Search results for: Au nano particles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2550

Search results for: Au nano particles

1410 Secondary Charged Fragments Tracking for On-Line Beam Range Monitoring in Particle Therapy

Authors: G. Traini, G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, S. M. Valle, C. Voena, V. Patera

Abstract:

In Particle Therapy (PT) treatments a large amount of secondary particles, whose emission point is correlated to the dose released in the crossed tissues, is produced. The measurement of the secondary charged fragments component could represent a valid technique to monitor the beam range during the PT treatments, that is a still missing item in the clinical practice. A sub-millimetrical precision on the beam range measurement is required to significantly optimise the technique and to improve the treatment quality. In this contribution, a detector, named Dose Profiler (DP), is presented. It is specifically planned to monitor on-line the beam range exploiting the secondary charged particles produced in PT Carbon ions treatment. In particular, the DP is designed to track the secondary fragments emitted at large angles with respect to the beam direction (mainly protons), with the aim to reconstruct the spatial coordinates of the fragment emission point extrapolating the measured track toward the beam axis. The DP is currently under development within of the INSIDE collaboration (Innovative Solutions for In-beam Dosimetry in hadrontherapy). The tracker is made by six layers (20 × 20 cm²) of BCF-12 square scintillating fibres (500 μm) coupled to Silicon Photo-Multipliers, followed by two plastic scintillator layers of 6 mm thickness. A system of front-end boards based on FPGAs arranged around the detector provides the data acquisition. The detector characterization with cosmic rays is currently undergoing, and a data taking campaign with protons will take place in May 2017. The DP design and the performances measured with using MIPs and protons beam will be reviewed.

Keywords: fragmentation, monitoring, particle therapy, tracking

Procedia PDF Downloads 211
1409 Four-Way Coupled CFD-Dem Simulation of Concrete Pipe Flow Using a Non-Newtonian Rheological Model: Investigating the Simulation of Lubrication Layer Formation and Plug Flow Zones

Authors: Tooran Tavangar, Masoud Hosseinpoor, Jeffrey S. Marshall, Ammar Yahia, Kamal Henri Khayat

Abstract:

In this study, a four-way coupled CFD-DEM methodology was used to simulate the behavior of concrete pipe flow. Fresh concrete, characterized as a biphasic suspension, features aggregates comprising the solid-suspended phase with diverse particle-size distributions (PSD) within a non-Newtonian cement paste/mortar matrix forming the liquid phase. The fluid phase was simulated using CFD, while the aggregates were modeled using DEM. Interaction forces between the fluid and solid particles were considered through CFD-DEM computations. To capture the viscoelastic characteristics of the suspending fluid, a bi-viscous approach was adopted, incorporating a critical shear rate proportional to the yield stress of the mortar. In total, three diphasic suspensions were simulated, each featuring distinct particle size distributions and a concentration of 10% for five subclasses of spherical particles ranging from 1 to 17 mm in a suspending fluid. The adopted bi-viscous approach successfully simulated both un-sheared (plug flow) and sheared zones. Furthermore, shear-induced particle migration (SIPM) was assessed by examining coefficients of variation in particle concentration across the pipe. These SIPM values were then compared with results obtained using CFD-DEM under the Newtonian assumption. The study highlighted the crucial role of yield stress in the mortar phase, revealing that lower yield stress values can lead to increased flow rates and higher SIPM across the pipe.

Keywords: computational fluid dynamics, concrete pumping, coupled CFD-DEM, discrete element method, plug flow, shear-induced particle migration.

