse the data of the 360 sample households based on a primary survey conducted in western Uttar Pradesh, India. The study finds that farmers' decision to engage in the agricultural extension programme is significantly influenced by factors such as education level, gender, farming experience, social group, group membership, farm size, credit access, awareness about the extension scheme, farmers' perception, and distance from extension sources. The most intriguing finding of this study is that the progressive farmers, which have long been regarded as a major source of knowledge diffusion, are the most distrusted sources of information as they are suspected of withholding vital information from potential beneficiaries. The positive relationship between farm size and ‘Access’ underlines that the extension services should revisit their strategies for targeting more marginal and small farmers constituting over 85 percent of the agricultural households by incorporating their priorities in their outreach programs. The study suggests that marginal and small farmers' productive potential could still be greatly augmented by the appropriate technology, advisory services, guidance, and improved market access. Also, the perception of poor quality of the public extension services can be corrected by initiatives aimed at building up extension workers' capacity.

Keywords: agriculture, access, extension services, ordered logistic regression

Procedia PDF Downloads 214
517 Determining the Efficacy of Phenol, Sodium Hypochlorite and Ethanol for Inactivation of Carbapenem-Resistant Strain of Acinetobacter baumannii

Authors: Deepika Biswas

Abstract:

Acinetobacter baumannii, a hospital-acquired pathogen, causes nosocomial infections including pneumonia, urinary tract infection, and secondary meningitis. Carbapenem is most effective antibiotics against it. Its increased resistance to carbapenems has been a rising global concern. Antibiotics such as carbapenem are unable to use on hospital setups to eradicate A. baumannii, hence different concentrations of disinfectants including phenol; sodium hypochlorite and ethanol are increasingly being used. The objective of the present study is to find an effective concentration of above disinfectants against carbapenem-resistant strain RS307 of A. baumannii. Growth kinetics of RS307 has been determined using UV-Vis spectrophotometer in the presence and absence of disinfectants in triplicate and its standard deviation has also been calculated which make the results more reliable. Differential growth curves were plotted, which showed the effective concentration among all the concentrations of phenol, sodium hypochlorite and ethanol. On disc diffusion assay, antimicrobial effect was observed by comparing all the concentrations of disinfectants to check its synergy with imipenem, most effective carbapenem. All the results collectively revealed that 0.5% phenol, 0.5% sodium hypochlorite, and 70% ethanol could preferably be used as disinfectant for hospital setup against the carbapenem-resistant strain of A. baumannii. SDS PAGE analysis showed differential expression in the protein profile of A. baumannii after treatment. The present study highlighted that few disinfectants even in low concentration had shown better antimicrobial activity hence may be recommended for regular use in the hospitals, which will be cost effective and less harmful.

Keywords: Acenatobacter bomunii, phenol, sodium hypoclirite, ethanol, carbapenem resistance, disinfectant

Procedia PDF Downloads 257
516 Temporal and Spatial Distribution Prediction of Patinopecten yessoensis Larvae in Northern China Yellow Sea

Authors: RuiJin Zhang, HengJiang Cai, JinSong Gui

Abstract:

It takes Patinopecten yessoensis larvae more than 20 days from spawning to settlement. Due to the natural environmental factors such as current, Patinopecten yessoensis larvae are transported to a distance more than hundreds of kilometers, leading to a high instability of their spatial and temporal distribution and great difficulties in the natural spat collection. Therefore predicting the distribution is of great significance to improve the operating efficiency of the collecting. Hydrodynamic model of Northern China Yellow Sea was established and the motions equations of physical oceanography and verified by the tidal harmonic constants and the measured data velocities of Dalian Bay. According to the passivity drift characteristics of the larvae, combined with the hydrodynamic model and the particle tracking model, the spatial and temporal distribution prediction model was established and the spatial and temporal distribution of the larvae under the influence of flow and wind were simulated. It can be concluded from the model results: ocean currents have greatest impacts on the passive drift path and diffusion of Patinopecten yessoensis larvae; the impact of wind is also important, which changed the direction and speed of the drift. Patinopecten yessoensis larvae were generated in the sea along Zhangzi Island and Guanglu-Dachangshan Island, but after two months, with the impact of wind and currents, the larvae appeared in the west of Dalian and the southern of Lvshun, and even in Bohai Bay. The model results are consistent with the relevant literature on qualitative analysis, and this conclusion explains where the larvae come from in the perspective of numerical simulation.

