Search results for: organismic integration theory of well-being and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13780

Search results for: organismic integration theory of well-being and learning

12640 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles

Authors: Paulo Sérgio Ribeiro de Araújo Bogas

Abstract:

Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.

Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing

Procedia PDF Downloads 88
12639 Determining Factors for Successful Blended Learning in Higher Education: A Qualitative Study

Authors: Pia Wetzl

Abstract:

The learning process of students can be optimized by combining online teaching with face-to-face sessions. So-called blended learning offers extensive flexibility as well as contact opportunities with fellow students and teachers. Furthermore, learning can be individualized and self-regulated. The aim of this article is to investigate which factors are necessary for blended learning to be successful. Semi-structured interviews were conducted with students (N = 60) and lecturers (N = 21) from different disciplines at two German universities. The questions focused on the perception of online, face-to-face and blended learning courses. In addition, questions focused on possible optimization potential and obstacles to practical implementation. The results show that on-site presence is very important for blended learning to be successful. If students do not get to know each other on-site, there is a risk of loneliness during the self-learning phases. This has a negative impact on motivation. From the perspective of the lecturers, the willingness of the students to participate in the sessions on-site is low. Especially when there is no obligation to attend, group work is difficult to implement because the number of students attending is too low. Lecturers would like to see more opportunities from the university and its administration to enforce attendance. In their view, this is the only way to ensure the success of blended learning. In addition, they see the conception of blended learning courses as requiring a great deal of time, which they are not always willing to invest. More incentives are necessary to keep the lecturers motivated to develop engaging teaching material. The study identifies factors that can help teachers conceptualize blended learning. It also provides specific implementation advice and identifies potential impacts. This catalogue has great value for the future-oriented development of courses at universities. Future studies could test its practical use.

Keywords: blended learning, higher education, teachers, student learning, qualitative research

Procedia PDF Downloads 72
12638 The Influence of Students’ Learning Factor and Parents’ Involvement in Their Learning and Suspension: The Application of Big Data Analysis of Internet of Things Technology

Authors: Chih Ming Kung

Abstract:

This study is an empirical study examining the enrollment rate and dropout rate of students from the perspectives of students’ learning, parents’ involvement and the learning process. Methods: Using the data collected from the entry website of Internet of Things (IoT), parents’ participation and the installation pattern of exit poll website, an investigation was conducted. Results: This study discovered that in the aspect of the degree of involvement, the attractiveness of courses, self-performance and departmental loyalty exerts significant influences on the four aspects: psychological benefits, physical benefits, social benefits and educational benefits of learning benefits. Parents’ participation also exerts a significant influence on the learning benefits. A suitable tool on the cloud was designed to collect the dynamic big data of students’ learning process. Conclusion: This research’s results can be valuable references for the government when making and promoting related policies, with more macro view and consideration. It is also expected to be contributory to schools for the practical study of promotion for enrollment.

Keywords: students’ learning factor, parents’ involvement, involvement, technology

Procedia PDF Downloads 150
12637 Using Systems Theory and Collective Impact Approaches to Increase the Retention and Success of University Student Stem Majors

Authors: Araceli Martínez Ortiz

Abstract:

An educational research effort is analyzed using systems theory to document the power of collective impact when addressing multiple factors contributing towards the retention of students majoring in science, technology, engineering and mathematics (STEM) academic programs. This research promotes understanding on how networked communities may work effectively toward a shared vision and mutually aligned activities that result in sustained, large scale change. The actions of a team of researchers in their third year of collaboration are presented to describe a model that positively aligns work efforts resulting in greater total gains. The goals of the multiple programs managed by the funded program team are to: 1) expand the number of students who choose to study a STEM field of study; 2) promote student collaborative learning; 3) support faculty understanding of the funds of knowledge of diverse students and 4) establish innovative and robust STEM education research that will lead to the development of nationally replicable, scalable models for broadening participation in STEM. The impacts of this research effort are measured through quantitative statistical analysis of the changes in second-year STEM undergraduate student retention rates and representation rates of women, Hispanics and African American STEM majors.

