Search results for: nuclear fusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1347

Search results for: nuclear fusion

207 Effect of Citric Acid on Hydrogen-Bond Interactions and Tensile Retention Properties of Citric Acid Modified Thermoplastic Starch Biocomposites

Authors: Da-Wei Wang, Liang Yang, Xuan-Long Peng, Mei-Chuan Kuo, Jen-Taut Yeh

Abstract:

The tensile retention and waterproof properties of thermoplastic starch (TPS) resins were significantly enhanced by modifying with proper amounts of citric acid (CA) and by melt-blending with poly(lactic acid) (PLA), although no distinguished chemical reaction occurred between CA and starch molecules. As evidenced by Fourier transform infrared spectroscopy and Solid-state 13C Nuclear Magnetic Resonance analyses, disruption of intra and interhydrogen-bondings within starch molecules did occur during the modification processes of CA modified TPS (i.e. TPS100CAx) specimens. The tensile strength (σf) retention values of TPS specimens reduced rapidly from 27.8 to 20.5 and 0.4 MPa, respectively, as the conditioning time at 20°C/50% relative humidity (RH) increased from 0 to 7 and 70 days, respectively. While the elongation at break (εf) retention values of TPS specimens increased rapidly from 5.9 to 6.5 and 34.8%, respectively, as the conditioning time increased from 0 to 7 and 70 days. After conditioning at 20°C/50% RH for 70 days, the σf and εf retention values of the best prepared (TPS100CA0.1)30PLA70 specimen are equivalent to 85% and 167% of its initial σf and εf values, respectively, and are more than 105 times higher but 48% lower than those of TPS specimens conditioned at 20°C/50% RH for the same amount of time. Demarcated diffraction peaks, new melting endotherms of recrystallized starch crystals and distinguished ductile characteristics with drawn debris were found for many conditioned TPS specimens, however, only slight retrogradation effect and much less drawn debris was found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens. The significantly improved water proof, tensile retention properties and relatively unchanged in retrogradation effect found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens are apparently due to the efficient blocking of the moisture-absorbing hydroxyl groups (free or hydrogen bonded) by hydrogen-bonding CA with starch molecules during their modification processes.

Keywords: thermoplastic starch, hydrogen-bonding, water proof, strength retention

Procedia PDF Downloads 305
206 Investigations on the Fatigue Behavior of Welded Details with Imperfections

Authors: Helen Bartsch, Markus Feldmann

Abstract:

The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended.

Keywords: effective notch stress, fatigue, fatigue design, weld imperfections

Procedia PDF Downloads 259
205 Regional Variation of Cancer Incidence in Nepal

Authors: Rudra Prasad Khanal

Abstract:

Introduction: Non-communicable disease, such as cancer, has spread all over the world for some last decades. However, every nation has experienced a burden from the development of technology. In the context of Nepal, 10 to 15 thousand new cancer incidences are being registered in different hospitals for treatment. Since the date of starting nuclear medicine at Bir Hospital in 1998, cancer patients have been getting treatment regularly. According to the data of the population-based cancer registry, approximately 60% of the population having a middle-class income is being affected by cancer in Nepal. Methods and Materials: The study is aimed to find out the particular place where the population density of new cancer incidence is highest in Nepal and to inform the concerned regulatory body that is working on cancer screening and early detection for the proper treatment from the beginning. In order to identify the areas with the highest population density of new cancer incidence, all the data of cancer patients were collected from five different renowned hospitals and also from the population-based cancer registry center and then analyzed the data. The history of cancer patients was studied from 2003 to 2020, but here the data are analyzed from 2015 to 2020 only to find the latest trend in cancer incidence. Results: In the five major hospitals in Nepal, the total new cancer incidence was 61783 from 2015 to 2020. Out of those, 34617 were female, and 27176 were male. This research shows that female cancer patients were more every year. In the male, lung cancer patients more than cancer of other organs, but in females, the number of breast cancer patients was greatest. The age-adjusted mortality rate for males in Kathmandu valley was 36.3, and for females was 27.0 per 100,000 population. The cancer incidence and mortality rate were slightly lesser in other districts of Nepal. This rate increased with the increase in the age of people. Over 60 years, cancer incidence and mortality rates have been found to increase rapidly. Conclusion: This research supports conducting the program of cancer screening and early detection at Kathmandu valley with high priority and then Morang, Rukum, SSDM, etc., to control cancer.

Keywords: cancer incidence, research scholar, Tribhuvan University, Bhaktapur Cancer Hospital, Nepal

Procedia PDF Downloads 74
204 Transcriptome Analysis for Insights into Disease Progression in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Dengue virus infection is now considered as one of the most important mosquito-borne infection in human. The virus is known to promote vascular permeability, cerebral edema leading to Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Dengue infection has known to be endemic in India for over two centuries as a benign and self-limited disease. In the last couple of years, the disease symptoms have changed, manifesting severe secondary complication. So far, Delhi has experienced 12 outbreaks of dengue virus infection since 1997 with the last reported in 2014-15. Without specific antivirals, the case management of high-risk dengue patients entirely relies on supportive care, involving constant monitoring and timely fluid support to prevent hypovolemic shock. Nonetheless, the diverse clinical spectrum of dengue disease, as well as its initial similarity to other viral febrile illnesses, presents a challenge in the early identification of this high-risk group. WHO recommends the use of warning signs to identify high-risk patients, but warning signs generally appear during, or just one day before the development of severe illness, thus, providing only a narrow window for clinical intervention. The ability to predict which patient may develop DHF and DSS may improve the triage and treatment. With the recent discovery of high throughput RNA sequencing allows us to understand the disease progression at the genomic level. Here, we will collate the results of RNA-Sequencing data obtained recently from PBMC of different categories of dengue patients from India and will discuss the possible role of deregulated genes and long non-coding RNAs NEAT1 for development of disease progression.