Keywords: numerical simulation, Patinopecten yessoensis larvae, predicting model, spatial and temporal distribution

Procedia PDF Downloads 304
515 Virulence Phenotypes among Multi Drug Resistant Uropathogenic E. Coli and Klebsiella SPP

Authors: V. V. Lakshmi, Y. V. S. Annapurna

Abstract:

Urinary tract infection (UTI) is one of the most common infectious diseases seen in the community. Susceptible individuals experience multiple episodes, and progress to acute pyelonephritis or uro-sepsis or develop asymptomatic bacteriuria (ABU). Ability to cause extraintestinal infections depends on several virulence factors required for survival at extraintestinal sites. Presence of virulence phenotypes enhances the pathogenicity of these otherwise commensal organisms and thus augments its ability to cause extraintestinal infections, the most frequent in urinary tract infections(UTI). The present study focuses on detection of the virulence characters exhibited by the uropathogenic organism and most common factors exhibited in the local pathogens. A total of 700 isolates of E.coli and Klebsiella spp were included in the study.These were isolated from patients from local hospitals reported to be suffering with UTI over a period of three years. Isolation and identification was done based on Gram character and IMVIC reactions. Antibiotic sensitivity profile was carried out by disc diffusion method and multi drug resistant strains with MAR index of 0.7 were further selected. Virulence features examined included their ability to produce exopolysaccharides, protease- gelatinase production, hemolysin production, haemagglutination and hydrophobicity test. Exopolysaccharide production was most predominant virulence feature among the isolates when checked by congo red method. The biofilms production examined by microtitre plates using ELISA reader confirmed that this is the major factor contributing to virulencity of the pathogens followed by hemolysin production.

Keywords: Escherichia coli, Klebsiella spp, Uropathogens, virulence features

Procedia PDF Downloads 318
514 Influence of Yeast Strains on Microbiological Stability of Wheat Bread

Authors: E. Soboleva, E. Sergachyova, S. G. Davydenko, T. V. Meledina

Abstract:

Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector.

Keywords: bakers' yeasts, killer toxin, rope in bread, Saccharomyces cerevisiæ

Procedia PDF Downloads 235
513 Electrochemical Synthesis of ZnTe and Cu-ZnTe Thin Films for Low Resistive Ohmic Back Contact for CdS/CdTe Solar Cells

Authors: Shivaji M. Sonawane, N. B. Chaure

Abstract:

ZnTe is direct band gap, the P-type semiconductor with the high absorption coefficient of the order of 104cm-1 is suitable for solar cell development. It can be used as a low resistive ohmic contact to CdS/CdTe or tandem solar cell application. ZnTe and Cu-ZnTe thin film have been electrochemically synthesized on to fluorine-doped tin oxide coated glass substrates using three electrode systems containing Ag/AgCl, graphite and FTO as reference, counter and working electrode respectively were used to deposit the thin films. The aqueous electrolytic solution consist of 0.5M TeO2, 0.2M ZnSO4, and 0.1M Na3C6H5O7:2H2O, 0.1MC6H8O7:H2O and 0.1mMCuSO4 with PH 2.5 at room temperature was used. The reaction mechanism is studied in the cyclic voltammetry to identify the deposition potentials of ZnTe and Cu-ZnTe.The potential was optimized in the range -0,9 to -1,1 V. Vs Ag/AgCl reference electrode. The effect of deposition potential on the structural properties was studied by using X-ray diffraction. The X-ray diffraction result reveled cubic crystal structure of ZnTe with preferential (111) orientation with cubic structure. The surface morphology and film composition were analyzed by means of Scanning electron microscopy (SEM) and Energy Dispersive Analysis of X- Rays (EDAX). The optical absorption measurement has been analyzed for the band gap determination of deposited layers about 2.26 eV by UV-Visible spectroscopy. The drastic change in resistivity has been observed due to incorporation of copper probably due to the diffusion of Cu into grain boundaries.

Keywords: ohmic back contact, zinc telluride, electrodeposition, photovoltaic devices

Procedia PDF Downloads 228
512 Molecular Dynamics Studies of Main Factors Affecting Mass Transport Phenomena on Cathode of Polymer Electrolyte Membrane Fuel Cell

Authors: Jingjing Huang, Nengwei Li, Guanghua Wei, Jiabin You, Chao Wang, Junliang Zhang

Abstract:

In this work, molecular dynamics (MD) simulation is applied to analyze the mass transport process in the cathode of proton exchange membrane fuel cell (PEMFC), of which all types of molecules situated in the cathode is considered. a reasonable and effective MD simulation process is provided, and models were built and compared using both Materials Studio and LAMMPS. The mass transport is one of the key issues in the study of proton exchange membrane fuel cells (PEMFCs). In this report, molecular dynamics (MD) simulation is applied to analyze the influence of Nafion ionomer distribution and Pt nano-particle size on mass transport process in the cathode. It is indicated by the diffusion coefficients calculation that a larger quantity of Nafion, as well as a higher equivalent weight (EW) value, will hinder the transport of oxygen. In addition, medium-sized Pt nano-particles (1.5~2nm) are more advantageous in terms of proton transport compared with other particle sizes (0.94~2.55nm) when the center-to-center distance between two Pt nano-particles is around 5 nm. Then mass transport channels are found to be formed between the hydrophobic backbone and the hydrophilic side chains of Nafion ionomer according to the radial distribution function (RDF) curves. And the morphology of these channels affected by the Pt size is believed to influence the transport of hydronium ions and, consequently the performance of PEMFC.