Keywords: collaborative impact, diversity, student retention, systems theory, STEM education

Procedia PDF Downloads 270
12636 Game-Based Learning in a Higher Education Course: A Case Study with Minecraft Education Edition

Authors: Salvador Antelmo Casanova Valencia

Abstract:

This study documents the use of the Minecraft Education Edition application to explore immersive game-based learning environments. We analyze the contributions of fourth-year university students who are pursuing a degree in Administrative Computing at the Universidad Michoacana de San Nicolas de Hidalgo. In this study, descriptive data and statistical inference are detailed using a quasi-experimental design using the Wilcoxon test. The instruments will provide data validation. Game-based learning in immersive environments necessarily implies greater student participation and commitment, resulting in the study, motivation, and significant improvements, promoting cooperation and autonomous learning.

Keywords: game-based learning, gamification, higher education, Minecraft

Procedia PDF Downloads 165
12635 Second Language Skill through M-Learning

Authors: Subramaniam Chandran, A. Geetha

Abstract:

This paper addresses three issues: how to prepare the instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in a preparatory program for bachelor’s degree. This program is designed for the disadvantaged learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India, nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where the conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.

Keywords: English language skill, disadvantaged learners, distance education, m-learning

Procedia PDF Downloads 429
12634 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches

Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand

Abstract:

Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.

Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis

Procedia PDF Downloads 82
12633 Fear of Negative Evaluation, Social Support and Wellbeing in People with Vitiligo

Authors: Rafia Rafique, Mutmina Zainab

Abstract:

The present study investigated the relationship between fear of negative evaluation (FNE), social support and well-being in people with Vitiligo. It was hypothesized that low level of FNE and greater social support is likely to predict well-being. It was also hypothesized that social support is likely to moderate the relationship between FNE and well-being. Correlational research design was used for the present study. Non-probability purposive sampling technique was used to collect a sample (N=122) of people with Vitiligo. Hierarchical Moderated Regression analysis was used to test prediction and moderation. Brief Fear of Negative Evaluation Scale, Multidimensional Scale of Perceived Social Support (MSPSS) and Mental Health Continuum-Short form (MHC-SF) were used to evaluate the study variables. Fear of negative evaluation negatively predicted well-being (emotional and psychological). Social support from significant others and friends predicted social well-being. Social Support from family predicted emotional and psychological well-being. It was found that social support from significant others moderated the relationship between FNE and emotional well-being and social support from family moderated the relationship between FNE and social well-being. Dermatologists treating people with Vitiligo need to educate them and their families about the buffering role of social support (family and significant others). Future studies need to focus on other important mediating factors that can possibly explain the relationship between fear of negative evaluation and wellbeing.

Keywords: fear of negative evaluation, hierarchical moderated regression, vitiligo, well-being

Procedia PDF Downloads 308
12632 Chern-Simons Equation in Financial Theory and Time-Series Analysis

Authors: Ognjen Vukovic

Abstract:

Chern-Simons equation represents the cornerstone of quantum physics. The question that is often asked is if the aforementioned equation can be successfully applied to the interaction in international financial markets. By analysing the time series in financial theory, it is proved that Chern-Simons equation can be successfully applied to financial time-series. The aforementioned statement is based on one important premise and that is that the financial time series follow the fractional Brownian motion. All variants of Chern-Simons equation and theory are applied and analysed. Financial theory time series movement is, firstly, topologically analysed. The main idea is that exchange rate represents two-dimensional projections of three-dimensional Brownian motion movement. Main principles of knot theory and topology are applied to financial time series and setting is created so the Chern-Simons equation can be applied. As Chern-Simons equation is based on small particles, it is multiplied by the magnifying factor to mimic the real world movement. Afterwards, the following equation is optimised using Solver. The equation is applied to n financial time series in order to see if it can capture the interaction between financial time series and consequently explain it. The aforementioned equation represents a novel approach to financial time series analysis and hopefully it will direct further research.

Keywords: Brownian motion, Chern-Simons theory, financial time series, econophysics

Procedia PDF Downloads 479
12631 Online Learning Versus Face to Face Learning: A Sentiment Analysis on General Education Mathematics in the Modern World of University of San Carlos School of Arts and Sciences Students Using Natural Language Processing

Authors: Derek Brandon G. Yu, Clyde Vincent O. Pilapil, Christine F. Peña

Abstract:

