Search results for: judd-ofelt intensity parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10223

Search results for: judd-ofelt intensity parameters

9083 Bioremediation Potentials of Some Indigenous Microorganisms Isolated from Auto Mechanic Workshops on Irrigation Water Used in Lokoja Kogi State of Nigeria

Authors: Emmanuel Ekpa, Adaji Andrew, Queen Opaluwa, Isreal Daraobong

Abstract:

Three (3) indigenous bacteria species (Bacillus spp, Acinectobacter spp and Moraxella spp) previously isolated from contaminated soil of some auto mechanic workshops were used for bioremediation studies on some irrigation water used at Sarkin-noma Fadama farms located in Lokoja Kogi State, Nigeria. This was done in order to investigate their bioremediation potentials using a simple pour plate method. The physicochemical parameters and heavy metal analysis (using AAS iCE 3000) of the irrigation water were performed before and after inoculation of the isolated organisms. Nitrate and phosphate concentration were found to be 10.56mg/L and 12.63mg/L prior to inoculation while iron and zinc were 0.9569mg/L and 0.2245mg/L respectively. Other physicochemical parameters were also observed to be high prior to inoculation. After the bioremediation test (inoculation with the isolated organisms), a nitrate and phosphate content of 2.53mg/L and 2.61mg/L were recorded respectively, iron and zinc gave 0.1694mg/L and 0.0174mg/L concentrations while other physicochemical parameters measured were also found to be lower in their respective values. The implication of this present study is that a number of carefully isolated indigenous bacteria species are capable of reducing the amount of heavy metal concentrations in water. Also, non-metallic contaminants like nitrate and phosphate are susceptible to bioremediation in the presence of such efficient system.

Keywords: bioremediation, heavy metals, physicochemical parameters, Bacillus spp, Acinectobacter spp and Moraxella spp, AAS, spectrometer 3000

Procedia PDF Downloads 330
9082 Mechanical and Hydraulic Behavior of Arid Zone Soils Treated with Lime: Case of Abadla, Bechar Clays, South of Algeria

Authors: Sadek Younes, Fali Leyla, Rikioui Tayeb, Zizouni Khaled

Abstract:

Stabilization of clay with lime as bearing stratum is an alternative to replacement of original soil. By adding lime to clay soil, the soil workability is improved due to the combination of calcium ions to the clay minerals, which means, modified soil properties. The paper investigates the effect of hydrated lime on the behaviour of lime treated, arid zones clay (Abadla Clay). A number of mechanical and hydraulic tests were performed to identify the effect of lime dosage and compaction water content on the compressibility, permeability, and shear strength parameters of the soil. Test results show that the soil parameters can be improved through additives such as lime. Overall, the addition percentages of 6% and 9% lime give the best desired results. Also, results revealed that the compressibility behavior of lime-treated soil strongly affected by lime content. The results are presented in terms of modern interpretation of the behaviour of treated soils, in comparison with the parameters of the untreated soil.

Keywords: arid zones, compressibility, lime, soil behaviour, soil stabilization, unsaturated soil

Procedia PDF Downloads 175
9081 The Microwave and Far Infrared Spectra of Acetaldehyde-d1 in vt=2

Authors: A. Larrousi, M. Elkeurti, K. Amara, M. Zemouli, L. H. Coudert, I. R. Medvedev, F. C. De Lucia, Atsuko Maeda, R. W. C. McKellar, D. Appadoo

Abstract:

Experimental and theoretical investigations of the microwave and far infrared spectra of CH3COD are reported. Two hundred twelve lines were identified in the far infrared spectrum recorded using the Canadian synchrotron radiation light source. Two thousand one hundred and sixty-eight lines in vt=0,1 and 216 in vt=2 have been measured in the microwave spectrum obtained using the fast scan submillimeter spectroscopic technique. A global analysis of the new data and of already available microwave lines has been carried out and yielded values for rotation–torsion parameters. The unitless weighted standard deviation of the fit is 1.6. 46 parameters and 216 lines were identified.

Keywords: CH3COD, torsion, the microwave spectra, far infrared spectra high resolution

Procedia PDF Downloads 351
9080 Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete

Authors: Muhammet M. Erdem, Erdoğan Özbay, Ibrahim H. Durmuş, Mustafa Erdemir, Murat Bikçe, Müzeyyen Balçıkanlı

Abstract:

In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO2/Na2O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed.