Keywords: long non-coding RNA (lncRNA), dengue, peripheral blood mononuclear cell (PBMC), nuclear enriched abundant transcript 1 (NEAT1), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS)

Procedia PDF Downloads 308
203 Design and Synthesis of Fully Benzoxazine-Based Porous Organic Polymer Through Sonogashira Coupling Reaction for CO₂ Capture and Energy Storage Application

Authors: Mohsin Ejaz, Shiao-Wei Kuo

Abstract:

The growing production and exploitation of fossil fuels have placed human society in serious environmental issues. As a result, it's critical to design efficient and eco-friendly energy production and storage techniques. Porous organic polymers (POPs) are multi-dimensional porous network materials developed through the formation of covalent bonds between different organic building blocks that possess distinct geometries and topologies. POPs have tunable porosities and high surface area making them a good candidate for an effective electrode material in energy storage applications. Herein, we prepared a fully benzoxazine-based porous organic polymers (TPA–DHTP–BZ POP) through sonogashira coupling of dihydroxyterephthalaldehyde (DHPT) and triphenylamine (TPA) containing benzoxazine (BZ) monomers. Firstly, both BZ monomers (TPA-BZ-Br and DHTP-BZ-Ea) were synthesized by three steps, including Schiff base, reduction, and mannich condensation reaction. Finally, the TPA–DHTP–BZ POP was prepared through the sonogashira coupling reaction of brominated monomer (TPA-BZ-Br) and ethynyl monomer (DHTP-BZ-Ea). Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the successful synthesis of monomers as well as POP. The porosity of TPA–DHTP–BZ POP was investigated by the N₂ absorption technique and showed a Brunauer–Emmett–Teller (BET) surface area of 196 m² g−¹, pore size 2.13 nm and pore volume of 0.54 cm³ g−¹, respectively. The TPA–DHTP–BZ POP experienced thermal ring-opening polymerization, resulting in poly (TPA–DHTP–BZ) POP having strong inter and intramolecular hydrogen bonds formed by phenolic groups and Mannich bridges, thereby enhancing CO₂ capture and supercapacitive performance. The poly(TPA–DHTP–BZ) POP demonstrated a remarkable CO₂ capture of 3.28 mmol g−¹ and a specific capacitance of 67 F g−¹ at 0.5 A g−¹. Thus, poly(TPA–DHTP–BZ) POP could potentially be used for energy storage and CO₂ capture applications.

Keywords: porous organic polymer, benzoxazine, sonogashira coupling, CO₂, supercapacitor

Procedia PDF Downloads 73
202 Neuroprotective Effect of Chrysin on Thioacetamide-Induced Hepatic Encephalopathy in Rats: Role of Oxidative Stress and TLR-4/NF-κB Pathway

Authors: S. A. El-Marasy, S. A. El Awdan, R. M. Abd-Elsalam

Abstract:

This study aimed to investigate the possible neuroprotective effect of chrysin on thioacetamide (TAA)-induced hepatic encephalopathy in rats. Also, the effect of chrysin on motor impairment, cognitive deficits, oxidative stress, neuroinflammation, apoptosis and histopathological damage was assessed. Male Wistar rats were randomly allocated into five groups. The first group received the vehicle (distilled water) for 21 days and is considered as normal group. While the second one received intraperitoneal dose of TAA (200 mg/kg) at three alternative days during the third week of the experiment to induce HE and is considered as control group. The other three groups were orally administered chrysin for 21 days (25, 50, 100 mg/kg) and starting from day 17; rats received intraperitoneal dose of TAA (200 mg/kg) at three alternative days. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Chrysin reversed TAA-induced motor coordination in rotarod test, cognitive deficits in object recognition test (ORT) and attenuated serum ammonia, hepatic liver enzymes, reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), reduced nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) brain contents. Chrysin administration also reduced Toll-4 receptor (TLR-4) gene expression, caspase-3 protein expression, hepatic necrosis and astrocyte swelling. This study depicts that chrysin exerted neuroprotective effect in TAA-induced HE rats, evidenced by improvement of cognitive deficits, motor incoordination and histopathological changes such as astrocyte swelling and vacuolization; hallmarks in HE, via reducing hyperammonemia, ameliorating hepatic function, in addition to its anti-oxidant, inactivation of TLR-4/NF-κB inflammatory pathway, and anti-apoptotic effects.

Keywords: chrysin, hepatic encephalopathy, oxidative stress, rats, thioacetamide, TLR4/NF-κB pathway

Procedia PDF Downloads 161
201 Examining the Discursive Hegemony of British Energy Transition Narratives

Authors: Antonia Syn

Abstract:

Politicians’ outlooks on the nature of energy futures and an ‘Energy Transition’ have evolved considerably alongside a steady movement towards renewable energies, buttressed by lower technology costs, rising environmental concerns, and favourable national policy decisions. This paper seeks to examine the degree to which an energy transition has become an incontrovertible ‘status quo’ in parliament, and whether politicians share similar understandings of energy futures or narrate different stories under the same label. Parliamentarians construct different understandings of the same reality, in the form of co-existing and competing discourses, shaping and restricting how policy problems and solutions are understood and tackled. Approaching energy policymaking from a parliamentary discourse perspective draws directly from actors’ concrete statements, offering an alternative to policy literature debates revolving around inductive policy theories. This paper uses computer-assisted discourse analysis to describe fundamental discursive changes in British parliamentary debates around energy futures. By applying correspondence cluster analyses to Hansard transcripts from 1986 to 2010, we empirically measure the policy positions of Labour and Conservative politicians’ parliamentary speeches during legislatively salient moments preceding significant energy transition-related policy decisions. Results show the concept of a technology-based, market-driven transition towards fossil-free and nuclear-free renewables integration converged across Labour and the Conservatives within three decades. Specific storylines underwent significant change, particularly in relation to international outlooks, environmental framings, treatments of risk, and increases in rhetoric. This study contributes to a better understanding of the role politics plays in the energy transition, highlighting how politicians’ values and beliefs inevitably determine and delimit creative policymaking.

Keywords: quantitative discourse analysis, energy transition, renewable energy, British parliament, public policy

Procedia PDF Downloads 153
200 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 125
199 Calculational-Experimental Approach of Radiation Damage Parameters on VVER Equipment Evaluation

Authors: Pavel Borodkin, Nikolay Khrennikov, Azamat Gazetdinov

Abstract:

The problem of ensuring of VVER type reactor equipment integrity is now most actual in connection with justification of safety of the NPP Units and extension of their service life to 60 years and more. First of all, it concerns old units with VVER-440 and VVER-1000. The justification of the VVER equipment integrity depends on the reliability of estimation of the degree of the equipment damage. One of the mandatory requirements, providing the reliability of such estimation, and also evaluation of VVER equipment lifetime, is the monitoring of equipment radiation loading parameters. In this connection, there is a problem of justification of such normative parameters, used for an estimation of the pressure vessel metal embrittlement, as the fluence and fluence rate (FR) of fast neutrons above 0.5 MeV. From the point of view of regulatory practice, a comparison of displacement per atom (DPA) and fast neutron fluence (FNF) above 0.5 MeV has a practical concern. In accordance with the Russian regulatory rules, neutron fluence F(E > 0.5 MeV) is a radiation exposure parameter used in steel embrittlement prediction under neutron irradiation. However, the DPA parameter is a more physically legitimate quantity of neutron damage of Fe based materials. If DPA distribution in reactor structures is more conservative as neutron fluence, this case should attract the attention of the regulatory authority. The purpose of this work was to show what radiation load parameters (fluence, DPA) on all VVER equipment should be under control, and give the reasonable estimations of such parameters in the volume of all equipment. The second task is to give the conservative estimation of each parameter including its uncertainty. Results of recently received investigations allow to test the conservatism of calculational predictions, and, as it has been shown in the paper, combination of ex-vessel measured data with calculated ones allows to assess unpredicted uncertainties which are results of specific unique features of individual equipment for VVER reactor. Some results of calculational-experimental investigations are presented in this paper.