College students of Cebu province have been indoors since March 2020, and a challenge encountered is the sudden shift from face to face to online learning and with the lack of empirical data on online learning on Higher Education Institutions (HEIs) in the Philippines. Sentiments on face to face and online learning will be collected from University of San Carlos (USC), School of Arts and Sciences (SAS) students regarding Mathematics in the Modern World (MMW), a General Education (GE) course. Natural Language Processing with machine learning algorithms will be used to classify the sentiments of the students. Results of the research study are the themes identified through topic modelling and the overall sentiments of the students in USC SAS

Keywords: natural language processing, online learning, sentiment analysis, topic modelling

Procedia PDF Downloads 251
12630 An Empirical Study of Students’ Learning Attitude, Problem-solving Skills and Learning Engagement in an Online Internship Course During Pandemic

Authors: PB Venkataraman

Abstract:

Most of the real-life problems are ill-structured. They do not have a single solution but many competing solutions. The solution paths are non-linear and ambiguous, and the problem definition itself is many times a challenge. Students of professional education learn to solve such problems through internships. The current pandemic situation has constrained on-site internship opportunities; thus the students have no option but to pursue this learning online. This research assessed the learning gain of four undergraduate students in engineering as they undertook an online internship in an organisation over a period of eight weeks. A clinical interview at the end of the internship provided the primary data to assess the team’s problem-solving skills using a tested rubric. In addition to this, change in their learning attitudes were assessed through a pre-post study using a repurposed CLASS instrument for Electrical Engineering. Analysis of CLASS data indicated a shift in the sophistication of their learning attitude. A learning engagement survey adopting a 6-point Likert scale showed active participation and motivation in learning. We hope this new research will stimulate educators to exploit online internships even beyond the time of pandemic as more and more business operations are transforming into virtual.

Keywords: ill-structured problems, learning attitudes, internship, assessment, student engagement

Procedia PDF Downloads 207
12629 Exploration of Competitive Athletes’ Superstition in Taiwan: "Miracle" and "Coincidence"

Authors: Shieh Shiow-fang

Abstract:

Superstitious thoughts or actions often occur during athletic competitions. Often "superstitious rituals" have a positive impact on the performance of competitive athletes. Athletes affirm the many psychological benefits of religious beliefs mostly in a positive way. Method: By snowball sampling, we recruited 10 experienced competitive athletes as participants. We used in-person and online one-to-one in-depth interview to collect their experiences about sport superstition. The total interview time was 795 minutes. We analyzed the raw data with the grounded theory processes suggested by Strauss and Corbin (1990). Results: The factors affecting athlete performance are ritual beliefs, taboo awareness, learning norms, and spontaneous attribution behaviors. Conclusion: We concluded that sports superstition reflects several psychological implications. The analysis results of this paper can provide another research perspective for the future study of sports superstition behavior.

Keywords: superstition, taboo awareness, learning norms, competitive athlete

Procedia PDF Downloads 89
12628 Association between Occupational Characteristics and Well-Being: An Exploratory Study of Married Working Women in New Delhi, India

Authors: Kanchan Negi

Abstract:

Background: Modern and urban occupational culture have driven demands for people to work long hours and weekends and take work to home at times. Research on the health effects of these exhaustive temporal work patterns is scant or contradictory. This study examines the relationship between work patterns and wellbeing in a sample of women living in the metropolitan hub of Delhi. Method: This study is based on the data collected from 360 currently married women between age 29 and 49 years, working in the urban capital hub of India, i.e., Delhi. The women interviewed were professionals from the education, health, banking and information and technology (IT) sector. Bivariate analysis was done to study the characteristics of the sample. Logistic regression analysis was used to estimate the physical and psychological wellbeing across occupational characteristics. Results: Most of the working women were below age 35 years; around 30% of women worked in the education sector, 23% in health, 21% in banking and 26% in the IT sector. Over 55% of women were employed in the private sector and only 36% were permanent employees. Nearly 30% of women worked for more than the standard 8 hours a day. The findings from logistic regression showed that compared to women working in the education sector, those who worked in the banking and IT sector more likely to have physical and psychological health issues (OR 2.07-4.37, CI 1.17-4.37); women who bear dual burden of responsibilities had higher odds of physical and psychological health issues than women who did not (OR 1.19-1.85 CI 0.96-2.92). Women who worked for more than 8 hours a day (OR 1.15, CI 1.01-1.30) and those who worked for more than five days a week (OR 1.25, CI 1.05-1.35) were more likely to have physical health issues than women who worked for 6-8 hours a day and five days e week, respectively. Also, not having flexible work timings and compensatory holidays increased the odds of having physical and psychological health issues among working women (OR 1.17-1.29, CI 1.01-1.47). Women who worked in the private sector, those employed temporarily and who worked in the non-conducive environments were more likely to have psychological health issues as compared to women in the public sector, permanent employees and those who worked in a conducive environment, respectively (OR 1.33-1.67, CI 1.09-2.91). Women who did not have poor work-life balance had reduced the odds of psychological health issues than women with poor work-life balance (OR 0.46, CI 0.25-0.84). Conclusion: Poor wellbeing significantly linked to strenuous and rigid work patterns, suggesting that modern and urban work culture may contribute to the poor wellbeing of working women. Noticing the recent decline in female workforce participation in Delhi, schemes like Flexi-timings, compensatory holidays, work-from-home and daycare facilities for young ones must be welcomed; these policies already exist in some private sector firms, and the public sectors companies should also adopt such changes to ease the dual burden as homemaker and career maker. This could encourage women in the urban areas to readily take up the jobs with less juggle to manage home and work.