Procedia PDF Downloads 46
1408 Erosion and Deposition of Terrestrial Soil Supplies Nutrients to Estuaries and Coastal Bays: A Flood Simulation Study of Sediment-Nutrient Flux

Authors: Kaitlyn O'Mara, Michele Burford

Abstract:

Estuaries and coastal bays can receive large quantities of sediment from surrounding catchments during flooding or high flow periods. Large river systems that feed freshwater into estuaries can flow through several catchments of varying geology. Human modification of catchments for agriculture, industry and urban use can contaminate soils with excess nutrients, trace metals and other pollutants. Land clearing, especially clearing of riparian vegetation, can accelerate erosion, mobilising, transporting and depositing soil particles into rivers, estuaries and coastal bays. In this study, a flood simulation experiment was used to study the flux of nutrients between soil particles and water during this erosion, transport and deposition process. Granite, sedimentary and basalt surface soils (as well as sub-soils of granite and sedimentary) were collected from eroding areas surrounding the Brisbane River, Australia. The <63 µm size fraction of each soil type was tumbled in freshwater for 3 days, to simulation flood erosion and transport, followed by stationary exposure to seawater for 4 weeks, to simulate deposition into estuaries. Filtered water samples were taken at multiple time points throughout the experiment and analysed for water nutrient concentrations. The highest rates of nutrient release occurred during the first hour of exposure to freshwater and seawater, indicating a chemical reaction with seawater that may act to release some nutrient particles that remain bound to the soil during turbulent freshwater transport. Although released at a slower rate than the first hour, all of the surface soil types showed continual ammonia, nitrite and nitrate release over the 4-week seawater exposure, suggesting that these soils may provide ongoing supply of these nutrients to estuarine waters after deposition. Basalt surface soil released the highest concentrations of phosphates and dissolved organic phosphorus. Basalt soils are found in much of the agricultural land surrounding the Brisbane River and contributed largely to the 2011 Brisbane River flood plume deposit in Moreton Bay, suggesting these soils may be a source of phosphate enrichment in the bay. The results of this study suggest that erosion of catchment soils during storm and flood events may be a source of nutrient supply in receiving waterways, both freshwater and marine, and that the amount of nutrient release following these events may be affected by the type of soil deposited. For example, flooding in different catchments of a river system over time may result in different algal and food web responses in receiving estuaries.

Keywords: flood, nitrogen, nutrient, phosphorus, sediment, soil

Procedia PDF Downloads 164
1407 PLGA Nanoparticles Entrapping dual anti-TB drugs of Amikacin and Moxifloxacin as a Potential Host-Directed Therapy for Multidrug Resistant Tuberculosis

Authors: Sharif Abdelghany

Abstract:

Polymeric nanoparticles have been widely investigated as a controlled release drug delivery platform for the treatment of tuberculosis (TB). These nanoparticles were also readily internalised into macrophages, leading to high intracellular drug concentration. In this study two anti-TB drugs, amikacin and moxifloxacin were encapsulated into PLGA nanoparticles. The novelty of this work appears in: (1) the efficient encapsulation of two hydrophilic second-line anti-TB drugs, and (2) intramacrophage delivery of this synergistic combination potentially for rapid treatment of multi-drug resistant TB (MDR-TB). Two water-oil-water (w/o/w) emulsion strategies were employed in this study: (1) alginate coated PLGA nanoparticles, and (2) alginate entrapped PLGA nanoparticles. The average particle size and polydispersity index (PDI) of the alginate coated PLGA nanoparticles were found to be unfavourably high with values of 640 ± 32 nm and 0.63 ± 0.09, respectively. In contrast, the alginate entrapped PLGA nanoparticles were within the desirable particle size range of 282 - 315 nm and the PDI was 0.08 - 0.16, and therefore were chosen for subsequent studies. Alginate entrapped PLGA nanoparticles yielded a drug loading of over 10 µg/mg powder for amikacin, and more than 5 µg/mg for moxifloxacin and entrapment efficiencies range of approximately 25-31% for moxifloxacin and 51-59% for amikacin. To study macrophage uptake efficiency, the nanoparticles of alginate entrapped nanoparticle formulation were loaded with acridine orange as a marker, seeded to THP-1 derived macrophages and viewed under confocal microscopy. The particles were readily internalised into the macrophages and highly concentrated in the nucleus region. Furthermore, the anti-mycobacterial activity of the drug-loaded particles was evaluated using M. tuberculosis-infected macrophages, which revealed a significant reduction (4 log reduction) of viable bacterial count compared to the untreated group. In conclusion, the amikacin-moxifloxacin alginate entrapped PLGA nanoparticles are promising for further in vivo studies.