Keywords: equipment integrity, fluence, displacement per atom, nuclear power plant, neutron activation measurements, neutron transport calculations

Procedia PDF Downloads 156
198 'Pacta Sunt Servanda': Which Form of Contract to Use in the Construction Industry

Authors: Ahmed Stifi, Sascha Gentes

Abstract:

The contract in its simplest definition is an agreement involving parties with a number of documents which may be as little as a marriage contract involving two parties or as big as a contract of construction and operation of a nuclear power plant involving companies and stakeholders with hundreds or even thousands of documents. All parties in the construction industry, not only the contract experts, agree that the success of a project is linked primarily to the form of contract regulating the relationship between stakeholders of the project. Therefore it is essential for the construction industry to study, analyze and improve its contracts forms continuously. However, it should be mentioned that different contract forms are developed to suit the construction evolution in term of its machinery, materials and construction process. There exist some similarities in some clauses and variations in many of these forms depending upon the type of project, the kind of clients and more importantly the laws and regulations governing the transaction in the country where the project is carried out. This paper will discuss the most important forms of construction contracts starting from national level, intended to the contract form in Germany and moving on to the international level introducing FIDIC contracts and its different forms, some newly developed contracts forms namely the integrated form of agreement, the new engineering contract and the project alliance agreement. The result of the study shows that many of the contract’s paragraphs are similar and the main difference comes in the approach of the relationship between the parties. Is it based on co-operation and mutual trust, or in some cases a load of responsibility for a particular party which increases the problems and disputes that affects the success of the project negatively. Thus we can say that the form of the contract, that plays an essential role in the approach of the project management, which is ultimately the key factor for the success of the project. So we advise to use a form of contract, which enhance the mutual trust between the project parties, contribute to support the cooperation between them, distribute responsibility and risks on an equitable basis and build on the principle “win-win". In additional to the conventional role of the contract it should integrate all parties into one team to achieve the target value of the project.

Keywords: contract, FIDIC, integrated form of agreement, new engineering contract, project alliance agreemen

Procedia PDF Downloads 373
197 A Radioprotective Effect of Nanoceria (CNPs), Magnetic Flower-Like Iron Oxide Microparticles (FIOMPs), and Vitamins C and E on Irradiated BSA Protein

Authors: Hajar Zarei, AliAkbar Zarenejadatashgah, Vuk Uskoković, Hiroshi Watabe

Abstract:

The reactive oxygen species (ROS) generated by radiation in nuclear diagnostic imaging and radiotherapy could damage the structure of the proteins in noncancerous cells surrounding the tumor. The critical factor in many age-related diseases, such as Alzheimer, Parkinson, or Huntington diseases, is the oxidation of proteins by the ROS as molecular triggers of the given pathologies. Our studies by spectroscopic experiments showed doses close to therapeutic ones (1 to 5 Gy) could lead to changes of secondary and tertiary structures in BSA protein macromolecule as a protein model as well as the aggregation of polypeptide chain but without the fragmentation. For this reason, we investigated the radioprotective effects of natural (vitamin C and E) and synthetic materials (CNPs and FIOMPs) on the structural changes in BSA protein induced by gamma irradiation at a therapeutic dose (3Gy). In the presence of both vitamins and synthetic materials, the spectroscopic studies revealed that irradiated BSA was protected from the structural changes caused by ROS, according to in vitro research. The radioprotective property of CNPs and FIOMPs arises from enzyme mimetic activities (catalase, superoxide dismutase, and peroxidase) and their antioxidant capability against hydroxyl radicals. In the case of FIOMPs, a porous structure also leads to increased ROS recombination with each other in the same radiolytic track and subsequently decreased encounters with BSA. The hydrophilicity of vitamin C resulted in the major scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the nonpolar patches of the BSA surface, where it did not only neutralize them thanks to the moderate BSA binding constant but also formed a barrier for diffusing ROS. To the best of our knowledge, there has been a persistent lack of studies investigating the radioactive effect of mentioned materials on proteins. Therefore, the results of our studies can open a new widow for application of these common dietary ingredients and new synthetic NPs in improving the safety of radiotherapy.

Keywords: reactive oxygen species, spectroscopy, bovine serum albumin, gamma radiation, radioprotection

Procedia PDF Downloads 86
196 Disaster Management Supported by Unmanned Aerial Systems

Authors: Agoston Restas

Abstract:

Introduction: This paper describes many initiatives and shows also practical examples which happened recently using Unmanned Aerial Systems (UAS) to support disaster management. Since the operation of manned aircraft at disasters is usually not only expensive but often impossible to use as well, in many cases managers fail to use the aerial activity. UAS can be an alternative moreover cost-effective solution for supporting disaster management. Methods: This article uses thematic division of UAS applications; it is based on two key elements, one of them is the time flow of managing disasters, other is its tactical requirements. Logically UAS can be used like pre-disaster activity, activity immediately after the occurrence of a disaster and the activity after the primary disaster elimination. Paper faces different disasters, like dangerous material releases, floods, earthquakes, forest fires and human-induced disasters. Research used function analysis, practical experiments, mathematical formulas, economic analysis and also expert estimation. Author gathered international examples and used own experiences in this field as well. Results and discussion: An earthquake is a rapid escalating disaster, where, many times, there is no other way for a rapid damage assessment than aerial reconnaissance. For special rescue teams, the UAS application can help much in a rapid location selection, where enough place remained to survive for victims. Floods are typical for a slow onset disaster. In contrast, managing floods is a very complex and difficult task. It requires continuous monitoring of dykes, flooded and threatened areas. UAS can help managers largely keeping an area under observation. Forest fires are disasters, where the tactical application of UAS is already well developed. It can be used for fire detection, intervention monitoring and also for post-fire monitoring. In case of nuclear accident or hazardous material leakage, UAS is also a very effective or can be the only one tool for supporting disaster management. Paper shows some efforts using UAS to avoid human-induced disasters in low-income countries as part of health cooperation.