Keywords: occupational characteristics, urban India, well-being, working women

Procedia PDF Downloads 209
12627 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 62
12626 Detect QOS Attacks Using Machine Learning Algorithm

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack.

Keywords: wireless lan, quality of service, machine learning, class hijacking, EDCA remapping

Procedia PDF Downloads 65
12625 Self-Regulated Learning: A Required Skill for Web 2.0 Internet-Based Learning

Authors: Pieter Conradie, M. Marina Moller

Abstract:

Web 2.0 Internet-based technologies have intruded all aspects of human life. Presently, this phenomenon is especially evident in the educational context, with increased disruptive Web 2.0 technology infusions dramatically changing educational practice. The most prominent of these Web 2.0 intrusions can be identified as Massive Open Online Courses (Coursera, EdX), video and photo sharing sites (Youtube, Flickr, Instagram), and Web 2.0 online tools utilize to create Personal Learning Environments (PLEs) (Symbaloo (aggregator), Delicious (social bookmarking), PBWorks (collaboration), Google+ (social networks), Wordspress (blogs), Wikispaces (wiki)). These Web 2.0 technologies have supported the realignment from a teacher-based pedagogy (didactic presentation) to a learner-based pedagogy (problem-based learning, project-based learning, blended learning), allowing greater learner autonomy. No longer is the educator the source of knowledge. Instead the educator has become the facilitator and mediator of the learner, involved in developing learner competencies to support life-long learning (continuous learning) in the 21st century. In this study, the self-regulated learning skills of thirty first-year university learners were explored by utilizing the Online Self-regulated Learning Questionnaire. Implementing an action research method, an intervention was affected towards improving the self-regulation skill set of the participants. Statistical significant results were obtained with increased self-regulated learning proficiency, positively impacting learner performance. Goal setting, time management, environment structuring, help seeking, task (learning) strategies and self-evaluation skills were confirmed as determinants of improved learner success.

Keywords: andragogy, online self-regulated learning questionnaire, self-regulated learning, web 2.0

Procedia PDF Downloads 420
12624 An Analysis of How Students Perceive Their Self-Efficacy in Online Speaking Classes

Authors: Heny Hartono, Cecilia Titiek Murniati

Abstract:

The pandemic has given teachers and students no other choice but having full online learning. In such an emergency situation as the time of the covid-19 pandemic, the application of LMS (Learner Management System) in higher education is the most reasonable solution for students and teachers. In fact, the online learning requires all elements of a higher education systems, including the human resources, infrastructure, and supporting systems such as the application, server, and stable internet connection. The readiness of the higher education institution in preparing the online system may secure those who are involved in the online learning process. It may also result in students’ self-efficacy in online learning. This research aimed to investigate how students perceive their self-efficacy in online English learning, especially in speaking classes which is considered as a productive language skill. This research collects qualitative data with narrative inquiry involving 25 students of speaking classes as the respondents. The results of this study show that students perceive their self-efficacy in speaking online classes as not very high.