Keywords: cathode catalytic layer, mass transport, molecular dynamics, proton exchange membrane fuel cell

Procedia PDF Downloads 243
511 Immunocytochemical Stability of Antigens in Cytological Samples Stored in In-house Liquid-Based Medium

Authors: Anamarija Kuhar, Veronika Kloboves Prevodnik, Nataša Nolde, Ulrika Klopčič

Abstract:

The decision for immunocytochemistry (ICC) is usually made in the basis of the findings in Giemsa- and/or Papanicolaou- smears. More demanding diagnostic cases require preparation of additional cytological preparations. Therefore, it is convenient to suspend cytological samples in a liquid based medium (LBM) that preserve antigen and morphological properties. However, the duration of these properties being preserved in the medium is usually unknown. Eventually, cell morphology becomes impaired and altered, as well as antigen properties may be lost or become diffused. In this study, the influence of cytological sample storage length in in-house liquid based medium on antigen properties and cell morphology is evaluated. The question is how long the cytological samples in this medium can be stored so that the results of immunocytochemical reactions are still reliable and can be safely used in routine cytopathological diagnostics. The stability of 6 ICC markers that are most frequently used in everyday routine work were tested; Cytokeratin AE1/AE3, Calretinin, Epithelial specific antigen Ep-CAM (MOC-31), CD 45, Oestrogen receptor (ER), and Melanoma triple cocktail were tested on methanol fixed cytospins prepared from fresh fine needle aspiration biopsies, effusion samples, and disintegrated lymph nodes suspended in in-house cell medium. Cytospins were prepared on the day of the sampling as well as on the second, fourth, fifth, and eight day after sample collection. Next, they were fixed in methanol and immunocytochemically stained. Finally, the percentage of positive stained cells, reaction intensity, counterstaining, and cell morphology were assessed using two assessment methods: the internal assessment and the UK NEQAS ICC scheme assessment. Results show that the antigen properties for Cytokeratin AE1/AE3, MOC-31, CD 45, ER, and Melanoma triple cocktail were preserved even after 8 days of storage in in-house LBM, while the antigen properties for Calretinin remained unchanged only for 4 days. The key parameters for assessing detection of antigen are the proportion of cells with a positive reaction and intensity of staining. Well preserved cell morphology is highly important for reliable interpretation of ICC reaction. Therefore, it would be valuable to perform a similar analysis for other ICC markers to determine the duration in which the antigen and morphological properties are preserved in LBM.

Keywords: cytology samples, cytospins, immunocytochemistry, liquid-based cytology

Procedia PDF Downloads 141
510 Ideology versus Faith in the Collective Political Identity Formation: An Analysis of the Thoughts of Iqbal and Jinnah-The Founding Fathers of Pakistan

Authors: Muhammad Sajjad-ur-Rehman

Abstract:

Pakistan was meant to be a progressive modern Muslim nation state since its inception in 1947. Its birth was a big hope for the Muslims of Sub-continent to transform their societies on Islamic lines—the promise which made them unite and vote for Pakistan during independence movement. This was the vision put forwarded by Allama Iqbal and Muhammad Ali Jinnah—the two founding fathers of Pakistan. Dwelling on interpretive/ analytical approach, this paper analyzes the thoughts and reflections of Iqbal and Jinnah to understand the issues of collective identity formation in Pakistan. It argues that there may be traced two distinct identity models in the thoughts and reflections of these two leading figures of Pakistan movement: First may be called as ‘faith-based identity model’ while the other may be named as ‘interests-based identity model’. These can also be entitled as ‘Islam-as-faith model’ and ‘Islam-as-ideology model’. Former seeks the diffusion of power by cultural/ faith based means and thus society remains independent in determining its change. While the later goes on to open and expand the power realm by maximizing the role of state in determining the social change. With the help of these models, it can better be explained that what made Pakistani society fail in the collective political identity construction, hindering thus the political potential of the society to be utilized for initiating state formation and societal growth. As a result, today, we see a state that is often rebelled and resisted on the name of ethnicity, religion and sectarianism on one hand and by the ordinary folk when and wherever possible.

Keywords: idealogy, Iqbal, Jinnah, identity

Procedia PDF Downloads 6
509 Liver and Liver Lesion Segmentation From Abdominal CT Scans

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer- aided diagnosis applications. Segmentation of liver and liver lesion is regarded as a major primary step in computer aided diagnosis of liver diseases. Precise liver segmentation in abdominal CT images is one of the most important steps for the computer-aided diagnosis of liver pathology. In this papers, a semi- automated method for medical image data is presented for the liver and liver lesion segmentation data using mathematical morphology. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological filters to extract the liver. The second step consists to detect the liver lesion. In this task; we proposed a new method developed for the semi-automatic segmentation of the liver and hepatic lesions. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to improve the quality of the original image and image gradient by applying the spatial filter followed by the morphological filters. The second step consists to calculate the internal and external markers of the liver and hepatic lesions. Thereafter we proceed to the liver and hepatic lesions segmentation by the watershed transform controlled by markers. The validation of the developed algorithm is done using several images. Obtained results show the good performances of our proposed algorithm

