Search results for: cosmic intelligence
496 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 158495 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 155494 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.Keywords: multiclass classification, convolution neural network, OpenCV
Procedia PDF Downloads 176493 Hydrothermal Energy Application Technology Using Dam Deep Water
Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong
Abstract:
Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.Keywords: hydrothermal energy, HVAC, internet data center, free-cooling
Procedia PDF Downloads 81492 The Impact of AI on Higher Education
Authors: Georges Bou Ghantous
Abstract:
This literature review examines the transformative impact of Artificial Intelligence (AI) on higher education, highlighting both the potential benefits and challenges associated with its adoption. The review reveals that AI significantly enhances personalized learning by tailoring educational experiences to individual student needs, thereby boosting engagement and learning outcomes. Automated grading systems streamline assessment processes, allowing educators to focus on improving instructional quality and student interaction. AI's data-driven insights provide valuable analytics, helping educators identify trends in at-risk students and refine teaching strategies. Moreover, AI promotes enhanced instructional innovation through the adoption of advanced teaching methods and technologies, enriching the educational environment. Administrative efficiency is also improved as AI automates routine tasks, freeing up time for educators to engage in research and curriculum development. However, the review also addresses the challenges that accompany AI integration, such as data privacy concerns, algorithmic bias, dependency on technology, reduced human interaction, and ethical dilemmas. This balanced exploration underscores the need for careful consideration of both the advantages and potential hurdles in the implementation of AI in higher education.Keywords: administrative efficiency, data-driven insights, data privacy, ethical dilemmas, higher education, personalized learning
Procedia PDF Downloads 26491 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-
Authors: Nieto Bernal Wilson, Carmona Suarez Edgar
Abstract:
The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse
Procedia PDF Downloads 409490 Ranking Priorities for Digital Health in Portugal: Aligning Health Managers’ Perceptions with Official Policy Perspectives
Authors: Pedro G. Rodrigues, Maria J. Bárrios, Sara A. Ambrósio
Abstract:
The digitalisation of health is a profoundly transformative economic, political, and social process. As is often the case, such processes need to be carefully managed if misunderstandings, policy misalignments, or outright conflicts between the government and a wide gamut of stakeholders with competing interests are to be avoided. Thus, ensuring open lines of communication where all parties know what each other’s concerns are is key to good governance, as well as efficient and effective policymaking. This project aims to make a small but still significant contribution in this regard in that we seek to determine the extent to which health managers’ perceptions of what is a priority for digital health in Portugal are aligned with official policy perspectives. By applying state-of-the-art artificial intelligence technology first to the indexed literature on digital health and then to a set of official policy documents on the same topic, followed by a survey directed at health managers working in public and private hospitals in Portugal, we obtain two priority rankings that, when compared, will allow us to produce a synthesis and toolkit on digital health policy in Portugal, with a view to identifying areas of policy convergence and divergence. This project is also particularly peculiar in the sense that sophisticated digital methods related to text analytics are employed to study good governance aspects of digitalisation applied to health care.Keywords: digital health, health informatics, text analytics, governance, natural language understanding
Procedia PDF Downloads 65489 Teachers' Emphatic Concern for Their Learners
Authors: Prakash Singh
Abstract:
The focus of this exploratory study is on whether teachers demonstrate emphatic concern for their learners in planning, implementing and assessing learning outcomes in their regular classrooms. Empathy must be shown to all learners equally and not only for high-risk learners at the expense of other ability learners. Empathy demonstrated by teachers allows them to build a stronger bond with all their learners. This bond based on trust leads to positive outcomes for learners to be able to excel in their work. Empathic teachers must make every effort to simplify the subject matter for high risk learners so that these learners not only enjoy their learning activities but are also successful like their more able peers. A total of 87.5% of the participants agreed that empathy allows teachers to demonstrate humanistic values in their choice of learning materials for learners of different abilities. It is therefore important for teachers to select content and instructional materials that will contribute to the learners’ success in the mainstream of education. It is also imperative for teachers to demonstrate empathic skills and consequently, to be attuned to the emotions and emotional needs of their learners. Schools need to be reformed, not by simply lengthening the school day or by simply adding more content in the curriculum, but by making school more satisfying to learners. This must be consistent with their diverse learning needs and interests so that they gain a sense of power, fulfillment, and importance in their regular classrooms. Hence, teacher - pupil relationships based on empathic concern for the latter’s educational needs lays the foundation for quality education to be offered.Keywords: emotional intelligence, empathy, learners’ emotional needs, teachers’ empathic skills
Procedia PDF Downloads 436488 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers
Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin
Abstract:
The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference
Procedia PDF Downloads 72487 Twitter Sentiment Analysis during the Lockdown on New-Zealand
Authors: Smah Almotiri
Abstract:
One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS
Procedia PDF Downloads 190486 Object Negotiation Mechanism for an Intelligent Environment Using Event Agents
Authors: Chiung-Hui Chen
Abstract:
With advancements in science and technology, the concept of the Internet of Things (IoT) has gradually developed. The development of the intelligent environment adds intelligence to objects in the living space by using the IoT. In the smart environment, when multiple users share the living space, if different service requirements from different users arise, then the context-aware system will have conflicting situations for making decisions about providing services. Therefore, the purpose of establishing a communication and negotiation mechanism among objects in the intelligent environment is to resolve those service conflicts among users. This study proposes developing a decision-making methodology that uses “Event Agents” as its core. When the sensor system receives information, it evaluates a user’s current events and conditions; analyses object, location, time, and environmental information; calculates the priority of the object; and provides the user services based on the event. Moreover, when the event is not single but overlaps with another, conflicts arise. This study adopts the “Multiple Events Correlation Matrix” in order to calculate the degree values of incidents and support values for each object. The matrix uses these values as the basis for making inferences for system service, and to further determine appropriate services when there is a conflict.Keywords: internet of things, intelligent object, event agents, negotiation mechanism, degree of similarity
Procedia PDF Downloads 290485 The Effect of Classroom Atmospherics on Second Language Learning
Authors: Sresha Yadav, Ishwar Kumar
Abstract:
Second language learning is an important area of research in the language and linguistic domains. Literature suggests that several factors impact second language learning, including age, motivation, objectives, teacher, instructional material, classroom interaction, intelligence and previous background, previous linguistic experience, other student characteristics. Previous researchers have also highlighted that classroom atmospherics has a significant impact on learning as well as on the performance of students. However, the impact of classroom atmospherics on second language learning is still not known in the existing literature. Therefore, the purpose of the present study is to explore whether classroom atmospherics has an impact on second language learning or not? And if it does, it would be worthwhile to explore the nature of such relationship. The present study aims to explore the impact of classroom atmospherics on second language learning by dwelling into the existing literature to explore factors which impact second language learning, classroom atmospherics which impact language learning and the metrics through which such learning impacts could be measured. Based on the findings of literature review, the researchers have adopted a clustering approach for categorization and positioning of various measures of second language learning. Based on the clustering approach, the researchers have approach for measuring the impact of classroom atmospherics on second language learning by drawing a student sample consisting of 80 respondents. The results of the study uncover various basic premises of second language learning, especially with regard to classroom atmospherics. The present study is important not only from the point of view of language learning but implications could be drawn with regard to the design of classroom atmospherics, environmental psychology, anthropometrics, etc as well.Keywords: classroom atmospherics, cluster analysis, linguistics, second language learning
Procedia PDF Downloads 457484 Application of Innovative Implementations in the SME Sector
Authors: Mateusz Janas
Abstract:
Innovative implementations in the micro, small, and medium-sized enterprises (MSME) sector are among the essential activities considering the current market realities, technological advancements, and digitization trends. MSMEs play a crucial role and significantly influence the economic conditions of countries, as their competitiveness directly impacts the global economy. Business development and investment in innovation and technology are integral parts of every modern enterprise's strategy, seeking to maintain and achieve a desired competitive position. The instability of the socio-economic environment, along with contemporary changes in artificial intelligence implementation and digitization, requires businesses to adopt increasingly newer solutions and actions. Enterprises must strive to survive in the global market and build competitive positions, especially in uncertain conditions. Being aware of the significance of innovative actions is crucial for MSMEs as it enables them to enhance their operations and expand their scope. It is essential for managers and executives of MSMEs to be focused on development and innovation, as their approach will also impact their employees, emphasizing results and maximizing the company's value. Managers of MSMEs must be aware of various threats, costs, opportunities, and gains that can arise from implementing new technical and organizational solutions. Businesses must view development as an integral part of their strategy and continuously strive for improvement.Keywords: innovation, SME, develop, management
Procedia PDF Downloads 68483 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners
Authors: Leila Najeh Bel'Kiry
Abstract:
Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners
Procedia PDF Downloads 65482 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 148481 Improving Perceptual Reasoning in School Children through Chess Training
Authors: Ebenezer Joseph, Veena Easvaradoss, S. Sundar Manoharan, David Chandran, Sumathi Chandrasekaran, T. R. Uma
Abstract:
Perceptual reasoning is the ability that incorporates fluid reasoning, spatial processing, and visual motor integration. Several theories of cognitive functioning emphasize the importance of fluid reasoning. The ability to manipulate abstractions and rules and to generalize is required for reasoning tasks. This study, funded by the Cognitive Science Research Initiative, Department of Science and Technology, Government of India, analyzed the effect of 1-year chess training on the perceptual reasoning of children. A pretest–posttest with control group design was used, with 43 (28 boys, 15 girls) children in the experimental group and 42 (26 boys, 16 girls) children in the control group. The sample was selected from children studying in two private schools from South India (grades 3 to 9), which included both the genders. The experimental group underwent weekly 1-hour chess training for 1 year. Perceptual reasoning was measured by three subtests of WISC-IV INDIA. Pre-equivalence of means was established. Further statistical analyses revealed that the experimental group had shown statistically significant improvement in perceptual reasoning compared to the control group. The present study clearly establishes a correlation between chess learning and perceptual reasoning. If perceptual reasoning can be enhanced in children, it could possibly result in the improvement of executive functions as well as the scholastic performance of the child.Keywords: chess, cognition, intelligence, perceptual reasoning
Procedia PDF Downloads 357480 Knowledge Management in the Interactive Portal for Decision Makers on InKOM Example
Authors: K. Marciniak, M. Owoc
Abstract:
Managers as decision-makers present in different sectors should be supported in efficient and more and more sophisticated way. There are huge number of software tools developed for such users starting from simple registering data from business area – typical for operational level of management – up to intelligent techniques with delivering knowledge - for tactical and strategic levels of management. There is a big challenge for software developers to create intelligent management dashboards allowing to support different decisions. In more advanced solutions there is even an option for selection of intelligent techniques useful for managers in particular decision-making phase in order to deliver valid knowledge-base. Such a tool (called Intelligent Dashboard for SME Managers–InKOM) is prepared in the Business Intelligent framework of Teta products. The aim of the paper is to present solutions assumed for InKOM concerning on management of stored knowledge bases offering for business managers. The paper is managed as follows. After short introduction concerning research context the discussed supporting managers via information systems the InKOM platform is presented. In the crucial part of paper a process of knowledge transformation and validation is demonstrated. We will focus on potential and real ways of knowledge-bases acquiring, storing and validation. It allows for formulation conclusions interesting from knowledge engineering point of view.Keywords: business intelligence, decision support systems, knowledge management, knowledge transformation, knowledge validation, managerial systems
Procedia PDF Downloads 513479 Machine Learning Algorithms for Rocket Propulsion
Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo
Abstract:
In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion
Procedia PDF Downloads 115478 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 45477 Using Machine Learning as an Alternative for Predicting Exchange Rates
Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior
Abstract:
This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.Keywords: exchage rate, prediction, machine learning, deep learning
Procedia PDF Downloads 32476 Modelling Mode Choice Behaviour Using Cloud Theory
Authors: Leah Wright, Trevor Townsend
Abstract:
Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty
Procedia PDF Downloads 388475 Federal Bureau of Investigation Opposition to German Nationalist Organizations in the United States (1941-45)
Authors: Yaroslav Alexandrovich Levin
Abstract:
In modern research on the history of the United States in World War II, it is quite popular to study the opposition of the American special services and, in particular, the Federal Bureau of Investigation (FBI) to various organizations of the German diasporas in new historical conditions. The appeal to traditional methods of historical research, comparative studies, and the principles of historicism will make it possible to more accurately trace the process of tightening the counterintelligence work of the Bureau and the close connection of concerns about the involvement of public organizations in the intelligence activities of the enemy. The broadcast of nationalist ideas by various communities of Germans under the auspices of their governments quickly attracted the attention of the FBI, which is in the process of consolidating its powers as the main US counterintelligence service. At the same time, the investigations and trials conducted by the John Edgar Hoover Department following these investigations often had an openly political color and increasingly consolidated the beginning of a political investigation in this service. This practice and its implementation ran into a tough contradiction between the legal norms of America, which proclaimed "democratic values," the right to freedom of speech, and the need to strengthen the internal security of the state and society in wartime. All these processes and the associated nuances and complexities are considered in specific examples of the work of federal agents against various pro-German organizations in the period 1941-45.Keywords: World War II, internal security, countering extremism, counterintelligence, political investigation, FBI
Procedia PDF Downloads 86474 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images
Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez
Abstract:
The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning
Procedia PDF Downloads 73473 Intelligent Chatbot Generating Dynamic Responses Through Natural Language Processing
Authors: Aarnav Singh, Jatin Moolchandani
Abstract:
The proposed research work aims to build a query-based AI chatbot that can answer any question related to any topic. A chatbot is software that converses with users via text messages. In the proposed system, we aim to build a chatbot that generates a response based on the user’s query. For this, we use natural language processing to analyze the query and some set of texts to form a concise answer. The texts are obtained through web-scrapping and filtering all the credible sources from a web search. The objective of this project is to provide a chatbot that is able to provide simple and accurate answers without the user having to read through a large number of articles and websites. Creating an AI chatbot that can answer a variety of user questions on a variety of topics is the goal of the proposed research project. This chatbot uses natural language processing to comprehend user inquiries and provides succinct responses by examining a collection of writings that were scraped from the internet. The texts are carefully selected from reliable websites that are found via internet searches. This project aims to provide users with a chatbot that provides clear and precise responses, removing the need to go through several articles and web pages in great detail. In addition to exploring the reasons for their broad acceptance and their usefulness across many industries, this article offers an overview of the interest in chatbots throughout the world.Keywords: Chatbot, Artificial Intelligence, natural language processing, web scrapping