Keywords: self-efficacy, online learning, speaking class, college students, e-learning

Procedia PDF Downloads 103
12623 The Effects of Learning Engagement on Interpreting Performance among English Major Students

Authors: Jianhua Wang, Ying Zhou, Xi Zhang

Abstract:

To establish the influential mechanism of learning engagement on interpreter’s performance, the present study submitted a questionnaire to a sample of 927 English major students with 804 valid ones and used the structural equation model as the basis for empirical analysis and statistical inference on the sample data. In order to explore the mechanism for interpreting learning engagement on student interpreters’ performance, a path model of interpreting processes with three variables of ‘input-environment-output’ was constructed. The results showed that the effect of each ‘environment’ variable on interpreting ability was different from and greater than the ‘input’ variable, and learning engagement was the greatest influencing factor. At the same time, peer interaction on interpreting performance has significant influence. Results suggest that it is crucial to provide effective guidance for optimizing learning engagement and interpreting teaching research by both improving the environmental support and building the platform of peer interaction, beginning with learning engagement.

Keywords: learning engagement, interpreting performance, interpreter training, English major students

Procedia PDF Downloads 210
12622 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030

Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni

Abstract:

Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.

Keywords: e-commerce, hardware acceleration, logistics, machine learning, mixed integer programming, optimization

Procedia PDF Downloads 261
12621 Comparative Learning Challenges Experienced by Students in Universities of Developing Nations in Sub-Saharan Africa

Authors: Chinaza Uleanya, Martin Duma, Bongani Gamede

Abstract:

The study investigated learning challenges experienced by students in universities situated in developing sub-Saharan African countries using selected universities in South Africa and Nigeria. Questionnaires were administered to 2,335 randomly selected students from selected universities in South Africa and Nigeria. The outcome of the study shows that six common learning challenges are visible in developing sub-Sahara African universities. The causes of these learning challenges cut across the failure in responsibilities of the various stakeholders in the field of education and the effects are monumental both to the students and society. This paper suggests recommendations to university administrators, education policy makers and implementers on the need to take education more seriously, to review and implement appropriate policies, and to ensure provision of quality education through the supply of adequate amenities and other motivating factors.

Keywords: learning, challenges, learning challenges, access with success, participatory access

Procedia PDF Downloads 301
12620 Exercise and Social Activities for Elderly with an Impairment Who Are Living Alone in the Community: Effects and Influencing Factors of a Dutch Program

Authors: Renate Verkaik, Mieke Rijken, Hennie Boeije

Abstract:

Elderly who are living alone and who are having one or more impairments are vulnerable for a loss of wellbeing and institutionalization. Physical exercise and social activities together with peers have the potential to make them more resilient. The Dutch program ‘More Resilience, Longer at Home’ initiated by FNO funded 126 local projects to stimulate vulnerable older citizens to participate in exercise and social activities, and as such to improve wellbeing and independent living. The program evaluation addressed the following questions: (1) what are the effects of the program on older (65+) participants exercise behavior, social activities and what is the relationship with wellbeing?, (2) which factors contribute to successful implementation of the projects and their outcomes? A mixed method approach was used. Effects on participants were assessed with a short survey, containing questions on exercise, social engagement, daily functioning, loneliness and life satisfaction. Results of the participants were compared with those of a reference group from the Dutch national population. Perceived influencing factors were investigated with a questionnaire for project leaders. This questionnaire was based on site visits and interviews with project leaders, volunteers and participating elderly. Preliminary results show that social engagement of the participating elderly rises significantly (p ≤ .05) as do their exercise levels and daily functioning. They experience less social loneliness, but not less emotional loneliness. Additionally, there is a positive association between daily functioning and life satisfaction and between exercise and life satisfaction. Perceived influencing factors that contribute to successful implementation of the projects can be categorized in 4 types: (1) characteristics of the activities; (2) profiles of the involved staff (professionals and volunteers), (3) characteristics of the organization, (4) the social political environment. Conclusions are that local projects have been successful in stimulating older citizens to participate in exercise and social activities. Multiple factors need to be addressed to ensure sustainability and scaling-up of the good practices.