Keywords: anisotropic diffusion filter, CT images, hepatic lesion segmentation, Liver segmentation, morphological filter, the watershed algorithm

Procedia PDF Downloads 451
508 Crude Extracts of Medicinal Plants Can Inhibit Some Bacteria of Clinical Importance in Minced Meat

Authors: Chika C. Ogueke, Ijeoma M. Agunwah

Abstract:

The antimicrobial activities and preservative potentials of crude extracts of Alstonia boonei stem bark and Euphorbia hirta leaves were studied. Soxhlet extraction and cold ethanol extraction methods were used for the extraction of the dried and ground plant samples. Well in agar diffusion method was used for the antimicrobial screening at different concentrations of 25mg/ml, 50mg/ml, 100mg/ml and 200mg/ml on E.coli and B.subtilis. The preservative effects of the extracts at 0.1%, 0.2% and 0.3% singly and in combination were determined in minced meat using E. coli and B. subtilis as test isolates. Phytochemical analysis was also conducted on the extracts using standard analytical methods. E.hirta cold and A.boonei cold extracts gave the highest zone of growth inhibition on E. coli and B.substilis with 20mm zone diameter at 200mg/ml concentration. Phytochemical analysis revealed the presence of alkaloids, flavonoids, tannins, saponins and cardiac glycosides. A.boonei at 0.1, 0.2 and 0.3% produced a log cycle reduction on the growth of E.coli. Mixture of A. boonei and E. hirta extracts (1:1) at 0.1% and 0.2% also produced a log cycle reduction on the growth of E.coli and B. subtilis, however the A. boonei extracts had more significant effect on the isolates. The observed antimicrobial activities are attributed to the phytochemicals identified in the extracts. The results reveal the potentials of plant extracts as natural antimicrobial preservatives in minced meat. Thus the crude extracts can act as inhibitors of bacteria in a food system. Upon further purification better results may be obtained.

Keywords: antimicrobial preservative, crude extracts, minced meat, test isolates

Procedia PDF Downloads 293
507 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding

Procedia PDF Downloads 331
506 Chitosan Hydrogel Containing Nitric Oxide Donors with Potent Antibacterial Effect

Authors: Milena Trevisan Pelegrino, Bruna De Araujo Lima, Mônica H. M. Do Nascimento, Christiane B. Lombello, Marcelo Brocchi, Amedea B. Seabra

Abstract:

Nitric oxide (NO) is a small molecule involved in a wide range of physiological and pathophysiological processes, including vasodilatation, control of inflammatory pain, wound healing, and antibacterial activities. As NO is a free radical, the design of drugs that generates therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL) - chitosan (CS) hydrogel, in an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial and biocompatibility properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior, and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications, at physiological and skin temperatures. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which correspondents to 1 mmol·L-1 of GSNO). Interesting, the concentration range in which the NO-releasing hydrogel demonstrated antibacterial effect was not found toxic to Vero mammalian cell. Thus, GSNO-PL/CS hydrogel is suitable biomaterial for topical NO delivery applications.

Keywords: antimicrobial, chitosan, biocompatibility, S-nitrosothiols

Procedia PDF Downloads 185
505 Association between Cholesterol Levels and Atopy among Adolescents with and without Sufficient Amount of Physical Activity

Authors: Keith T. S. Tung, H. W. Tsang, Rosa S. Wong, Frederick K. Ho, Patrick Ip

Abstract:

Objectives: Atopic diseases are increasingly prevalent among children and adolescents, both locally and internationally. One of the possible contributing factors could be the hypercholesterolemia which leads to cholesterol accumulation in macrophages and other immune cells that would eventually promote inflammatory responses, including augmentation of toll-like receptor (TLR). Meanwhile, physical activity is well known for its beneficial effects against the condition of hypercholesterolemia and incidence of atopic diseases. This study, therefore, explored whether atopic diseases were associated with increased cholesterol levels and whether physical activity habit influenced this association. Methods: This is a sub-study derived from the longitudinal cohort study which recruited a group of children at five years of age in Kindergarten 3 (K3) to investigate the long-term impact of family socioeconomic status on child development. In 2018/19, adolescents (average age: 13 years old) were asked to report their physical activity habit and history of any atopic diseases. During health assessment, peripheral blood samples were collected from the adolescents to study their lipid profile [total cholesterol, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol]. Regression analyses were performed to test the relationships between variables of interest. Results: Among the 315 adolescents, 99 (31.4%) reported to have allergic rhinitis. There were 45 (14.3%) with eczema, 17 (5.4%) with a food allergy, and 12 (3.8%) with asthma. Regression analyses showed that adolescents with a history of any type of atopic diseases had significantly higher total cholesterol (B=13.3, p < 0.01) and LDL cholesterol (B=7.9, p < 0.05) levels. Further subgroup analyses were conducted to examine the effect of physical activity level on the association between atopic diseases and cholesterol levels. We found stronger associations among those who did not meet the World Health Organization recommendation of at least 60 minutes of moderate-to-vigorous activities each day (total cholesterol: B=15.5, p < 0.01; LDL cholesterol: B=10.4, p < 0.05). For those who met this recommendation, the associations between atopic diseases and cholesterol levels became insignificant. Conclusion: Our study results support the current research evidence on the relationship between an elevated level of cholesterol and atopic diseases. More importantly, our results provide preliminary support for the protective effect of regular exercises against elevated cholesterol level due to atopic diseases. The findings highlight the importance of a healthy lifestyle for keeping cholesterol levels in the normal range, which can bring benefits to both physical and mental health.