Keywords: alkali activation, slag, rheology, yield stress, plastic viscosity

Procedia PDF Downloads 286
9079 A Study of Mode Choice Model Improvement Considering Age Grouping

Authors: Young-Hyun Seo, Hyunwoo Park, Dong-Kyu Kim, Seung-Young Kho

Abstract:

The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.

Keywords: age grouping, aging, mode choice model, multinomial logit model

Procedia PDF Downloads 318
9078 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 323
9077 Experimental Analysis of the Plate-on-Tube Evaporator on a Domestic Refrigerator’s Performance

Authors: Mert Tosun, Tuğba Tosun

Abstract:

The evaporator is the utmost important component in the refrigeration system, since it enables the refrigerant to draw heat from the desired environment, i.e. the refrigerated space. Studies are being conducted on this component which generally affects the performance of the system, where energy efficient products are important. This study was designed to enhance the effectiveness of the evaporator in the refrigeration cycle of a domestic refrigerator by adjusting the capillary tube length, refrigerant amount, and the evaporator pipe diameter to reduce energy consumption. The experiments were conducted under identical thermal and ambient conditions. Experiment data were analysed using the Design of Experiment (DOE) technique which is a six-sigma method to determine effects of parameters. As a result, it has been determined that the most important parameters affecting the evaporator performance among the selected parameters are found to be the refrigerant amount and pipe diameter. It has been determined that the minimum energy consumption is 6-mm pipe diameter and 16-g refrigerant. It has also been noted that the overall consumption of the experiment sample decreased by 16.6% with respect to the reference system, which has 7-mm pipe diameter and 18-g refrigerant.

Keywords: heat exchanger, refrigerator, design of experiment, energy consumption

Procedia PDF Downloads 147
9076 A Study on the Synthesis of Boron Nitride Microtubes

Authors: Pervaiz Ahmad, Mayeen Uddin Khandaker, Yusoff Mohd Amin

Abstract:

A unique cone-like morphologies of boron nitride microtubes with larger internal space and thin walls structure are synthesized in a dual zone quartz tube furnace at 1200 ° C with ammonia as a reaction atmosphere. The synthesized microtubes are found to have diameter in the range of 1 to ̴ 2 μm with walls thickness estimated from 10 – 100 nm. XPS survey shows N 1s and B 1s peaks at 398.7 eV and 191 eV that represent h-BN in the sample. Raman spectroscopy indicates a high intensity peak at 1372.53 (cm-1) that corresponds to the E2g mode of h-BN.

Keywords: BNMTs, synthesis, reaction atmosphere, growth

Procedia PDF Downloads 380
9075 Finch-Skea Stellar Structures in F(R, ϕ, X) Theory of Gravity Using Bardeen Geometry

Authors: Aqsa Asharaf

Abstract:

The current study aims to examine the physical characteristics of charge compact spheres employing anisotropic fluid under f(R, ϕ, X) modified gravity approach, exploring how this theoretical context influences their attributes and behavior. To accomplish our goal, we adopt the Spherically Symmetric (SS) space-time and, additionally, employ a specific Adler-based mode for the metric potential (gtt), which yields a broader class of solutions, Then, by making use of the Karmarkar condition, we successfully derive the other metric potential. A primary component of our current analysis is utilizing the Bardeen geometry as extrinsic space-time to determine the constant parameters of intrinsic space-time. Further, to validate the existence of Bardeen stellar spheres, we debate the behavior of physical properties and parameters such as components of pressure, energy density, anisotropy, parameters of EoS, stability and dynamical equilibrium, energy bounds, mass function, adiabatic index, compactness factor, and surface redshift. Conclusively, all the obtained results show that the system under consideration is physically stable, free from singularity, and viable models.