Keywords: elderly living alone in the community, exercise and social activities, resilience, quality of life

Procedia PDF Downloads 140
12619 MATLAB Supported Learning and Students' Conceptual Understanding of Functions of Two Variables: Experiences from Wolkite University

Authors: Eyasu Gemech, Kassa Michael, Mulugeta Atnafu

Abstract:

A non-equivalent group's quasi-experiment research was conducted at Wolkite University to investigate MATLAB supported learning and students' conceptual understanding in learning Applied Mathematics II using four different comparative instructional approaches: MATLAB supported traditional lecture method, MATLAB supported collaborative method, only collaborative method, and only traditional lecture method. Four intact classes of mechanical engineering groups 1 and 2, garment engineering and textile engineering students were randomly selected out of eight departments. The first three departments were considered as treatment groups and the fourth one 'Textile engineering' was assigned as a comparison group. The departments had 30, 29, 35 and 32 students respectively. The results of the study show that there is a significant mean difference in students' conceptual understanding between groups of students learning through MATLAB supported collaborative method and the other learning approaches. Students who were learned through MATLAB technology-supported learning in combination with collaborative method were found to understand concepts of functions of two variables better than students learning through the other methods of learning. These, hence, are informative of the potential approaches universities would follow for a better students’ understanding of concepts.

Keywords: MATLAB supported collaborative method, MATLAB supported learning, collaborative method, conceptual understanding, functions of two variables

Procedia PDF Downloads 282
12618 Poor Cognitive Flexibility as Suggested Basis for Learning Difficulties among Children with Moderate-INTO-Severe Asthma: Evidence from WCSTPerformance

Authors: Haitham Taha

Abstract:

The cognitive flexibility of 27 asthmatic children with learning difficulties was tested by using the Wisconsin card sorting test (WCST) and compared to the performances of 30 non-asthmatic children who have persistence learning difficulties also. The results revealed that the asthmatic group had poor performance through all the WCST psychometric parameters and especially the preservative errors one. The results were discussed in light of the postulation that poor executive functions and specifically poor cognitive flexibility are in the basis of the learning difficulties of asthmatic children with learning difficulties. Neurophysiologic framework was suggested for explaining the etiology of poor executive functions and cognitive flexibility among children with moderate into severe asthma.

Keywords: asthma, learning disabilities, executive functions, cognitive flexibility, WCST

Procedia PDF Downloads 504
12617 The Effect of Language and Literature Integration on the Teaching of English Vocabulary and Grammar in Secondary Schools in Zamfara State, Nigeria

Authors: Umar Bello

Abstract:

Literature has become an invaluable subject which has added a great value and contribution to the teaching of English language and the discovery of many other developed ideas. Literature produces an exhilarating impulse that imprints a lasting picture on the mind of a learner. Many researchers have devised various means and approaches to language Teaching methods which remain unconvinging and which yield little result, but it has remained unconvincing because it has only produced little results. Devicing a method that eliminates monotony and boredome to learners is a good factor that enhances students’ motivation to learning. In this sense, literature and language become unavoidable components that aid intellectual development. This study examines the indispensability of literature as a means of English Language teaching to secondary school classes. The researcher has developed many instructive activities which are believed will help students to improve their study in grammar and vocabulary. The researcher has used quasi-experimental approach using experimental group and control group to find out how literature enhances the students grammar as well as their vocabulary. The findings revealed a positive performance in the experimental group doing better than the control group using simple percentage. The results make it clear that literature allows learners to pay more attention and develop more interest to their studies. In giving a perspicacious linguistic development, literature therefore remains an essential tool for language teaching classrooms, thereby enhancing their grammatical and vocabulary usage.

Keywords: teaching vocabulary, integration, poetry, classroom

Procedia PDF Downloads 109
12616 Measuring the Resilience of e-Governments Using an Ontology

Authors: Onyekachi Onwudike, Russell Lock, Iain Phillips

Abstract:

The variability that exists across governments, her departments and the provisioning of services has been areas of concern in the E-Government domain. There is a need for reuse and integration across government departments which are accompanied by varying degrees of risks and threats. There is also the need for assessment, prevention, preparation, response and recovery when dealing with these risks or threats. The ability of a government to cope with the emerging changes that occur within it is known as resilience. In order to forge ahead with concerted efforts to manage reuse and integration induced risks or threats to governments, the ambiguities contained within resilience must be addressed. Enhancing resilience in the E-Government domain is synonymous with reducing risks governments face with provisioning of services as well as reuse of components across departments. Therefore, it can be said that resilience is responsible for the reduction in government’s vulnerability to changes. In this paper, we present the use of the ontology to measure the resilience of governments. This ontology is made up of a well-defined construct for the taxonomy of resilience. A specific class known as ‘Resilience Requirements’ is added to the ontology. This class embraces the concept of resilience into the E-Government domain ontology. Considering that the E-Government domain is a highly complex one made up of different departments offering different services, the reliability and resilience of the E-Government domain have become more complex and critical to understand. We present questions that can help a government access how prepared they are in the face of risks and what steps can be taken to recover from them. These questions can be asked with the use of queries. The ontology focuses on developing a case study section that is used to explore ways in which government departments can become resilient to the different kinds of risks and threats they may face. A collection of resilience tools and resources have been developed in our ontology to encourage governments to take steps to prepare for emergencies and risks that a government may face with the integration of departments and reuse of components across government departments. To achieve this, the ontology has been extended by rules. We present two tools for understanding resilience in the E-Government domain as a risk analysis target and the output of these tools when applied to resilience in the E-Government domain. We introduce the classification of resilience using the defined taxonomy and modelling of existent relationships based on the defined taxonomy. The ontology is constructed on formal theory and it provides a semantic reference framework for the concept of resilience. Key terms which fall under the purview of resilience with respect to E-Governments are defined. Terms are made explicit and the relationships that exist between risks and resilience are made explicit. The overall aim of the ontology is to use it within standards that would be followed by all governments for government-based resilience measures.

Keywords: E-Government, Ontology, Relationships, Resilience, Risks, Threats

Procedia PDF Downloads 341
12615 A Neuroscience-Based Learning Technique: Framework and Application to STEM

Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes

Abstract:

Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.

Keywords: emotion, emotion-enhanced memory, learning technique, STEM

Procedia PDF Downloads 95
12614 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: few-shot learning, triplet network, adaptive margin, deep learning

Procedia PDF Downloads 174
12613 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision

Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias

Abstract:

Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.

Keywords: healthcare, fall detection, transformer, transfer learning

Procedia PDF Downloads 158
12612 Factors Drive Consumers to Purchase Digital Music: An Empirical Study

Authors: Chechen Liao, Yi-Jen Huang, Yu-Ting Lu

Abstract:

This study explores and complements digital aspects. In this study, we construct a research model based on the theory of reasoned action and extend it with the advantages and disadvantages of intangibility (convenience, perceived risk), some characteristics of digital products (price, variety, trialability), and factors related to entertainment (perceived playfulness) to predict what consumers really consider when they buy digital music. Eight hypotheses were tested and supported. Finally, we prove that the theory of reasoned action is still valid in the field of digital products.

Keywords: digital music, digital product, theory of reasoned action

Procedia PDF Downloads 447
12611 Using Problem-Based Learning on Teaching Early Intervention for College Students

Authors: Chen-Ya Juan

Abstract:

In recent years, the increasing number of children with special needs has brought a lot of attention by many scholars and experts in education, which enforced the preschool teachers face the harsh challenge in the classroom. To protect the right of equal education for all children, enhance the quality of children learning, and take care of the needs of children with special needs, the special education paraprofessional becomes one of the future employment trends for students of the department of the early childhood care and education. Problem-based learning is a problem-oriented instruction, which is different from traditional instruction. The instructor first designed an ambiguous problem direction, following the basic knowledge of early intervention, students had to find clues to solve the problem defined by themselves. In the class, the total instruction included 20 hours, two hours per week. The primary purpose of this paper is to investigate the relationship of student academic scores, self-awareness, learning motivation, learning attitudes, and early intervention knowledge. A total of 105 college students participated in this study and 97 questionnaires were effective. The effective response rate was 90%. The student participants included 95 females and two males. The average age of the participants was 19 years old. The questionnaires included 125 questions divided into four major dimensions: (1) Self-awareness, (2) learning motivation, (3) learning attitudes, and (4) early intervention knowledge. The results indicated (1) the scores of self-awareness were 58%; the scores of the learning motivations was 64.9%; the scores of the learning attitudes was 55.3%. (2) After the instruction, the early intervention knowledge has been increased to 64.2% from 38.4%. (3) Student’s academic performance has positive relationship with self-awareness (p < 0.05; R = 0.506), learning motivation (p < 0.05; R = 0.487), learning attitudes (p < 0.05; R = 0.527). The results implied that although students had gained early intervention knowledge by using PBL instruction, students had medium scores on self-awareness and learning attitudes, medium high in learning motivations.

Keywords: college students, children with special needs, problem-based learning, learning motivation

Procedia PDF Downloads 159