Keywords: atopic diseases, Chinese adolescents, cholesterol level, physical activity

Procedia PDF Downloads 120
504 A Molecular-Level Study of Combining the Waste Polymer and High-Concentration Waste Cooking Oil as an Additive on Reclamation of Aged Asphalt Pavement

Authors: Qiuhao Chang, Liangliang Huang, Xingru Wu

Abstract:

In the United States, over 90% of the roads are paved with asphalt. The aging of asphalt is the most serious problem that causes the deterioration of asphalt pavement. Waste cooking oils (WCOs) have been found they can restore the properties of aged asphalt and promote the reuse of aged asphalt pavement. In our previous study, it was found the optimal WCO concentration to restore the aged asphalt sample should be in the range of 10~15 wt% of the aged asphalt sample. After the WCO concentration exceeds 15 wt%, as the WCO concentration increases, some important properties of the asphalt sample can be weakened by the addition of WCO, such as cohesion energy density, surface free energy density, bulk modulus, shear modulus, etc. However, maximizing the utilization of WCO can create environmental and economic benefits. Therefore, in this study, a new idea about using the waste polymer is another additive to restore the WCO modified asphalt that contains a high concentration of WCO (15-25 wt%) is proposed, which has never been reported before. In this way, both waste polymer and WCO can be utilized. The molecular dynamics simulation is used to study the effect of waste polymer on properties of WCO modified asphalt and understand the corresponding mechanism at the molecular level. The radial distribution function, self-diffusion, cohesion energy density, surface free energy density, bulk modulus, shear modulus, adhesion energy between asphalt and aggregate are analyzed to validate the feasibility of combining the waste polymer and WCO to restore the aged asphalt. Finally, the optimal concentration of waste polymer and WCO are determined.

Keywords: reclaim aged asphalt pavement, waste cooking oil, waste polymer, molecular dynamics simulation

Procedia PDF Downloads 220
503 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure

Procedia PDF Downloads 244
502 Antibacterial Activity of Methanol Extract of Punica Granatum Linn. (Punnicaceae) Fruit Peel Against Selected Bacterial Species

Authors: Afzan Mahmad, Santibuana Abd Rahman, Gouri Kumar Dash, Mohd. Syafiq Bin Abdullah

Abstract:

Antibacterial activity of the methanol extract of fruit peel of Punica granatum Linn (Family: Punicaceae) was evaluated against two Gram positive and two Gram negative bacteria. The Gram positive bacteria included Staphylococcus aureus, Streptococcus pneumoniae and the Gram negative organisms included Escherichia coli and Pseudomonas aeruginosa respectively. The culture media used for antibacterial assay was Mueller Hinton agar for the growth of S. aureus, E. coli, and P. aeruginosa. The media used for the growth of S. pneumoniae was Mueller Hinton blood agar. The antibacterial assay was performed through Disc diffusion technique. The methanol extract was tested at three different concentrations (50, 100 and 200 mg/ml). Standard antibiotic discs containing vancomycin (30 μg) for S. pneumoniae, penicillin (10 units) for S. aureus, ceftriaxone (30 μg) for E. coli and ciprofloxacin (5 μg) for P. aeruginosa were used for the activity comparison. The results of the study revealed that the extract possesses antibacterial activity against S. aureus, S. pneumoniae and P. aeruginosa at all tested concentrations. The maximum zone of inhibition of 19 mm of the extract at 200 mg/ml was observed against S. pneumoniae. However, no zone of inhibition was observed against E. coli at the tested concentrations of the extract. Based on the results obtained in this study, it may be concluded that the fruit peel of P. granatum possess broad spectrum of antibacterial activity against a number bacteria.

Keywords: Punica granatum Linn., methanol extract, antibacterial, zone of inhibition

Procedia PDF Downloads 394
501 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives

Authors: Mohammadjavad Sotoudeheian

Abstract:

COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.

Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration

Procedia PDF Downloads 86
500 Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation

Authors: Jinge Liu, Shuyuan Min, Bingchuan Liu, Bangzhao Yin, Bo Peng, Peng Wen, Yun Tian

Abstract:

WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%.