Keywords: cosmology, GR, Bardeen BH, modified gravities

Procedia PDF Downloads 13
9074 Physical and Physiological Characteristics of Young Soccer Players in Republic of Macedonia

Authors: Sanja Manchevska, Vaska Antevska, Lidija Todorovska, Beti Dejanova, Sunchica Petrovska, Ivanka Karagjozova, Elizabeta Sivevska, Jasmina Pluncevic Gligoroska

Abstract:

Introduction: A number of positive effects on the player’s physical status, including the body mass components are attributed to training process. As young soccer players grow up qualitative and quantitative changes appear and contribute to better performance. Player’s anthropometric and physiologic characteristics are recognized as important determinants of performance. Material: A sample of 52 soccer players with an age span from 9 to 14 years were divided in two groups differentiated by age. The younger group consisted of 25 boys under 11 years (mean age 10.2) and second group consisted of 27 boys with mean age 12.64. Method: The set of basic anthropometric parameters was analyzed: height, weight, BMI (Body Mass Index) and body mass components. Maximal oxygen uptake was tested using the treadmill protocol by Brus. Results: The group aged under 11 years showed the following anthropometric and physiological features: average height= 143.39cm, average weight= 44.27 kg; BMI= 18.77; Err = 5.04; Hb= 13.78 g/l; VO2=37.72 mlO2/kg. Average values of analyzed parameters were as follows: height was 163.7 cm; weight= 56.3 kg; BMI = 19.6; VO2= 39.52 ml/kg; Err=5.01; Hb=14.3g/l for the participants aged 12 to14 years. Conclusion: Physiological parameters (maximal oxygen uptake, erythrocytes and Hb) were insignificantly higher in the older group compared to the younger group. There were no statistically significant differences between analyzed anthropometric parameters among the two groups except for the basic measurements (height and weight).

Keywords: body composition, young soccer players, BMI, physical status

Procedia PDF Downloads 396
9073 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 222
9072 Heavy Metal Removal by Green Microalgae Biofilms from Industrial Wastewater

Authors: B. N. Makhanya, S. F. Ndulini, M. S. Mthembu

Abstract:

Heavy metals are hazardous pollutants present in both industrial and domestic wastewater. They are usually disposed directly into natural streams, and when left untreated, they are a major cause of natural degradation and diseases. This study aimed to determine the ability of microalgae to remove heavy metals from coal mine wastewater. The green algae were grown and used for heavy metal removal in a laboratory bench. The physicochemical parameters and heavy metal removal were determined at 24 hours intervals for 5 days. The highest removal efficiencies were found to be 85%, 95%, and 99%, for Fe, Zn, and Cd, respectively. Copper and aluminium both had 100%. The results also indicated that the correlation between physicochemical parameters and all heavy metals were ranging from (0.50 ≤ r ≤ 0.85) for temperature, which indicated moderate positive to a strong positive correlation, pH had a very weak negative to a very weak positive correlation (-0.27 ≤ r ≤ 0.11), and chemical oxygen demand had a fair positive to a very strong positive correlation (0.69 ≤ r ≤ 0.98). The paired t-test indicated the removal of heavy metals to be statistically significant (0.007 ≥ p ≥ 0.000). Therefore, results showed that the microalgae used in the study were capable of removing heavy metals from industrial wastewater using possible mechanisms such as binding and absorption. Compared to the currently used technology for wastewater treatment, the microalgae may be the alternative to industrial wastewater treatment.

Keywords: heavy metals, industrial wastewater, microalgae, physiochemical parameters

Procedia PDF Downloads 132
9071 A Five-Year Experience of Intensity Modulated Radiotherapy in Nasopharyngeal Carcinomas in Tunisia

Authors: Omar Nouri, Wafa Mnejja, Fatma Dhouib, Syrine Zouari, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Leila Farhat, Nejla Fourati, Jamel Daoud

Abstract:

Purpose and Objective: Intensity modulated radiation (IMRT) technique, associated with induction chemotherapy (IC) and/or concomitant chemotherapy (CC), is actually the recommended treatment modality for nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the therapeutic results and the patterns of relapse with this treatment protocol. Material and methods: A retrospective monocentric study of 145 patients with NPC treated between June 2016 and July 2021. All patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. The high-risk volume dose was 66.5 Gy in children. Survival analysis was performed according to the Kaplan-Meier method, and the Log-rank test was used to compare factors that may influence survival. Results: Median age was 48 years (11-80) with a sex ratio of 2.9. One hundred-twenty tumors (82.7%) were classified as stages III-IV according to the 2017 UICC TNM classification. Ten patients (6.9%) were metastatic at diagnosis. One hundred-thirty-five patient (93.1%) received IC, 104 of which (77%) were TPF-based (taxanes, cisplatin and 5 fluoro-uracil). One hundred-thirty-eight patient (95.2%) received CC, mostly cisplatin in 134 cases (97%). After a median follow-up of 50 months [22-82], 46 patients (31.7%) had a relapse: 12 (8.2%) experienced local and/or regional relapse after a median of 18 months [6-43], 29 (20%) experienced distant relapse after a median of 9 months [2-24] and 5 patients (3.4%) had both. Thirty-five patients (24.1%) died, including 5 (3.4%) from a cause other than their cancer. Three-year overall survival (OS), cancer specific survival, disease free survival, metastasis free survival and loco-regional free survival were respectively 78.1%, 81.3%, 67.8%, 74.5% and 88.1%. Anatomo-clinic factors predicting OS were age > 50 years (88.7 vs. 70.5%; p=0.004), diabetes history (81.2 vs. 66.7%; p=0.027), UICC N classification (100 vs. 95 vs. 77.5 vs. 68.8% respectively for N0, N1, N2 and N3; p=0.008), the practice of a lymph node biopsy (84.2 vs. 57%; p=0.05), and UICC TNM stages III-IV (93.8 vs. 73.6% respectively for stage I-II vs. III-IV; p=0.044). Therapeutic factors predicting OS were a number of CC courses (less than 4 courses: 65.8 vs. 86%; p=0.03, less than 5 courses: 71.5 vs. 89%; p=0.041), a weight loss > 10% during treatment (84.1 vs. 60.9%; p=0.021) and a total cumulative cisplatin dose, including IC and CC, < 380 mg/m² (64.4 vs. 87.6%; p=0.003). Radiotherapy delay and total duration did not significantly affect OS. No grade 3-4 late side effects were noted in the evaluable 127 patients (87.6%). The most common toxicity was dry mouth which was grade 2 in 47 cases (37%) and grade 1 in 55 cases (43.3%).Conclusion: IMRT for nasopharyngeal carcinoma granted a high loco-regional control rate for patients during the last five years. However, distant relapses remain frequent and conditionate the prognosis. We identified many anatomo-clinic and therapeutic prognosis factors. Therefore, high-risk patients require a more aggressive therapeutic approach, such as radiotherapy dose escalation or adding adjuvant chemotherapy.

Keywords: therapeutic results, prognostic factors, intensity-modulated radiotherapy, nasopharyngeal carcinoma

Procedia PDF Downloads 59
9070 Factors Associated with Commencement of Non-Invasive Ventilation

Authors: Manoj Kumar Reddy Pulim, Lakshmi Muthukrishnan, Geetha Jayapathy, Radhika Raman

Abstract:

Introduction: In the past two decades, noninvasive positive pressure ventilation (NIPPV) emerged as one of the most important advances in the management of both acute and chronic respiratory failure in children. In the acute setting, it is an alternative to intubation with a goal to preserve normal physiologic functions, decrease airway injury, and prevent respiratory tract infections. There is a need to determine the clinical profile and parameters which point towards the need for NIV in the pediatric emergency setting. Objectives: i) To study the clinical profile of children who required non invasive ventilation and invasive ventilation, ii) To study the clinical parameters common to children who required non invasive ventilation. Methods: All children between one month to 18 years, who were intubated in the pediatric emergency department and those for whom decision to commence Non Invasive Ventilation was made in Emergency Room were included in the study. Children were transferred to the Paediatric Intensive Care Unit and started on Non Invasive Ventilation as per our hospital policy and followed up in the Paediatric Intensive Care Unit. Clinical profile of all children which included age, gender, diagnosis and indication for intubation were documented. Clinical parameters such as respiratory rate, heart rate, saturation, grunting were documented. Parameters obtained were subject to statistical analysis. Observations: Airway disease (Bronchiolitis 25%, Viral induced wheeze 22%) was a common diagnosis in 32 children who required Non Invasive Ventilation. Neuromuscular disorder was the common diagnosis in 27 children (78%) who were Intubated. 17 children commenced on Non Invasive Ventilation who later needed invasive ventilation had Neuromuscular disease. High frequency nasal cannula was used in 32, and mask ventilation in 17 children. Clinical parameters common to the Non Invasive Ventilation group were age < 1 year (17), tachycardia n = 7 (22%), tachypnea n = 23 (72%) and severe respiratory distress n = 9 (28%), grunt n = 7 (22%), SPO2 (80% to 90%) n = 16. Children in the Non Invasive Ventilation + INTUBATION group were > 3 years (9), had tachycardia 7 (41%), tachypnea 9(53%) with a male predominance n = 9. In statistical comparison among 3 groups,'p' value was significant for pH, saturation, and use of Ionotrope. Conclusion: Invasive ventilation can be avoided in the paediatric Emergency Department in children with airway disease, by commencing Non Invasive Ventilation early. Intubation in the pediatric emergency department has a higher association with neuromuscular disorders.