Keywords: disaster management, floods, forest fires, Unmanned Aerial Systems

Procedia PDF Downloads 237
195 Analysis of Radiation-Induced Liver Disease (RILD) and Evaluation of Relationship between Therapeutic Activity and Liver Clearance Rate with Tc-99m-Mebrofenin in Yttrium-90 Microspheres Treatment

Authors: H. Tanyildizi, M. Abuqebitah, I. Cavdar, M. Demir, L. Kabasakal

Abstract:

Aim: Whole liver radiation has the modest benefit in the treatment of unresectable hepatic metastases but the radiation doses must keep in control. Otherwise, RILD complications may arise. In this study, we aimed to calculate amount of maximum permissible activity (MPA) and critical organ absorbed doses with MIRD methodology, to evaluate tumour doses for treatment response and whole liver doses for RILD and to find optimal liver function test additionally. Materials and Methods: This study includes 29 patients who attended our nuclear medicine department suffering from Y-90 microspheres treatment. 10 mCi Tc-99m MAA was applied to the patients for dosimetry via IV. After the injection, whole body SPECT/CT images were taken in one hour. The minimum therapeutic tumour dose is on the point of being 120 Gy1, the amount of activities were calculated with MIRD methodology considering volumetric tumour/liver rate. A sub-working group was created with 11 patients randomly and liver clearance rate with Tc-99m-Mebrofenin was calculated according to Ekman formalism. Results: The volumetric tumour/liver rates were found between 33-66% (Maksimum Tolarable Dose (MTD) 48-52Gy3) for 4 patients, were found less than 33% (MTD 72Gy3) for 25 patients. According to these results the average amount of activity, mean liver dose and mean tumour dose were found 1793.9±1.46 MBq, 32.86±0.19 Gy, and 138.26±0.40 Gy. RILD was not observed in any patient. In sub-working group, the relationship between Bilirubin, Albumin, INR (which show presence of liver disease and its degree), liver clearance with Tc-99m-Mebrofenin and calculated activity amounts were found r=0.49, r=0.27, r=0.43, r=0.57, respectively. Discussions: The minimum tumour dose was found 120 Gy for positive dose-response relation. If volumetric tumour/liver rate was > 66%, dose 30 Gy; if volumetric tumour/liver rate 33-66%, dose escalation 48 Gy; if volumetric tumour/liver rate < 33%, dose 72 Gy. These dose limitations did not create RILD. Clearance measurement with Mebrofenin was concluded that the best method to determine the liver function. Therefore, liver clearance rate with Tc-99m-Mebrofenin should be considered in calculation of yttrium-90 microspheres dosimetry.

Keywords: clearance, dosimetry, liver, RILD

Procedia PDF Downloads 440
194 Histopathological, Proliferative, Apoptotic, and Hormonal Characteristics of Various Types of Leiomyomas

Authors: Kiknadze T, Tevdorashvili G, Muzashvili T, Gachechiladze M, Burkadze G

Abstract:

Uterine leiomyomas decrease the quality of life by causing significant morbidity among women of reproductive age. Histologically various types of leiomyoma's can be differentiated. We have analysed th histopathological, proliferation, apoptotic, and hormonal profile in different types of leiomyomas. Study included altogether140 cases distributed into the following groups: group I-normal myometrium (20cases), group II-classic leiomyoma (69 cases), group III-cellular leiomyoma (15 cases), group IV-bizarre cell/atypical leiomyoma (22cases), group V-smooth muscle tumors of uncertain malignancy potential (STUMP) (8 cases) and group VI-leiomyosarcoma (6 cases). Together with classic histopathological features such as nuclear atypia, cellularity, presence of mitoses, vasculature and necrosis, immunohistochemical phenotype using antibodies against Ki67,Cas3, ER, and PR were analysed. The results of our study showed that leiomyomas are charterised with variable histopathological and immunohistocthemical phenotype. Histopathological parameters mainly correlate with the degree of malignancy except for two bizarre/atypical leiomyoma and STUMP, where two distinct subgroups could be identified. In bizarre/ atipycal leiomyoma, 31% of cases are characterized with the features of classic leiomyoma, whilst the rest of the cases reveal more atipycal phenotype. In STUMP 37.5 % of cases are characterized with the features of atipycal leiomyomas. The result of the immunohistochemical study also reveald that half of bizarre/atipycal leiomyomas are characterized with the low proliferation index, high apoptotic index, and high ER and PR index, whilst another half is characterized with high proliferation index, low apoptotic index, and low ER and PR index. Similarly, part of the STUMP cases are characterized with low proliferation index, high Er, and PR index and whilst part of the cases are characterized whith high proliferation index, low apoptotic index and low ER and PR index. The results of the histopathological and immunohistochemical study indicate that these two entities represent the heterogenous group of diseases, which might be the explanation of their different prognosis. Presented histopathological and immunohistochemical features should be considered in the diagnosis of myometrial smooth muscle tumors.

Keywords: proliferation, apoptosis, bizarre cell, leiomyosarcoma., leiomyoma

Procedia PDF Downloads 108
193 Understanding the Fundamental Driver of Semiconductor Radiation Tolerance with Experiment and Theory

Authors: Julie V. Logan, Preston T. Webster, Kevin B. Woller, Christian P. Morath, Michael P. Short

Abstract:

Semiconductors, as the base of critical electronic systems, are exposed to damaging radiation while operating in space, nuclear reactors, and particle accelerator environments. What innate property allows some semiconductors to sustain little damage while others accumulate defects rapidly with dose is, at present, poorly understood. This limits the extent to which radiation tolerance can be implemented as a design criterion. To address this problem of determining the driver of semiconductor radiation tolerance, the first step is to generate a dataset of the relative radiation tolerance of a large range of semiconductors (exposed to the same radiation damage and characterized in the same way). To accomplish this, Rutherford backscatter channeling experiments are used to compare the displaced lattice atom buildup in InAs, InP, GaP, GaN, ZnO, MgO, and Si as a function of step-wise alpha particle dose. With this experimental information on radiation-induced incorporation of interstitial defects in hand, hybrid density functional theory electron densities (and their derived quantities) are calculated, and their gradient and Laplacian are evaluated to obtain key fundamental information about the interactions in each material. It is shown that simple, undifferentiated values (which are typically used to describe bond strength) are insufficient to predict radiation tolerance. Instead, the curvature of the electron density at bond critical points provides a measure of radiation tolerance consistent with the experimental results obtained. This curvature and associated forces surrounding bond critical points disfavors localization of displaced lattice atoms at these points, favoring their diffusion toward perfect lattice positions. With this criterion to predict radiation tolerance, simple density functional theory simulations can be conducted on potential new materials to gain insight into how they may operate in demanding high radiation environments.