Keywords: laser powder bed fusion, biodegradable metal, high temperature oxidation, biodegradation behavior, WE43

Procedia PDF Downloads 105
499 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement

Authors: Issam Lakdhar, Akram Alhussein, Juan Creus

Abstract:

With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.

Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties

Procedia PDF Downloads 184
498 Photophysics and Rotational Relaxation Dynamics of 6-Methoxyquinoline Fluorophore in Cationic Alkyltrimethylammonium Bromide Micelles

Authors: Tej Varma Y, Debi D. Pant

Abstract:

Photophysics and rotational dynamics of the fluorescent probe, 6-methoxyquinoline (6MQ) with cationic surfactant, alkyltrimethylammonium bromide (nTAB) micelle solutions have been investigated (n = 12, 14 and 16). Absorption and emission peaks of the dye have been observed to shift at concentrations around critical micellar concentration (cmc) of nTAB compared to that of bulk solutions suggesting probe is in a lower polar environment. The probe senses changes in polarity (ET (30)) brought about by variation of surfactant chain length concentration and is invariably solubilized in the aqueous interface or palisade layer. The order of change in polarity observed was DTAB > CTAB > TTAB. The binding constant study shows that the probe binds strongest with TTAB (is of the order TTAB > CTAB > DTAB) due to deeper penetration into the micelle. The anisotropy decay for the probe in all the nTAB micelles studied have been rationalized based on a two-step model consisting of fast-restricted rotation of the probe and slow lateral diffusion of the probe in the micelle that is coupled to the overall rotation of the micelle. Fluorescence lifetime measurements of probe in the cationic micelles demonstrate the close proximity of the 6MQ to the Br - counterions. The fluorescence lifetimes of TTAB and DTAB are much shorter than in CTAB. These results indicate that 6MQ resides to a substantial degree in the head group region of the micelles. All the changes observed in the steady state fluorescence, microenvironment, fluorescence lifetimes, fluorescence anisotropy, and other calculations are in agreement with each other suggesting binding of the cationic surfactant with the neutral dye molecule.

Keywords: photophysics, chain length, ntaB, micelles

Procedia PDF Downloads 636
497 Neuroblastoma in Children and the Potential Involvement of Viruses in Its Pathogenesis

Authors: Ugo Rovigatti

Abstract:

Neuroblastoma (NBL) has epitomized for at least 40 years our understanding of cancer cellular and molecular biology and its potential applications to novel therapeutic strategies. This includes the discovery of the very first oncogene aberrations and tumorigenesis suppression by differentiation in the 80s; the potential role of suppressor genes in the 90s; the relevance of immunotherapy in the millennium first, and the discovery of additional mutations by NGS technology in the millennium second decade. Similar discoveries were achieved in the majority of human cancers, and similar therapeutic interventions were obtained subsequently to NBL discoveries. Unfortunately, targeted therapies suggested by specific mutations (such as MYCN amplification –MNA- present in ¼ or 1/5 of cases) have not elicited therapeutic successes in aggressive NBL, where the prognosis is still dismal. The reasons appear to be linked to Tumor Heterogeneity, which is particularly evident in NBL but also a clear hallmark of aggressive human cancers generally. The new avenue of cancer immunotherapy (CIT) provided new hopes for cancer patients, but we still ignore the cellular or molecular targets. CIT is emblematic of high-risk disease (HR-NBL) since the mentioned GD2 passive immunotherapy is still providing better survival. We recently critically reviewed and evaluated the literature depicting the genomic landscapes of HR-NBL, coming to the qualified conclusion that among hundreds of affected genes, potential targets, or chromosomal sites, none correlated with anti-GD2 sensitivity. A better explanation is provided by the Micro-Foci inducing Virus (MFV) model, which predicts that neuroblasts infection with the MFV, an RNA virus isolated from a cancer-cluster (space-time association) of HR-NBL cases, elicits the appearance of MNA and additional genomic aberrations with mechanisms resembling chromothripsis. Neuroblasts infected with low titers of MFV amplified MYCN up to 100 folds and became highly transformed and malignant, thus causing neuroblastoma in young rat pups of strains SD and Fisher-344 and larger tumor masses in nu/nu mice. An association was discovered with GD2 since this glycosphingolipid is also the receptor for the family of MFV virus (dsRNA viruses). It is concluded that a dsRNA virus, MFV, appears to provide better explicatory mechanisms for the genesis of i) specific genomic aberrations such as MNA; ii) extensive tumor heterogeneity and chromothripsis; iii) the effects of passive immunotherapy with anti-GD2 monoclonals and that this and similar models should be further investigated in both pediatric and adult cancers.