Keywords: moxifloxacin and amikacin, nanoparticles, multidrug resistant TB, PLGA

Procedia PDF Downloads 350
1406 Evaluation of Solid-Gas Separation Efficiency in Natural Gas Cyclones

Authors: W. I. Mazyan, A. Ahmadi, M. Hoorfar

Abstract:

Objectives/Scope: This paper proposes a mathematical model for calculating the solid-gas separation efficiency in cyclones. This model provides better agreement with experimental results compared to existing mathematical models. Methods: The separation ratio efficiency, ϵsp, is evaluated by calculating the outlet to inlet count ratio. Similar to mathematical derivations in the literature, the inlet and outlet particle count were evaluated based on Eulerian approach. The model also includes the external forces acting on the particle (i.e., centrifugal and drag forces). In addition, the proposed model evaluates the exact length that the particle travels inside the cyclone for the evaluation of number of turns inside the cyclone. The separation efficiency model derivation using Stoke’s law considers the effect of the inlet tangential velocity on the separation performance. In cyclones, the inlet velocity is a very important factor in determining the performance of the cyclone separation. Therefore, the proposed model provides accurate estimation of actual cyclone separation efficiency. Results/Observations/Conclusion: The separation ratio efficiency, ϵsp, is studied to evaluate the performance of the cyclone for particles ranging from 1 microns to 10 microns. The proposed model is compared with the results in the literature. It is shown that the proposed mathematical model indicates an error of 7% between its efficiency and the efficiency obtained from the experimental results for 1 micron particles. At the same time, the proposed model gives the user the flexibility to analyze the separation efficiency at different inlet velocities. Additive Information: The proposed model determines the separation efficiency accurately and could also be used to optimize the separation efficiency of cyclones at low cost through trial and error testing, through dimensional changes to enhance separation and through increasing the particle centrifugal forces. Ultimately, the proposed model provides a powerful tool to optimize and enhance existing cyclones at low cost.

Keywords: cyclone efficiency, solid-gas separation, mathematical model, models error comparison

Procedia PDF Downloads 377
1405 Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction

Authors: G. Ravindranath, S. Savitha

Abstract:

This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub).

Keywords: fluidized bed, large particles, particle diameter, ANN

Procedia PDF Downloads 351
1404 Photon-Electron Interaction in the Different Medium

Authors: Vahid Borji

Abstract:

The interaction between photons and particles is a common phenomenon in nature that is discussed in order to obtain information about the environment and the conditions governing the phenomena. In the astrophysics, like others, we study these interactions to get useful knowledge and can be predict aftercoming events. One of the events is the transition of photon beam through medium with special conditions, like shocked medium. In our discussion, we have studied this situation and obtained results for different conditions that transition of photon depends on the energy of photon and distributions of electrons in medium.

Keywords: cross section, astrophysics, GRB, photon

Procedia PDF Downloads 71
1403 Dielectric Properties of Ni-Al Nano Ferrites Synthesized by Citrate Gel Method

Authors: D. Ravinder, K. S. Nagaraju

Abstract:

Ni–Al ferrite with composition of NiAlxFe2-xO4 (x=0.2, 0.4 0.6, and 0.8, ) were prepared by citrate gel method. The dielectric properties for all the samples were investigated at room temperature as a function of frequency. The dielectric constant shows dispersion in the lower frequency region and remains almost constant at higher frequencies. The frequency dependence of dielectric loss tangent (tanδ) is found to be abnormal, giving a peak at certain frequency for mixed Ni-Al ferrites. A qualitative explanation is given for the composition and frequency dependence of the dielectric loss tangent.

Keywords: ferrites, citrate method, lattice parameter, dielectric constant

Procedia PDF Downloads 285
1402 Numerical Investigation into Capture Efficiency of Fibrous Filters

Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard

Abstract:

Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.

Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory

Procedia PDF Downloads 191
1401 Relationship of Indoor and Outdoor Levels of Black Carbon in an Urban Environment

Authors: Daria Pashneva, Julija Pauraite, Agne Minderyte, Vadimas Dudoitis, Lina Davuliene, Kristina Plauskaite, Inga Garbariene, Steigvile Bycenkiene

Abstract:

Black carbon (BC) has received particular attention around the world, not only for its impact on regional and global climate change but also for its impact on air quality and public health. In order to study the relationship between indoor and outdoor BC concentrations, studies were carried out in Vilnius, Lithuania. The studies are aimed at determining the relationship of concentrations, identifying dependencies during the day and week with a further opportunity to analyze the key factors affecting the indoor concentration of BC. In this context, indoor and outdoor continuous real-time measurements of optical BC-related light absorption by aerosol particles were carried out during the cold season (from October to December 2020). The measurement venue was an office located in an urban background environment. Equivalent black carbon (eBC) mass concentration was measured by an Aethalometer (Magee Scientific, model AE-31). The optical transmission of carbonaceous aerosol particles was measured sequentially at seven wavelengths (λ= 370, 470, 520, 590, 660, 880, and 950 nm), where the eBC mass concentration was derived from the light absorption coefficient (σab) at 880 nm wavelength. The diurnal indoor eBC mass concentration was found to vary in the range from 0.02 to 0.08 µgm⁻³, while the outdoor eBC mass concentration - from 0.34 to 0.99 µgm⁻³. Diurnal variations of eBC mass concentration outdoor vs. indoor showed an increased contribution during 10:00 and 12:00 AM (GMT+2), with the highest indoor eBC mass concentration of 0.14µgm⁻³. An indoor/outdoor eBC ratio (I/O) was below one throughout the entire measurement period. The weekend levels of eBC mass concentration were lower than in weekdays for indoor and outdoor for 33% and 28% respectively. Hourly mean mass concentrations of eBC for weekdays and weekends show diurnal cycles, which could be explained by the periodicity of traffic intensity and heating activities. The results show a moderate influence of outdoor eBC emissions on the indoor eBC level.

Keywords: black carbon, climate change, indoor air quality, I/O ratio

Procedia PDF Downloads 179
1400 Study of Cahn-Hilliard Equation to Simulate Phase Separation

Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa

Abstract:

An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.

Keywords: Cahn-Hilliard equation, miscibility gap, phase separation, dimensional domains

Procedia PDF Downloads 494
1399 Morphology and Electrical Conductivity of a Non-Symmetrical NiO-SDC/SDC Anode through a Microwave-Assisted Route

Authors: Mohadeseh Seyednezhad, Armin Rajabi, Andanastui Muchtar, Mahendra Rao Somalu

Abstract:

This work investigates the electrical properties of NiO-SDC/SDC anode sintered at about 1200 ○C for 1h through a relatively new approach, namely the microwave method. Nano powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed by using a high-energy ball-mill and subsequent co-pressed at three different compaction pressures 200, 300 and 400 MPa. The novelty of this study consists in the effect of compaction pressure on the electrochemical performance of Ni-SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode has been studied by electrochemical impedance spectra (EIS) in controlled atmospheres, operating at high temperatures (600-800 °C).

Keywords: sintering, fuel cell, electrical conductivity, nanostructures, impedance spectroscopy, ceramics

Procedia PDF Downloads 450
1398 Surface Enhanced Infrared Absorption for Detection of Ultra Trace of 3,4- Methylene Dioxy- Methamphetamine (MDMA)

Authors: Sultan Ben Jaber

Abstract:

Optical properties of molecules exhibit dramatic changes when adsorbed close to nano-structure metallic surfaces such as gold and silver nanomaterial. This phenomena opened a wide range of research to improve conventional spectroscopies efficiency. A well-known technique that has an intensive focus of study is surface-enhanced Raman spectroscopy (SERS), as since the first observation of SERS phenomena, researchers have published a great number of articles about the potential mechanisms behind this effect as well as developing materials to maximize the enhancement. Infrared and Raman spectroscopy are complementary techniques; thus, surface-enhanced infrared absorption (SEIRA) also shows a noticeable enhancement of molecules in the mid-IR excitation on nonmetallic structure substrates. In the SEIRA, vibrational modes that gave change in dipole moments perpendicular to the nano-metallic substrate enhanced 200 times greater than the free molecule’s modes. SEIRA spectroscopy is promising for the characterization and identification of adsorbed molecules on metallic surfaces, especially at trace levels. IR reflection-absorption spectroscopy (IRAS) is a well-known technique for measuring IR spectra of adsorbed molecules on metallic surfaces. However, SEIRA spectroscopy sensitivity is up to 50 times higher than IRAS. SEIRA enhancement has been observed for a wide range of molecules adsorbed on metallic substrates such as Au, Ag, Pd, Pt, Al, and Ni, but Au and Ag substrates exhibited the highest enhancement among the other mentioned substrates. In this work, trace levels of 3,4-methylenedioxymethamphetamine (MDMA) have been detected using gold nanoparticles (AuNPs) substrates with surface-enhanced infrared absorption (SEIRA). AuNPs were first prepared and washed, then mixed with different concentrations of MDMA samples. The process of fabricating the substrate prior SEIRA measurements included mixing of AuNPs and MDMA samples followed by vigorous stirring. The stirring step is particularly crucial, as stirring allows molecules to be robustly adsorbed on AuNPs. Thus, remarkable SEIRA was observed for MDMA samples even at trace levels, showing the rigidity of our approach to preparing SEIRA substrates.

Keywords: surface-enhanced infrared absorption (SEIRA), gold nanoparticles (AuNPs), amphetamines, methylene dioxy- methamphetamine (MDMA), enhancement factor

Procedia PDF Downloads 51
1397 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks

Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska

Abstract:

Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.

Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell

Procedia PDF Downloads 144
1396 Kinetic Aspect Investigation of Chitosan / Nanohydroxyapatite / Na ₂CO₃ Gel System

Authors: P. S. D. Perera, S. U. Adikary

Abstract:

The gelation behavior of Chitosan/nanohydroxyapatite sol in the presence of a crosslinking agent Na ₂CO₃ was investigated experimentally. In this case, the gelation time(tgel) was determined by the rheological measurements of the final mixture. The tgel has been determined from dynamic viscosity slope experiments. We found that chitosan/nHA sol with 1% nano-hydroxyapatite and 1.6% Na2CO3 required coagulant performance. Hence Na ₂CO₃ and nanohydroxyapatite concentrations remain constant over the experiment. The order of reaction was first order with respect to chitosan and rate constant of the gel system was 9.0 x 10-4 s-1, respectively, depending on the temperature of the system. The gelation temperature was carried out at 37 ⁰C.

Keywords: kinetics, gelation, sol-gel system, chitosan/ nHA/ Na ₂CO₃ composite

Procedia PDF Downloads 152
1395 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 223
1394 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector

Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini

Abstract:

Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.

Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products

Procedia PDF Downloads 133
1393 Nanotechnology for Flame Retardancy of Thermoset Resins

Authors: Ewa Kicko Walczak, Grazyna Rymarz

Abstract:

In recent years, nanotechnology has been successfully applied for flame retardancy of polymers, in particular for construction materials. The consumption of thermoset resins as a construction polymers materials is approximately over one million tone word wide. Excellent mechanical, relatively high heat and thermal stability of their type of polymers are proven for variety applications, e.g. transportation, electrical, electronic, building part industry. Above applications in addition to the strength and thermal properties also requires -referring to the legal regulation or recommendation - an adequate level of flammability of the materials. This publication present the evaluation was made of effectiveness of flame retardancy of halogen-free hybrid flame retardants(FR) as compounds nitric/phosphorus modifiers that act with nanofillers (nano carbons, organ modified montmorillonite, nano silica, microsphere) in relation to unsaturated polyester/epoxy resins and glass-reinforced on base this resins laminates(GRP) as a final products. The analysis of the fire properties provided proof of effective flame retardancy of the tested composites by defining oxygen indices values (LOI), with the use of thermogravimetric methods (TGA) and combustion head (CH). An analysis of the combustion process with Cone Calorimeter (CC) method included in the first place N/P units and nanofillers with the observed phenomenon of synergic action of compounds. The fine-plates, phase morphology and rheology of composites were assessed by SEM/ TEM analysis. Polymer-matrix glass reinforced laminates with modified resins meet LOI over 30%, reduced in a decrease by 70% HRR (according to CC analysis), positive description of the curves TGA and values CH; no adverse negative impact on mechanical properties. The main objective of our current project is to contribute to the general understanding of the flame retardants mechanism and to investigate the corresponding structure/properties relationships. We confirm that nanotechnology systems are successfully concept for commercialized forms for non-flammable GRP pipe, concrete composites, and flame retardant tunnels constructions.