Keywords: density functional theory, GaN, GaP, InAs, InP, MgO, radiation tolerance, rutherford backscatter channeling

Procedia PDF Downloads 174
192 Facilitating the Learning Environment as a Servant Leader: Empowering Self-Directed Student Learning

Authors: Thomas James Bell III

Abstract:

Pedagogy is thought of as one's philosophy, theory, or teaching method. This study examines the science of learning, considering the forced reconsideration of effective pedagogy brought on by the aftermath of the 2020 coronavirus pandemic. With the aid of various technologies, online education holds challenges and promises to enhance the learning environment if implemented to facilitate student learning. Behaviorism centers around the belief that the instructor is the sage on the classroom stage using repetition techniques as the primary learning instrument. This approach to pedagogy ascribes complete control of the learning environment and works best for students to learn by allowing students to answer questions with immediate feedback. Such structured learning reinforcement tends to guide students' learning without considering learners' independence and individual reasoning. And such activities may inadvertently stifle the student's ability to develop critical thinking and self-expression skills. Fundamentally liberationism pedagogy dismisses the concept that education is merely about students learning things and more about the way students learn. Alternatively, the liberationist approach democratizes the classroom by redefining the role of the teacher and student. The teacher is no longer viewed as the sage on the stage but as a guide on the side. Instead, this approach views students as creators of knowledge and not empty vessels to be filled with knowledge. Moreover, students are well suited to decide how best to learn and which areas improvements are needed. This study will explore the classroom instructor as a servant leader in the twenty-first century, which allows students to integrate technology that encapsulates more individual learning styles. The researcher will examine the Professional Scrum Master (PSM I) exam pass rate results of 124 students in six sections of an Agile scrum course. The students will be separated into two groups; the first group will follow a structured instructor-led course outlined by a course syllabus. The second group will consist of several small teams (ten or fewer) of self-led and self-empowered students. The teams will conduct several event meetings that include sprint planning meetings, daily scrums, sprint reviews, and retrospective meetings throughout the semester will the instructor facilitating the teams' activities as needed. The methodology for this study will use the compare means t-test to compare the mean of an exam pass rate in one group to the mean of the second group. A one-tailed test (i.e., less than or greater than) will be used with the null hypothesis, for the difference between the groups in the population will be set to zero. The major findings will expand the pedagogical approach that suggests pedagogy primarily exist in support of teacher-led learning, which has formed the pillars of traditional classroom teaching. But in light of the fourth industrial revolution, there is a fusion of learning platforms across the digital, physical, and biological worlds with disruptive technological advancements in areas such as the Internet of Things (IoT), artificial intelligence (AI), 3D printing, robotics, and others.

Keywords: pedagogy, behaviorism, liberationism, flipping the classroom, servant leader instructor, agile scrum in education

Procedia PDF Downloads 142
191 Dust Particle Removal from Air in a Self-Priming Submerged Venturi Scrubber

Authors: Manisha Bal, Remya Chinnamma Jose, B.C. Meikap

Abstract:

Dust particles suspended in air are a major source of air pollution. A self-priming submerged venturi scrubber proven very effective in cases of handling nuclear power plant accidents is an efficient device to remove dust particles from the air and thus aids in pollution control. Venturi scrubbers are compact, have a simple mode of operation, no moving parts, easy to install and maintain when compared to other pollution control devices and can handle high temperatures and corrosive and flammable gases and dust particles. In the present paper, fly ash particles recognized as a high air pollutant substance emitted mostly from thermal power plants is considered as the dust particle. Its exposure through skin contact, inhalation and indigestion can lead to health risks and in severe cases can even root to lung cancer. The main focus of this study is on the removal of fly ash particles from polluted air using a self-priming venturi scrubber in submerged conditions using water as the scrubbing liquid. The venturi scrubber comprising of three sections: converging section, throat and diverging section is submerged inside a water tank. The liquid enters the throat due to the pressure difference composed of the hydrostatic pressure of the liquid and static pressure of the gas. The high velocity dust particles atomize the liquid droplets at the throat and this interaction leads to its absorption into water and thus removal of fly ash from the air. Detailed investigation on the scrubbing of fly ash has been done in this literature. Experiments were conducted at different throat gas velocities, water levels and fly ash inlet concentrations to study the fly ash removal efficiency. From the experimental results, the highest fly ash removal efficiency of 99.78% is achieved at the throat gas velocity of 58 m/s, water level of height 0.77m with fly ash inlet concentration of 0.3 x10⁻³ kg/Nm³ in the submerged condition. The effect of throat gas velocity, water level and fly ash inlet concentration on the removal efficiency has also been evaluated. Furthermore, experimental results of removal efficiency are validated with the developed empirical model.

Keywords: dust particles, fly ash, pollution control, self-priming venturi scrubber

Procedia PDF Downloads 164
190 Solitary Fibrous Tumor Presumed to Be a Peripheral Nerve Sheath Tumor Involving Right Branchial Plexus

Authors: Daniela Proca, Yuan Rong, Salvatore Luceno, Jalil Nasibli

Abstract:

Introduction: Solitary Fibrous Tumors (SFT) have many histologic mimickers and the only way to diagnose it, particularly in an unusual location, such as peripheral nerve trunks, is to use a comprehensive immunohistochemical staining panel. Monoclonal STAT6 immunostain is highly sensitive and specific for SFTs and particularly useful in the diagnosis of difficult SFT cases. Methods: We describe a solitary fibrous tumor (SFT) involving the right branchial plexus in a 66 yo female with 4-year history of slowly growing chest wall mass with recent dysesthesias in fingers 4th and 5th. MRI showed a well-circumscribed heterogenous mass measuring 5.4 x 3.8 x 4.0 cm and encircling peripheral nerves of the branchial plexus; no involvement of the bone or muscle was noted. A biopsy showed a bland spindled and epithelioid proliferation with no significant mitotic activity, no necrosis, and no atypia; peripheral nerve fascicles were encircled by the lesion. The main clinical and pathologic differential diagnosis included peripheral nerve sheath tumor, particularly schwannoma; HE microscopy didn’t show the classic Antoni A and B areas but showed focal subtle nuclear palisading, as well as prominent vessels with hyalinization. Immunohistochemical stains showed focal, weak cytoplasmic S100 positivity in the lesion; CD 34 and Vimentin were strongly and diffusely positive; the neoplastic cells were negative with AE1/AE3, EMA, CD31, SMA, Desmin, Calretinin, HMB-45, Melan A, PAX-8, NSE. The immunohistochemical and histologic pattern was not typical of peripheral nerve sheath tumor. On additional stains, the tumor was positive with STAT-6 and bcl-2 and focally positive with CD99. Given this profile, the final diagnosis was that of a solitary fibrous tumor. Results: NA Conclusion: Very few SFTs involving peripheral nerves and mimicking a peripheral nerve sheath tumor are described in the literature. Although histologically benign on this biopsy, long-term follow-up is required because of the risk of recurrence of these tumors and their uncertain biological behavior.

Keywords: solitary fibrous tumor, pathology, diagnosis, immunohistochemistry

Procedia PDF Downloads 196
189 Specification and Unification of All Fundamental Forces Exist in Universe in the Theoretical Perspective – The Universal Mechanics

Authors: Surendra Mund

Abstract:

At the beginning, the physical entity force was defined mathematically by Sir Isaac Newton in his Principia Mathematica as F ⃗=(dp ⃗)/dt in form of his second law of motion. Newton also defines his Universal law of Gravitational force exist in same outstanding book, but at the end of 20th century and beginning of 21st century, we have tried a lot to specify and unify four or five Fundamental forces or Interaction exist in universe, but we failed every time. Usually, Gravity creates problems in this unification every single time, but in my previous papers and presentations, I defined and derived Field and force equations for Gravitational like Interactions for each and every kind of central systems. This force is named as Variational Force by me, and this force is generated by variation in the scalar field density around the body. In this particular paper, at first, I am specifying which type of Interactions are Fundamental in Universal sense (or in all type of central systems or bodies predicted by my N-time Inflationary Model of Universe) and then unify them in Universal framework (defined and derived by me as Universal Mechanics in a separate paper) as well. This will also be valid in Universal dynamical sense which includes inflations and deflations of universe, central system relativity, Universal relativity, ϕ-ψ transformation and transformation of spin, physical perception principle, Generalized Fundamental Dynamical Law and many other important Generalized Principles of Generalized Quantum Mechanics (GQM) and Central System Theory (CST). So, In this article, at first, I am Generalizing some Fundamental Principles, and then Unifying Variational Forces (General form of Gravitation like Interactions) and Flow Generated Force (General form of EM like Interactions), and then Unify all Fundamental Forces by specifying Weak and Strong Interactions in form of more basic terms - Variational, Flow Generated and Transformational Interactions.

Keywords: Central System Force, Disturbance Force, Flow Generated Forces, Generalized Nuclear Force, Generalized Weak Interactions, Generalized EM-Like Interactions, Imbalance Force, Spin Generated Forces, Transformation Generated Force, Unified Force, Universal Mechanics, Uniform And Non-Uniform Variational Interactions, Variational Interactions

Procedia PDF Downloads 50
188 Raman Spectroscopy of Fossil-like Feature in Sooke #1 from Vancouver Island

Authors: J. A. Sawicki, C. Ebrahimi

Abstract:

The first geochemical, petrological, X-ray diffraction, Raman, Mössbauer, and oxygen isotopic analyses of very intriguing 13-kg Sooke #1 stone covered in 70% of its surface with black fusion crust, found in and recovered from Sooke Basin, near Juan de Fuca Strait, in British Columbia, were reported as poster #2775 at LPSC52 in March. Our further analyses reported in poster #6305 at 84AMMS in August and comparisons with the Mössbauer spectra of Martian meteorite MIL03346 and Martian rocks in Gusev Crater reported by Morris et al. suggest that Sooke #1 find could be a stony achondrite of Martian polymict breccia type ejected from early watery Mars. Here, the Raman spectra of a carbon-rich ~1-mm² fossil-like white area identified in this rock on a surface of polished cut have been examined in more detail. The low-intensity 532 nm and 633 nm beams of the InviaRenishaw microscope were used to avoid any destructive effects. The beam was focused through the microscope objective to a 2 m spot on a sample, and backscattered light collected through this objective was recorded with CCD detector. Raman spectra of dark areas outside fossil have shown bands of clinopyroxene at 320, 660, and 1020 cm-1 and small peaks of forsteritic olivine at 820-840 cm-1, in agreement with results of X-ray diffraction and Mössbauer analyses. Raman spectra of the white area showed the broad band D at ~1310 cm-1 consisting of main mode A1g at 1305 cm⁻¹, E2g mode at 1245 cm⁻¹, and E1g mode at 1355 cm⁻¹ due to stretching diamond-like sp3 bonds in diamond polytype lonsdaleite, as in Ovsyuk et al. study. The band near 1600 cm-1 mostly consists of D2 band at 1620 cm-1 and not of the narrower G band at 1583 cm⁻¹ due to E2g stretching in planar sp2 bonds that are fundamental building blocks of carbon allotropes graphite and graphene. In addition, the broad second-order Raman bands were observed with 532 nm beam at 2150, ~2340, ~2500, 2650, 2800, 2970, 3140, and ~3300 cm⁻¹ shifts. Second-order bands in diamond and other carbon structures are ascribed to the combinations of bands observed in the first-order region: here 2650 cm⁻¹ as 2D, 2970 cm⁻¹ as D+G, and 3140 cm⁻¹ as 2G ones. Nanodiamonds are abundant in the Universe, found in meteorites, interplanetary dust particles, comets, and carbon-rich stars. The diamonds in meteorites are presently intensely investigated using Raman spectroscopy. Such particles can be formed by CVD process and during major impact shocks at ~1000-2300 K and ~30-40 GPa. It cannot be excluded that the fossil discovered in Sooke #1 could be a remnant of an alien carbon organism that transformed under shock impact to nanodiamonds. We trust that for the benefit of research in astro-bio-geology of meteorites, asteroids, Martian rocks, and soil, this find deserves further, more thorough investigations. If possible, the Raman SHERLOCK spectrometer operating on the Perseverance Rover should also search for such objects in the Martian rocks.