Procedia PDF Downloads 66472 Data-Driven Monitoring and Control of Water Sanitation and Hygiene for Improved Maternal Health in Rural Communities
Authors: Paul Barasa Wanyama, Tom Wanyama
Abstract:
Governments and development partners in low-income countries often prioritize building Water Sanitation and Hygiene (WaSH) infrastructure of healthcare facilities to improve maternal healthcare outcomes. However, the operation, maintenance, and utilization of this infrastructure are almost never considered. Many healthcare facilities in these countries use untreated water that is not monitored for quality or quantity. Consequently, it is common to run out of water while a patient is on their way to or in the operating theater. Further, the handwashing stations in healthcare facilities regularly run out of water or soap for months, and the latrines are typically not clean, in part due to the lack of water. In this paper, we present a system that uses Internet of Things (IoT), big data, cloud computing, and AI to initiate WaSH security in healthcare facilities, with a specific focus on maternal health. We have implemented smart sensors and actuators to monitor and control WaSH systems from afar to ensure their objectives are achieved. We have also developed a cloud-based system to analyze WaSH data in real time and communicate relevant information back to the healthcare facilities and their stakeholders (e.g., medical personnel, NGOs, ministry of health officials, facilities managers, community leaders, pregnant women, and new mothers and their families) to avert or mitigate problems before they occur.Keywords: WaSH, internet of things, artificial intelligence, maternal health, rural communities, healthcare facilities
Procedia PDF Downloads 21471 Relationship between Learning Methods and Learning Outcomes: Focusing on Discussions in Learning
Authors: Jaeseo Lim, Jooyong Park
Abstract:
Although there is ample evidence that student involvement enhances learning, college education is still mainly centered on lectures. However, in recent years, the effectiveness of discussions and the use of collective intelligence have attracted considerable attention. This study intends to examine the empirical effects of discussions on learning outcomes in various conditions. Eighty eight college students participated in the study and were randomly assigned to three groups. Group 1 was told to review material after a lecture, as in a traditional lecture-centered class. Students were given time to review the material for themselves after watching the lecture in a video clip. Group 2 participated in a discussion in groups of three or four after watching the lecture. Group 3 participated in a discussion after studying on their own. Unlike the previous two groups, students in Group 3 did not watch the lecture. The participants in the three groups were tested after studying. The test questions consisted of memorization problems, comprehension problems, and application problems. The results showed that the groups where students participated in discussions had significantly higher test scores. Moreover, the group where students studied on their own did better than that where students watched a lecture. Thus discussions are shown to be effective for enhancing learning. In particular, discussions seem to play a role in preparing students to solve application problems. This is a preliminary study and other age groups and various academic subjects need to be examined in order to generalize these findings. We also plan to investigate what kind of support is needed to facilitate discussions.Keywords: discussions, education, learning, lecture, test
Procedia PDF Downloads 176470 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 420469 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile
Procedia PDF Downloads 152468 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand
Authors: Gaurav Kumar Sinha
Abstract:
The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning
Procedia PDF Downloads 35467 The Searching Artificial Intelligence: Neural Evidence on Consumers' Less Aversion to Algorithm-Recommended Search Product
Authors: Zhaohan Xie, Yining Yu, Mingliang Chen
Abstract:
As research has shown a convergent tendency for aversion to AI recommendation, it is imperative to find a way to promote AI usage and better harness the technology. In the context of e-commerce, this study has found evidence that people show less avoidance of algorithms when recommending search products compared to experience products. This is due to people’s different attribution of mind to AI versus humans, as suggested by mind perception theory. While people hold the belief that an algorithm owns sufficient capability to think and calculate, which makes it competent to evaluate search product attributes that can be obtained before actual use, they doubt its capability to sense and feel, which is essential for evaluating experience product attributes that must be assessed after experience in person. The result of the behavioral investigation (Study 1, N=112) validated that consumers show low purchase intention to experience products recommended by AI. Further consumer neuroscience study (Study 2, N=26) using Event-related potential (ERP) showed that consumers have a higher level of cognitive conflict when faced with AI recommended experience product as reflected by larger N2 component, while the effect disappears for search product. This research has implications for the effective employment of AI recommenders, and it extends the literature on e-commerce and marketing communication.Keywords: algorithm recommendation, consumer behavior, e-commerce, event-related potential, experience product, search product
Procedia PDF Downloads 154