Keywords: clinical parameters, indications, non invasive ventilation, paediatric emergency room

Procedia PDF Downloads 333
9069 Estimation of Constant Coefficients of Bourgoyne and Young Drilling Rate Model for Drill Bit Wear Prediction

Authors: Ahmed Z. Mazen, Nejat Rahmanian, Iqbal Mujtaba, Ali Hassanpour

Abstract:

In oil and gas well drilling, the drill bit is an important part of the Bottom Hole Assembly (BHA), which is installed and designed to drill and produce a hole by several mechanisms. The efficiency of the bit depends on many drilling parameters such as weight on bit, rotary speed, and mud properties. When the bit is pulled out of the hole, the evaluation of the bit damage must be recorded very carefully to guide engineers in order to select the bits for further planned wells. Having a worn bit for hole drilling may cause severe damage to bit leading to cutter or cone losses in the bottom of hole, where a fishing job will have to take place, and all of these will increase the operating cost. The main factor to reduce the cost of drilling operation is to maximize the rate of penetration by analyzing real-time data to predict the drill bit wear while drilling. There are numerous models in the literature for prediction of the rate of penetration based on drilling parameters, mostly based on empirical approaches. One of the most commonly used approaches is Bourgoyne and Young model, where the rate of penetration can be estimated by the drilling parameters as well as a wear index using an empirical correlation, provided all the constants and coefficients are accurately determined. This paper introduces a new methodology to estimate the eight coefficients for Bourgoyne and Young model using the gPROMS parameters estimation GPE (Version 4.2.0). Real data collected form similar formations (12 ¼’ sections) in two different fields in Libya are used to estimate the coefficients. The estimated coefficients are then used in the equations and applied to nearby wells in the same field to predict the bit wear.

Keywords: Bourgoyne and Young model, bit wear, gPROMS, rate of penetration

Procedia PDF Downloads 150
9068 Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy

Authors: M. S. Nandana, K. Udaya Bhat, C. M. Manjunatha

Abstract:

In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads.

Keywords: damage tolerance, fatigue, heat treatment, PFZ, RRA

Procedia PDF Downloads 150
9067 Influence of Temperature and Precipitation Changes on Desertification

Authors: Kukuri Tavartkiladze, Nana Bolashvili

Abstract:

The purpose of this paper was separation and study of the part of structure regime, which directly affects the process of desertification. A simple scheme was prepared for the assessment of desertification process; surface air temperature and precipitation for the years of 1936-2009 were analyzed.  The map of distribution of the Desertification Contributing Coefficient in the territory of Georgia was compiled. The simple scheme for identification of the intensity of the desertification contributing process has been developed and the illustrative example of its practical application for the territory of Georgia has been conducted.

Keywords: aridity, climate change, desertification, precipitation

Procedia PDF Downloads 333
9066 Modelling Kinetics of Colour Degradation in American Pokeweed (Phytolacca americana) Extract Concentration

Authors: Seyed-Ahmad Shahidi, Salemeh Kazemzadeh, Mehdi Sharifi Soltani, Azade Ghorbani-HasanSaraei

Abstract:

The kinetics of colour changes of American Pokeweed extract, due to concentration by various heating methods was studied. Three different heating/evaporation processes were employed for production of American Pokeweed extract concentrate. The American Pokeweed extract was concentrated to a final 40 °Brix from an initial °Brix of 4 by microwave heating, rotary vacuum evaporator and evaporating at atmospheric pressure. The final American Pokeweed extract concentration of 40 °Brix was achieved in 188, 216 and 320 min by using microwave, rotary vacuum and atmospheric heating processes, respectively. The colour change during concentration processes was investigated. Total colour differences, Hunter L, a and b parameters were used to estimate the extent of colour loss. All Hunter colour parameters decreased with time. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. All models were found to describe the L, a and b-data adequately. Results indicated that variation in TCD followed both first-order and combined kinetics models. This model implied that the colour formation and pigment destruction occurred during concentration processes of American Pokeweed extract.