Keywords: neuroblastoma, MYCN, amplification, viruses, GD2

Procedia PDF Downloads 100
496 The Studies of the Sorption Capabilities of the Porous Microspheres with Lignin

Authors: M. Goliszek, M. Sobiesiak, O. Sevastyanova, B. Podkoscielna

Abstract:

Lignin is one of three main constituents of biomass together with cellulose and hemicellulose. It is a complex biopolymer, which contains a large number of functional groups, including aliphatic and aromatic hydroxyl groups, carbohylic groups and methoxy groups in its structure, that is why it shows potential capacities for process of sorption. Lignin is a highly cross-linked polymer with a three-dimentional structure which can provide large surface area and pore volumes. It can also posses better dispersion, diffusion and mass transfer behavior in a field of the removal of, e.g., heavy-metal-ions or aromatic pollutions. In this work emulsion-suspension copolymerization method, to synthesize the porous microspheres of divinylbenzene (DVB), styrene (St) and lignin was used. There are also microspheres without the addition of lignin for comparison. Before the copolymerization, modification lignin with methacryloyl chloride, to improve its reactivity with other monomers was done. The physico-chemical properties of the obtained microspheres, e.g., pore structures (adsorption-desorption measurements), thermal properties (DSC), tendencies to swell and the actual shapes were also studied. Due to well-developed porous structure and the presence of functional groups our materials may have great potential in sorption processes. To estimate the sorption capabilities of the microspheres towards phenol and its chlorinated derivatives the off-line SPE (solid-phase extraction) method is going to be applied. This method has various advantages, including low-cost, easy to use and enables the rapid measurements for a large number of chemicals. The efficiency of the materials in removing phenols from aqueous solution and in desorption processes will be evaluated.

Keywords: microspheres, lignin, sorption, solid-phase extraction

Procedia PDF Downloads 183
495 Interface Engineering of Short- and Ultrashort Period W-Based Multilayers for Soft X-Rays

Authors: A. E. Yakshin, D. Ijpes, J. M. Sturm, I. A. Makhotkin, M. D. Ackermann

Abstract:

Applications like synchrotron optics, soft X-ray microscopy, X-ray astronomy, and wavelength dispersive X-ray fluorescence (WD-XRF) rely heavily on short- and ultra-short-period multilayer (ML) structures. In WD-XRF, ML serves as an analyzer crystal to disperse emission lines of light elements. The key requirement for the ML is to be highly reflective while also providing sufficient angular dispersion to resolve specific XRF lines. For these reasons, MLs with periods ranging from 1.0 to 2.5 nm are of great interest in this field. Due to the short period, the reflectance of such MLs is extremely sensitive to interface imperfections such as roughness and interdiffusion. Moreover, the thickness of the individual layers is only a few angstroms, which is close to the limit of materials to grow a continuous film. MLs with a period between 2.5 nm and 1.0 nm, combining tungsten (W) reflector with B₄C, Si, and Al spacers, were created and examined. These combinations show high theoretical reflectance in the full range from C-Kα (4.48nm) down to S-Kα (0.54nm). However, the formation of optically unfavorable compounds, intermixing, and interface roughness result in limited reflectance. A variety of techniques, including diffusion barriers, seed layers, and ion polishing for sputter-deposited MLs, were used to address these issues. Diffuse scattering measurements, photo-electron spectroscopy analysis, and X-ray reflectivity measurements showed a noticeable reduction of compound formation, intermixing, and interface roughness. This also resulted in a substantial increase in soft X-ray reflectance for W/Si, W/B4C, and W/Al MLs. In particular, the reflectivity of 1 nm period W/Si multilayers at the wavelength of 0.84 nm increased more than 3-fold – propelling forward the applicability of such multilayers for shorter wavelengths.

Keywords: interface engineering, reflectance, short period multilayer structures, x-ray optics

Procedia PDF Downloads 50
494 Selection of Suitable Reference Genes for Assessing Endurance Related Traits in a Native Pony Breed of Zanskar at High Altitude

Authors: Prince Vivek, Vijay K. Bharti, Manishi Mukesh, Ankita Sharma, Om Prakash Chaurasia, Bhuvnesh Kumar

Abstract:

High performance of endurance in equid requires adaptive changes involving physio-biochemical, and molecular responses in an attempt to regain homeostasis. We hypothesized that the identification of the suitable reference genes might be considered for assessing of endurance related traits in pony at high altitude and may ensure for individuals struggling to potent endurance trait in ponies at high altitude. A total of 12 mares of ponies, Zanskar breed, were divided into three groups, group-A (without load), group-B, (60 Kg) and group-C (80 Kg) on backpack loads were subjected to a load carry protocol, on a steep climb of 4 km uphill, and of gravel, uneven rocky surface track at an altitude of 3292 m to 3500 m (endpoint). Blood was collected before and immediately after the load carry on sodium heparin anticoagulant, and the peripheral blood mononuclear cell was separated for total RNA isolation and thereafter cDNA synthesis. Real time-PCR reactions were carried out to evaluate the mRNAs expression profile of a panel of putative internal control genes (ICGs), related to different functional classes, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β₂ microglobulin (β₂M), β-actin (ACTB), ribosomal protein 18 (RS18), hypoxanthine-guanine phosophoribosyltransferase (HPRT), ubiquitin B (UBB), ribosomal protein L32 (RPL32), transferrin receptor protein (TFRC), succinate dehydrogenase complex subunit A (SDHA) for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of native pony’s. Three different algorithms, geNorm, NormFinder, and BestKeeper software, were used to evaluate the stability of reference genes. The result showed that GAPDH was best stable gene and stability value for the best combination of two genes was observed TFRC and β₂M. In conclusion, the geometric mean of GAPDH, TFRC and β₂M might be used for accurate normalization of transcriptional data for assessing endurance related traits in Zanskar ponies during load carrying.