Keywords: achondrite, nanodiamonds, lonsdaleite, raman spectra

Procedia PDF Downloads 150
187 Abridging Pharmaceutical Analysis and Drug Discovery via LC-MS-TOF, NMR, in-silico Toxicity-Bioactivity Profiling for Therapeutic Purposing Zileuton Impurities: Need of Hour

Authors: Saurabh B. Ganorkar, Atul A. Shirkhedkar

Abstract:

The need for investigations protecting against toxic impurities though seems to be a primary requirement; the impurities which may prove non - toxic can be explored for their therapeutic potential if any to assist advanced drug discovery. The essential role of pharmaceutical analysis can thus be extended effectively to achieve it. The present study successfully achieved these objectives with characterization of major degradation products as impurities for Zileuton which has been used for to treat asthma since years. The forced degradation studies were performed to identify the potential degradation products using Ultra-fine Liquid-chromatography. Liquid-chromatography-Mass spectrometry (Time of Flight) and Proton Nuclear Magnetic Resonance Studies were utilized effectively to characterize the drug along with five major oxidative and hydrolytic degradation products (DP’s). The mass fragments were identified for Zileuton and path for the degradation was investigated. The characterized DP’s were subjected to In-Silico studies as XP Molecular Docking to compare the gain or loss in binding affinity with 5-Lipooxygenase enzyme. One of the impurity of was found to have the binding affinity more than the drug itself indicating for its potential to be more bioactive as better Antiasthmatic. The close structural resemblance has the ability to potentiate or reduce bioactivity and or toxicity. The chances of being active biologically at other sites cannot be denied and the same is achieved to some extent by predictions for probability of being active with Prediction of Activity Spectrum for Substances (PASS) The impurities found to be bio-active as Antineoplastic, Antiallergic, and inhibitors of Complement Factor D. The toxicological abilities as Ames-Mutagenicity, Carcinogenicity, Developmental Toxicity and Skin Irritancy were evaluated using Toxicity Prediction by Komputer Assisted Technology (TOPKAT). Two of the impurities were found to be non-toxic as compared to original drug Zileuton. As the drugs are purposed and repurposed effectively the impurities can also be; as they can have more binding affinity; less toxicity and better ability to be bio-active at other biological targets.

Keywords: UFLC, LC-MS-TOF, NMR, Zileuton, impurities, toxicity, bio-activity

Procedia PDF Downloads 194
186 Brachypodium: A Model Genus to Study Grass Genome Organisation at the Cytomolecular Level

Authors: R. Hasterok, A. Betekhtin, N. Borowska, A. Braszewska-Zalewska, E. Breda, K. Chwialkowska, R. Gorkiewicz, D. Idziak, J. Kwasniewska, M. Kwasniewski, D. Siwinska, A. Wiszynska, E. Wolny

Abstract:

In contrast to animals, the organisation of plant genomes at the cytomolecular level is still relatively poorly studied and understood. However, the Brachypodium genus in general and B. distachyon in particular represent exceptionally good model systems for such study. This is due not only to their highly desirable ‘model’ biological features, such as small nuclear genome, low chromosome number and complex phylogenetic relations, but also to the rapidly and continuously growing repertoire of experimental tools, such as large collections of accessions, WGS information, large insert (BAC) libraries of genomic DNA, etc. Advanced cytomolecular techniques, such as fluorescence in situ hybridisation (FISH) with evermore sophisticated probes, empowered by cutting-edge microscope and digital image acquisition and processing systems, offer unprecedented insight into chromatin organisation at various phases of the cell cycle. A good example is chromosome painting which uses pools of chromosome-specific BAC clones, and enables the tracking of individual chromosomes not only during cell division but also during interphase. This presentation outlines the present status of molecular cytogenetic analyses of plant genome structure, dynamics and evolution using B. distachyon and some of its relatives. The current projects focus on important scientific questions, such as: What mechanisms shape the karyotypes? Is the distribution of individual chromosomes within an interphase nucleus determined? Are there hot spots of structural rearrangement in Brachypodium chromosomes? Which epigenetic processes play a crucial role in B. distachyon embryo development and selective silencing of rRNA genes in Brachypodium allopolyploids? The authors acknowledge financial support from the Polish National Science Centre (grants no. 2012/04/A/NZ3/00572 and 2011/01/B/NZ3/00177)

Keywords: Brachypodium, B. distachyon, chromosome, FISH, molecular cytogenetics, nucleus, plant genome organisation

Procedia PDF Downloads 351
185 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO

Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li

Abstract:

ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.

Keywords: ceramics, conductivity, defects, TCO, ZnO

Procedia PDF Downloads 196
184 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas

Authors: A. Odoom, A. Salama, H. Ibrahim

Abstract:

Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.

Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model

Procedia PDF Downloads 140
183 Hybrid Nanostructures of Acrylonitrile Copolymers

Authors: A. Sezai Sarac

Abstract:

Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).

Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures

Procedia PDF Downloads 383
182 Hepatocyte-Intrinsic NF-κB Signaling Is Essential to Control a Systemic Viral Infection

Authors: Sukumar Namineni, Tracy O'Connor, Ulrich Kalinke, Percy Knolle, Mathias Heikenwaelder

Abstract:

The liver is one of the pivotal organs in vertebrate animals, serving a multitude of functions such as metabolism, detoxification and protein synthesis and including a predominant role in innate immunity. The innate immune mechanisms pertaining to liver in controlling viral infections have largely been attributed to the Kupffer cells, the locally resident macrophages. However, all the cells of liver are equipped with innate immune functions including, in particular, the hepatocytes. Hence, our aim in this study was to elucidate the innate immune contribution of hepatocytes in viral clearance using mice lacking Ikkβ specifically in the hepatocytes, termed IkkβΔᴴᵉᵖ mice. Blockade of Ikkβ activation in IkkβΔᴴᵉᵖ mice affects the downstream signaling of canonical NF-κB signaling by preventing the nuclear translocation of NF-κB, an important step required for the initiation of innate immune responses. Interestingly, infection of IkkβΔᴴᵉᵖ mice with lymphocytic choriomeningitis virus (LCMV) led to strongly increased hepatic viral titers – mainly confined in clusters of infected hepatocytes. This was due to reduced interferon stimulated gene (ISG) expression during the onset of infection and a reduced CD8+ T-cell-mediated response. Decreased ISG production correlated with increased liver LCMV protein and LCMV in isolated hepatocytes from IkkβΔᴴᵉᵖ mice. A similar phenotype was found in LCMV-infected mice lacking interferon signaling in hepatocytes (IFNARΔᴴᵉᵖ) suggesting a link between NFkB and interferon signaling in hepatocytes. We also observed a failure of interferon-mediated inhibition of HBV replication in HepaRG cells treated with NF-kB inhibitors corroborating our initial findings with LCMV infections. Collectively, these results clearly highlight a previously unknown and influential role of hepatocytes in the induction of innate immune responses leading to viral clearance during a systemic viral infection with LCMV-WE.