Keywords: American pokeweed, colour, concentration, kinetics

Procedia PDF Downloads 492
9065 Effects of Supplementary Cementitious Materials on Early Age Thermal Properties of Cement Paste

Authors: Maryam Ghareh Chaei, Masuzyo Chilwesa, Ali Akbarnezhad, Arnaud Castel, Redmond Lloyd, Stephen Foster

Abstract:

Cement hydration is an exothermic chemical reaction generally leading to a rise in concrete’s temperature. This internal heating of concrete may, in turn, lead to a temperature difference between the hotter interior and the cooler exterior of concrete and thus differential thermal stresses in early ages which could be particularly significant in mass concrete. Such differential thermal stresses result in early age thermal cracking of concrete when exceeding the concrete’s tensile strength. The extent of temperature rise and thus early age differential thermal stresses is generally a function of hydration heat intensity, thermal properties of concrete and size of the concrete element. Both hydration heat intensity and thermal properties of concrete may vary considerably with variations in the type cementitious materials and other constituents. With this in mind, partial replacement of cement with supplementary cementitious materials including fly ash and ground granulated blast furnace slag has been investigated widely as an effective strategy to moderate the heat generation rate and thus reduce the risk of early age thermal cracking of concrete. However, there is currently a lack of adequate literature on effect of partial replacement of cement with fly ash and/or ground granulated blast furnace slag on the thermal properties of concrete. This paper presents the results of an experimental conducted to evaluate the effect of addition of varying percentages of fly ash (up to 60%) and ground granulated blast furnace slag (up to 50%) on the heat capacity and thermal conductivity of early age cement paste. The water to cementitious materials ratio is kept 0.45 for all the paste samples. The results of the experimental studies were used in a numerical analysis performed using Comsol Multiphysics to highlight the effects of variations in the thermal properties of concrete, due to variations in the type of aggregate and content of supplemenraty cementitious materials, on the risk of early age cracking of a concrete raft.

Keywords: thermal diffusivity, early age thermal cracking, concrete, supplementary cementitious materials

Procedia PDF Downloads 249
9064 Development of a Microfluidic Device for Low-Volume Sample Lysis

Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman

Abstract:

We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.

Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet

Procedia PDF Downloads 73
9063 Ultrasound Assisted Cooling Crystallization of Lactose Monohydrate

Authors: Sanjaykumar R. Patel, Parth R. Kayastha

Abstract:

α-lactose monohydrate is widely used in the pharmaceutical industries as an inactive substance that acts as a vehicle or a medium for a drug or other active substance. It is a byproduct of dairy industries, and the recovery of lactose from whey not only boosts the improvement of the economics of whey utilization but also causes a reduction in pollution as lactose recovery can reduce the BOD of whey by more than 80%. In the present study, levels of process parameters were kept as initial lactose concentration (30-50% w/w), sonication amplitude (20-40%), sonication time (2-6 hours), and crystallization temperature (10-20 oC) for the recovery of lactose in ultrasound assisted cooling crystallization. In comparison with cooling crystallization, the use of ultrasound enhanced the lactose recovery by 39.17% (w/w). The parameters were optimized for the lactose recovery using Taguchi Method. The optimum conditions found were initial lactose concentration at level 3 (50% w/w), amplitude of sonication at level 2 (40%), the sonication time at level 3 (6 hours), and crystallization temperature at level 1 (10 °C). The maximum recovery was found to be 85.85% at the optimum conditions. Sonication time and the initial lactose concentration were found to be significant parameters for the lactose recovery.