Keywords: endurance exercise, ubiquitin B (UBB), β₂ microglobulin (β₂M), high altitude, Zanskar ponies, reference gene

Procedia PDF Downloads 131
493 Targeted Photodynamic Therapy for Intraperitoneal Ovarian Cancer, A Way to Stimulate Anti-Tumoral Immune Response

Authors: Lea Boidin, Martha Baydoun, Bertrand Leroux, Olivier Morales, Samir Acherar, Celine Frochot, Nadira Delhem

Abstract:

Ovarian cancer (OC) is one of the most defying diseases in gynecologic oncology. Even though surgery remains crucial in the therapy of patients with primary ovarian cancer, recurrent recidivism calls for the development of new therapy protocols to propose for patients dealing with this cancer. FRα is described as a tumor‐associated antigen in OC, where FRα expression is usually linked with more poorly differentiated, aggressive tumors. The Photodynamic treatment (PDT) available data have shown improvements in the uptake of small tumors and in the induction of a proper anti-tumoral immune response. In order to target specifically peritoneal metastatis, which overexpress FRα, a new-patented PS coupled with folic acid has been developed in our team. Herein we propose PDT using this new patented PS for PDT applied in an in vivo mice model. The efficacy of the treatment was evaluated in mice without and with PBMC reconstitution. Mice were divided into four groups: Non-Treated, PS, Light Only, and PDT Treated and subjected to illumination by laser set at 668nm with a duration of illumination of 45 minutes (or 1 min of illumination followed by 2 minutes of pause repeated 45 times). When mice were not reconstituted and after fractionized PDT protocol, a significant decrease in the tumor volume was noticed. An induction in the anti-tumoral cytokine IFNγ chaperoned this decrease while a subsequent inhibition in the cytokine TGFβ. Even more crucial, when mice were reconstituted and upon PDT, the fold of tumor decrease was even higher. An immune response was activated decoded with an increase in NK, CD3 +, LT helper and Cytotoxic T cells. Thereafter, an increase in the expression of the cytokines IFNγ and TNFα were noticed while an inhibition in TGFβ, IL8 and IL10 accompanied this immune response activation. Therefore, our work has shown for the first time that a fractionized PDT protocol using a folate-targeted PDT is effective for treatment of ovarian cancer. The interest in using PDT in this case, goes beyond the local induction of tumor apoptosis only, but can promote subsequent anti-tumor response. Most of the therapies currently used to treat ovarian cancer, have an uncooperative outcomes on the host immune response. The readiness of a tumor adjuvant treatment like PDT adequate in eliminating the tumor and in concert stimulating anti-tumor immunity would be weighty.

Keywords: folate receptor, ovarian cancer, photodynamic therapy, humanized mice model

Procedia PDF Downloads 110
492 Phytochemical Constituents and Bioactive Properties of Glinus oppositifolius (L.) Aug. DC. against Bacterial Pathogens

Authors: Juliana Janet R. Martin-Puzon, Demetrio L. Valle, Windell L. Rivera

Abstract:

This study aimed to determine the presence of bioactive phytochemical constituents and evaluate the in vitro antibacterial activities of Glinus oppositifolius or carpet weed, a plant valued for its use in traditional medicine and as a vegetable. The leaves, stems, and roots were extracted using chloroform, ethanol, and methanol. Phytochemical screening revealed that the entire G. oppositifolius plant, i.e. roots, stems, and leaves, is a rich source of alkaloids, flavonoids, glycosides, saponins, sterols, tannins, and triterpenes. The antibacterial activity of the leaf and stem extracts were evaluated through disc diffusion, minimum inhibitory concentration, and bactericidal concentration assays against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing (ESβL+), carbapenem-resistant Enterobacteriaceae (CRE), and metallo-β-lactamase-producing (MβL+) Pseudomonas aeruginosa and Acinetobacter baumannii. The leaf extracts revealed antibacterial activities, inhibiting the growth of non-resistant and multidrug-resistant (MDR) strains of the Gram-negative bacteria E. coli, P. aeruginosa, and A. baumanii. In conclusion, the various biological activities of G. oppositifolius, including its antibacterial activity, are due to the presence of diverse bioactive secondary metabolites. The presence of phytochemical compounds in G. oppositifolius is scientific evidence on its use for treatment of many ailments. Thus, the results demonstrate the great potential of the plant as a new, alternative source of antimicrobials and other components with therapeutic value.

Keywords: antibacterial, Glinus oppositifolius, multidrug-resistant, secondary metabolites

Procedia PDF Downloads 576