Keywords: CD8+ T cell responses, innate immune mechanisms in the liver, interferon signaling, interferon stimulated genes, NF-kB signaling, viral clearance

Procedia PDF Downloads 191
181 Chemical Characterization, Crystallography and Acute Toxicity Evaluation of Two Boronic-Carbohydrate Adducts

Authors: Héctor González Espinosa, Ricardo Ivan Cordova Chávez, Alejandra Contreras Ramos, Itzia Irene Padilla Martínez, José Guadalupe Trujillo Ferrara, Marvin Antonio Soriano Ursúa

Abstract:

Boronic acids are able to create diester bonds with carbohydrates because of their hydroxyl groups; in nature, there are some organoborates with these characteristics, such as the calcium fructoborate, formed by the union of two fructose molecules and a boron atom, synthesized by plants. In addition, it has been observed that, in animal cells only the compounds with cis-diol functional groups are capable of linking to boric or boronic acids. The formation of these organoboron compounds could impair the physical and chemical properties of the precursors, even their acute toxicity. In this project, two carbohydrate-derived boron-containing compounds from D-fructose and D-arabinose and phenylboronic acid are analyzed by different spectroscopy techniques such as Raman, Infrared with Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and X-ray diffraction crystallography to describe their chemical characteristics. Also, an acute toxicity test was performed to determine their LD50 using the Lorke’s method. It was confirmed by multiple spectra the formation of the adducts by the generation of the diester bonds with a β-D-pyranose of fructose and arabinose. The most prominent findings were the presence of signals corresponding to the formation of new bonds, like the stretching of B-O bonds, or the absence of signals of functional groups like the hydroxyls presented in the reagents used for the synthesis of the adducts. The NMR spectra yielded information about the stereoselectivity in the synthesis reaction, observed by the interaction of the protons and their vicinal atoms in the anomeric and second position carbons; but also, the absence of a racemic mix by the finding of just one signal in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests by the Lorke’s method showed that the LD50 value for both compounds is 1265 mg/kg. Those results let us to propose these adducts as highly safe agents for further biological evaluation with medical purposes.

Keywords: acute toxicity, adduct, boron, carbohydrate, diester bond

Procedia PDF Downloads 63
180 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue

Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit

Abstract:

Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.

Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury

Procedia PDF Downloads 152
179 Family Health in Families with Children with Autism

Authors: Teresa Isabel Lozano Pérez, Sandra Soca Lozano

Abstract:

In Cuba, the childcare is one of the programs prioritized by the Ministry of Public Health and the birth of a child becomes a desired and rewarding event for the family, which is prepared for the reception of a healthy child. When this does not happen and after the first months of the child's birth begin to appear developmental deviations that indicate the presence of a disorder, the event becomes a live event potentially negative and generates disruptions in the family health. A quantitative, descriptive, and cross-sectional research methodology was conducted to describe the impact on family health of diagnosis of autism in a sample of 25 families of children diagnosed with infantile autism at the University Pediatric Hospital Juan Manuel Marquez Havana, Cuba; in the period between January 2014 and May 2015. The sample was non probabilistic and intentional from the inclusion criteria selected. As instruments, we used a survey to identify the structure of the family, life events inventory and an instrument to assess the relative impact, adaptive resources of family and social support perceived (IRFA) to identify the diagnosis of autism as life event. The main results indicated that the majority of families studied were nuclear, small and medium and in the formation stage. All households surveyed identified the diagnosis of autism in a child as an event of great importance and negative significance for the family, taking in most of the families studied a high impact on the four areas of family health and impact enhancer of involvement in family health. All the studied families do not have sufficient adaptive resources to face this situation, sensing that they received social support frequently, mainly in information and emotional areas. We conclude that the diagnosis of autism one of the members of the families studied is valued as a life event highly significant with unfavorably way causing an enhancer impact of involvement in family health especially in the areas ‘health’ and ‘socio-psychological’. Among the social support networks health institutions, partners and friends are highlighted. We recommend developing intervention strategies in families of these children to support them in the process of adapting the diagnosis.

Keywords: family, family health, infantile autism, life event

Procedia PDF Downloads 431
178 Structure and Mechanics Patterns in the Assembly of Type V Intermediate-Filament Protein-Based Fibers

Authors: Mark Bezner, Shani Deri, Tom Trigano, Kfir Ben-Harush

Abstract:

Intermediate filament (IF) proteins-based fibers are among the toughest fibers in nature, as was shown by native hagfish slime threads and by synthetic fibers that are based on type V IF-proteins, the nuclear lamins. It is assumed that their mechanical performance stems from two major factors: (1) the transition from elastic -helices to stiff-sheets during tensile load; and (2) the specific organization of the coiled-coil proteins into a hierarchical network of nano-filaments. Here, we investigated the interrelationship between these two factors by using wet-spun fibers based on C. elegans (Ce) lamin. We found that Ce-lamin fibers, whether assembled in aqueous or alcoholic solutions, had the same nonlinear mechanical behavior, with the elastic region ending at ~5%. The pattern of the transition was, however, different: the ratio between -helices and -sheets/random coils was relatively constant until a 20% strain for fibers assembled in an aqueous solution, whereas for fibers assembled in 70% ethanol, the transition ended at a 6% strain. This structural phenomenon in alcoholic solution probably occurred through the transition between compacted and extended conformation of the random coil, and not between -helix and -sheets, as cycle analyses had suggested. The different transition pattern can also be explained by the different higher order organization of Ce-lamins in aqueous or alcoholic solutions, as demonstrated by introducing a point mutation in conserved residue in Ce-lamin gene that alter the structure of the Ce-lamins’ nano-fibrils. In addition, biomimicking the layered structure of silk and hair fibers by coating the Ce-lamin fiber with a hydrophobic layer enhanced fiber toughness and lead to a reversible transition between -helix and the extended conformation. This work suggests that different hierarchical structures, which are formed by specific assembly conditions, lead to diverse secondary structure transitions patterns, which in turn affect the fibers’ mechanical properties.

Keywords: protein-based fibers, intermediate filaments (IF) assembly, toughness, structure-property relationships

Procedia PDF Downloads 110