Keywords: crystallization, lactose, Taguchi method, ultrasound

Procedia PDF Downloads 206
9062 Sustainability Analysis and Quality Assessment of Rainwater Harvested from Green Roofs: A Review

Authors: Mst. Nilufa Sultana, Shatirah Akib, Muhammad Aqeel Ashraf, Mohamed Roseli Zainal Abidin

Abstract:

Most people today are aware that global Climate change, is not just a scientific theory but also a fact with worldwide consequences. Global climate change is due to rapid urbanization, industrialization, high population growth and current vulnerability of the climatic condition. Water is becoming scarce as a result of global climate change. To mitigate the problem arising due to global climate change and its drought effect, harvesting rainwater from green roofs, an environmentally-friendly and versatile technology, is becoming one of the best assessment criteria and gaining attention in Malaysia. This paper addresses the sustainability of green roofs and examines the quality of water harvested from green roofs in comparison to rainwater. The factors that affect the quality of such water, taking into account, for example, roofing materials, climatic conditions, the frequency of rainfall frequency and the first flush. A green roof was installed on the Humid Tropic Centre (HTC) is a place of the study on monitoring program for urban Stormwater Management Manual for Malaysia (MSMA), Eco-Hydrological Project in Kualalumpur, and the rainwater was harvested and evaluated on the basis of four parameters i.e., conductivity, dissolved oxygen (DO), pH and temperature. These parameters were found to fall between Class I and Class III of the Interim National Water Quality Standards (INWQS) and the Water Quality Index (WQI). Some preliminary treatment such as disinfection and filtration could likely to improve the value of these parameters to class I. This review paper clearly indicates that there is a need for more research to address other microbiological and chemical quality parameters to ensure that the harvested water is suitable for use potable water for domestic purposes. The change in all physical, chemical and microbiological parameters with respect to storage time will be a major focus of future studies in this field.

Keywords: Green roofs, INWQS, MSMA-SME, rainwater harvesting, water treatment, water quality parameter, WQI

Procedia PDF Downloads 528
9061 Influence of Physicochemical Water Quality Parameters on Abundance of Aquatic Insects in Rivers of Perak, Malaysia

Authors: Nur Atirah Hasmi, Nadia Nisha Musa, Hasnun Nita Ismail, Zulfadli Mahfodz

Abstract:

The effect of water quality parameters on the abundance of aquatic insects has been studied in Batu Berangkai, Dipang, Kuala Woh and Lata Kinjang Rivers, Perak, northern peninsular Malaysia. The focuses are to compare the abundance of aquatic insects in each sampling areas and to investigate the physical and chemical factors (water temperature, depth of water, canopy, water velocity, pH value, and dissolved oxygen) on the abundance of aquatic insects. The samples and data were collected by using aquatic net and multi-probe parameter. Physical parameters; water velocity, water temperature, depth, canopy cover, and two chemical parameters; pH value and dissolved oxygen have been measured in situ and recorded. A total of 631 individuals classified into 6 orders and 18 families of aquatic insects were identified from four sampling sites. The largest percentage of samples collected is from order Plecoptera 35.8%, followed by Ephemeroptera 32.6%, Trichoptera 17.0%, Hemiptera 8.1%, Coleoptera 4.8%, and the least is Odonata 1.7%. The aquatic insects collected from Dipang River have the highest abundance of 273 individuals from 6 orders and 13 families and the least insects trapped at Lata Kinjang which only have 64 individuals from 5 orders and 6 families. There is significant association between different sampling areas and abundance of aquatic insects (p<0.05). High abundance of aquatic insects was found in higher water temperature, low water velocity, deeper water, low pH, high amount of dissolved oxygen, and the area that is not covered by canopy.

Keywords: aquatic insect, physicochemical parameter, river, water quality

Procedia PDF Downloads 213
9060 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules

Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.

Keywords: solar cell, aging, spectral response measurement

Procedia PDF Downloads 95
9059 Load Comparison between Different Positions during Elite Male Basketball Games: A Sport Metabolomics Approach

Authors: Kayvan Khoramipour, Abbas Ali Gaeini, Elham Shirzad, Øyvind Sandbakk

Abstract:

Basketball has different positions with individual movement profiles, which may influence metabolic demands. Accordingly, the present study aimed to compare the movement and metabolic load between different positions during elite male basketball games. Five main players of 14 teams (n = 70), who participated in the 2017-18 Iranian national basketball leagues, were selected as participants. The players were defined as backcourt (Posts 1-3) and frontcourt (Posts 4-5). Video based time motion analysis (VBTMA) was performed based on players’ individual running and shuffling speed using Dartfish software. Movements were classified into high and low intensity running with and without having the ball, as well as high and low-intensity shuffling and static movements. Mean frequency, duration, and distance were calculated for each class, except for static movements where only frequency was calculated. Saliva samples were collected from each player before and after 40-minute basketball games and analyzed using metabolomics. Principal component analysis (PCA) and Partial least square discriminant analysis (PLSDA) (for metabolomics data) and independent T-tests (for VBTMA) were used as statistical tests. Movement frequency, duration, and distance were higher in backcourt players (all p ≤ 0.05), while static movement frequency did not differ. Saliva samples showed that the levels of Taurine, Succinic acid, Citric acid, Pyruvate, Glycerol, Acetoacetic acid, Acetone, and Hypoxanthine were all higher in backcourt players, whereas Lactate, Alanine, 3-Metyl Histidine, and Methionine were higher in frontcourt players Based on metabolomics, we demonstrate that backcourt and frontcourt players have different metabolic profiles during games, where backcourt players move clearly more during games and therefore rely more on aerobic energy, whereas frontcourt players rely more on anaerobic energy systems in line with less dynamic but more static movement patterns.

Keywords: basketball, metabolomics, saliva, sport loadomics

Procedia PDF Downloads 109
9058 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization

Procedia PDF Downloads 294
9057 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100

Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono

Abstract:

Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.

Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength

Procedia PDF Downloads 307
9056 Morphological Parameters and Selection of Turkish Edible Seed Pumpkins (Cucurbita pepo L.) Germplasm

Authors: Onder Turkmen, Musa Seymen, Sali Fidan, Mustafa Paksoy

Abstract:

There is a requirement for registered edible seed pumpkin suitable for eating in Turkey. A total of 81 genotypes collected from the researchers in 2005 originated from Eskisehir, Konya, Nevsehir, Tekirdag, Sakarya, Kayseri and Kirsehir provinces were utilized. The used genetic materials were brought to S5 generation by the research groups among 2006 and 2010 years. In this research, S5 stage reached in the genotype given some of the morphological features, and selection of promising genotypes generated scale were made. Results showed that the A-1 (420), A-7 (410), A-8 (420), A-32 (420), B-17 (410), B-24 (410), B-25 (420), B-33 (400), C-24 (420), C-25 (410), C-26 (410) and C-30 (420) genotypes are expected to be promising varieties.

Keywords: candidate cultivar, edible seed pumpkin, morphologic parameters, selection

Procedia PDF Downloads 377
9055 Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy

Authors: Varsha Singh, Kishan Fuse

Abstract:

This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test.

Keywords: ANOVA, CNC milling, grey relational analysis, multi-response optimization

Procedia PDF Downloads 305
9054 Turning Parameters Affect Time up and Go Test Performance in Pre-Frail Community-Dwelling Elderly

Authors: Kuei-Yu Chien, Hsiu-Yu Chiu, Chia-Nan Chen, Shu-Chen Chen

Abstract:

Background: Frailty is associated with decreased physical performances that affect mobility of the elderly. Time up and go test (TUG) was the common method to evaluate mobility in the community. The purpose of this study was to compare the parameters in different stages of Time up and go test (TUG) and physical performance between pre-frail elderly (PFE) and non-frail elderly (NFE). We also investigated the relationship between TUG parameters and physical performance. Methods: Ninety-two community-dwelling older adults were as participants in this study. Based on Canadian Study of Health and Aging Clinical Frailty Scale, 22 older adults were classified as PFE (71.77 ± 6.05 yrs.) and 70 were classified as NFE (71.2 ± 5.02 yrs.). We performed body composition and physical performance, including balance, muscular strength/endurance, mobility, cardiorespiratory endurance, and flexibility. Results: Pre-frail elderly took significantly longer time than NFE in TUG test (p=.004). Pre-frail elderly had lower turning average angular velocity (p = .017), turning peak angular velocity (p = .041) and turning-stand to sit peak angular velocity (p = .037) than NFE. The turning related parameters related to open-eye stand on right foot, 30-second chair stand test, back scratch, and 2-min step tests. Conclusions: Turning average angular velocity, turning peak angular velocity and turning-stand to sit peak angular velocity mainly affected the TUG performance. We suggested that static/dynamic balance, agility, flexibility, and muscle strengthening of lower limbs exercise were important to PFE.

Keywords: mobility, aglity, active ageing, functional fitness

Procedia PDF Downloads 180