Keywords: fire retardants, FR, halogen-free FR nanofillers, non-flammable pipe/concrete, thermoset resins

Procedia PDF Downloads 267
1392 Structural, Optical and Electrical Properties of MnxZnO1-X Nanocrystals Synthesized by Sol-Gel Method

Authors: K. C. Gayithri, S. K. Naveen Kumar

Abstract:

ZnO is one of the most important semiconductor materials, non toxic, biocompatible, antibacterial properties for research and it is used in many biomedical applications. MnxZn1-xO nano thin films were prepared by a spin coating sol-gel method on silicon substrate. The structural, optical, electrical properties of Mn Doped ZnO are studied by using X-rd, FESEM, UV-Visible spectrophotometer. The X-rd reveals that the sample shows hexagonal wurtzits structure. Surface morphology and thickness of the sample are characterized by field emission scanning electron microscopy. Absorption and transmission spectra are studied by UV-Visible spectrophotometer. The electrical properties are measured by TCR meter.

Keywords: transition metals, Mn doped ZnO, Sol-gel, x-ray diffraction

Procedia PDF Downloads 380
1391 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Authors: Ergin Kosa, Ali Göksenli

Abstract:

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials.

Keywords: erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material

Procedia PDF Downloads 368
1390 A Nanoindentation Study of Thin Film Prepared by Physical Vapor Deposition

Authors: Dhiflaoui Hafedh, Khlifi Kaouther, Ben Cheikh Larbi Ahmed

Abstract:

Monolayer and multilayer coatings of CrN and AlCrN deposited on 100Cr6 (AISI 52100) substrate by PVD magnetron sputtering system. The micro structures of the coatings were characterized using atomic force microscopy (AFM). The AFM analysis revealed the presence of domes and craters which are uniformly distributed over all surfaces of the various layers. Nano indentation measurement of CrN coating showed maximum hardness (H) and modulus (E) of 14 GPa and 240 GPa, respectively. The measured H and E values of AlCrN coatings were found to be 30 GPa and 382 GPa, respectively. The improved hardness in both the coatings was attributed mainly to a reduction in crystallite size and decrease in surface roughness. The incorporation of Al into the CrN coatings has improved both hardness and Young’s modulus.

Keywords: CrN, AlCrN coatings, hardness, nanoindentation

Procedia PDF Downloads 546
1389 Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution

Authors: Clémence Royer, Stéphane Mazouffre

Abstract:

Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control.

Keywords: electric propulsion, Hall Thruster, plasma diagnostics, low-frequency oscillations

Procedia PDF Downloads 73
1388 Elaboration and Characterization of in-situ CrC- Ni(Al, Cr) Composites Elaborated from Ni and Cr₂AlC Precursors

Authors: A. Chiker, A. Benamor, A. Haddad, Y. Hadji, M. Hadji

Abstract:

Metal matrix composites (MMCs) have been of big interest for a few decades. Their major drawback lies in their enhanced mechanical performance over unreinforced alloys. They found ground in many engineering fields, such as aeronautics, aerospace, automotive, and other structural applications. One of the most used alloys as a matrix is nickel alloys, which meet the need for high-temperature mechanical properties; some attempts have been made to develop nickel base composites reinforced by high melt point and high modulus particulates. Among the carbides used as reinforcing particulates, chromium carbide is interesting for wear applications; it is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Moreover, a set of properties make it suitable for use in MMCs, such as toughness, the good corrosion and oxidation resistance of its three polymorphs -the cubic (Cr23C6), the hexagonal (Cr7C3), and the orthorhombic (Cr3C2)-, and it’s coefficient of thermal expansion that is almost equal to that of metals. The in-situ synthesis of CrC-reinforced Ni matrix composites could be achieved by the powder metallurgy route. To ensure the in-situ reactions during the sintering process, the use of phase precursors is necessary. Recently, new precursor materials have been proposed; these materials are called MAX phases. The MAX phases are thermodynamically stable nano-laminated materials displaying unusual and sometimes unique properties. These novel phases possess Mn+1AXn chemistry, where n is 1, 2, or 3, M is an early transition metal element, A is an A-group element, and X is C or N. Herein, the pressureless sintering method is used to elaborate Ni/Cr2AlC composites. Four composites were elaborated from 5, 10, 15 and 20 wt% of Cr2AlC MAX phase precursor which fully reacted with Ni-matrix at 1100 °C sintering temperature for 4 h in argon atmosphere. XRD results showed that Cr2AlC MAX phase was totally decomposed forming chromium carbide Cr7C3, and the released Al and Cr atoms diffused in Ni matrix giving rise to γ-Ni(Al,Cr) solid solution and γ’-Ni3(Al,Cr) intermetallic. Scanning Electron Microscopy (SEM) of the elaborated samples showed the presence of nanosized Cr7C3 reinforcing particles embedded in the Ni metal matrix, which have a direct impact on the tribological properties of the composites and their hardness. All the composites exhibited higher hardness than pure Ni; whereas adding 15 wt% of Cr2AlC gives the highest hardness (1.85 GPa). Using a ball-on-disc tribometer, dry sliding tests for the elaborated composites against 100Cr6 steel ball were studied under different applied loads. The microstructures and worn surface characteristics were then analyzed using SEM and Raman spectroscopy. The results show that all the composites exhibited better wear resistance compared to pure Ni, which could be explained by the formation of a lubricious tribo-layer during sliding and the good bonding between the Ni matrix and the reinforcing phases.

Keywords: composites, microscopy, sintering, wear

Procedia PDF Downloads 57
1387 Morphology Feature of Nanostructure Bainitic Steel after Tempering Treatment

Authors: Chih Yuan Chen, Chien Chon Chen, Jin-Shyong Lin

Abstract:

The microstructure characterization of tempered nanocrystalline bainitic steel is investigated in the present study. It is found that two types of plastic relaxation, dislocation debris and nanotwin, occurs in the displacive transformation due to relatively low transformation temperature and high carbon content. Because most carbon atoms trap in the dislocation, high dislocation density can be sustained during the tempering process. More carbides only can be found in the high tempered temperature due to intense recovery progression.

Keywords: nanostructure bainitic steel, tempered, TEM, nano-twin, dislocation debris, accommodation

Procedia PDF Downloads 515
1386 Use of Giant Magneto Resistance Sensors to Detect Micron to Submicron Biologic Objects

Authors: Manon Giraud, Francois-Damien Delapierre, Guenaelle Jasmin-Lebras, Cecile Feraudet-Tarisse, Stephanie Simon, Claude Fermon

Abstract:

Early diagnosis or detection of harmful substances at low level is a growing field of high interest. The ideal test should be cheap, easy to use, quick, reliable, specific, and with very low detection limit. Combining the high specificity of antibodies-functionalized magnetic beads used to immune-capture biologic objects and the high sensitivity of a GMR-based sensors, it is possible to even detect these biologic objects one by one, such as a cancerous cell, a bacteria or a disease biomarker. The simplicity of the detection process makes its use possible even for untrained staff. Giant Magneto Resistance (GMR) is a recently discovered effect consisting in the electrical resistance modification of some conductive layers when exposed to a magnetic field. This effect allows the detection of very low variations of magnetic field (typically a few tens of nanoTesla). Magnetic nanobeads coated with antibodies targeting the analytes are mixed with a biological sample (blood, saliva) and incubated for 45 min. Then the mixture is injected in a very simple microfluidic chip and circulates above a GMR sensor that detects changes in the surrounding magnetic field. Magnetic particles do not create a field sufficient to be detected. Therefore, only the biological objects surrounded by several antibodies-functionalized magnetic beads (that have been captured by the complementary antigens) are detected when they move above the sensor. Proof of concept has been carried out on NS1 mouse cancerous cells diluted in PBS which have been bonded to magnetic 200nm particles. Signals were detected in cells-containing samples while none were recorded for negative controls. Binary response was hence assessed for this first biological model. The precise quantification of the analytes and its detection in highly diluted solution is the step now in progress.

Keywords: early diagnosis, giant magnetoresistance, lab-on-a-chip, submicron particle

Procedia PDF Downloads 234
1385 Nano-Sized Iron Oxides/ZnMe Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts for Degrading Specific Pharmaceutical Agents

Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja

Abstract:

Persistent organic pollutant discharged by various industries or urban regions into the aquatic ecosystems represent a serious threat to fauna and human health. The endocrine disrupting compounds are known to have toxic effects even at very low values of concentration. The anti-inflammatory agent Ibuprofen is an endocrine disrupting compound and is considered as model pollutant in the present study. The use of light energy to accomplish the latest requirements concerning wastewater discharge demands highly-performant and robust photo-catalysts. Many efforts have been paid to obtain efficient photo-responsive materials. Among the promising photo-catalysts, layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents Fe(II) self-supported on ZnMeLDHs (Me =Al3+, Fe3+) as novel efficient photo-catalysts for Fenton-like catalysis. The co-precipitation method was used to prepare ZnAlLDH, ZnFeAlLDH and ZnCrLDH (Zn2+/Me3+ = 2 molar ratio). Fe(II) was self-supported on the LDHs matrices by using the reconstruction method, at two different values of weight concentration. X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) were used to investigate the structural, textural, and micromorphology of the catalysts. The Fe(II)/ZnMeLDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively. The results point out that the embedment Fe(II) into ZnFeAlLDH and ZnCrLDH lead to a slight enhancement of ibuprofen degradation by light irradiation, whereas in case of ZnAlLDH, the degradation process is relatively low. A remarkable enhancement of ibuprofen degradation was found in the case of Fe(II)/ZnMeLDHs by photo-Fenton process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: layered double hydroxide, heterogeneous Fenton, micropollutant, photocatalysis

Procedia PDF Downloads 278
1384 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes

Authors: Hacer Sule Gonul, Vedat Uyak

Abstract:

Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.

Keywords: pesticide, drinking water, carbon nanotube, adsorption

Procedia PDF Downloads 153
1383 New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data

Authors: Dilip K. De, Olukunle C. Olawole, Emmanuel S. Joel, Moses Emetere

Abstract:

A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube.

Keywords: charge carrier density, nano materials, new technique, thermionic emission

Procedia PDF Downloads 303
1382 Boundary Layer Control Using a Magnetic Field: A Case Study in the Framework of Ferrohydrodynamics

Authors: C. F. Alegretti, F. R. Cunha, R. G. Gontijo

Abstract:

This work investigates the effects of an applied magnetic field on the geometry-driven boundary layer detachment flow of a ferrofluid over a sudden expansion. Both constitutive equation and global magnetization equation for a ferrofluid are considered. Therefore, the proposed formulation consists in a coupled magnetic-hydrodynamic problem. Computational simulations are carried out in order to explore, not only the viability to control flow instabilities, but also to evaluate the consistency of theoretical aspects. The unidirectional sudden expansion in a ferrofluid flow is investigated numerically under the perspective of Ferrohydrodynamics in a two-dimensional domain using a Finite Differences Method. The boundary layer detachment induced by the sudden expansion results in a recirculating zone, which has been extensively studied in non-magnetic hydrodynamic problems for a wide range of Reynolds numbers. Similar investigations can be found in literature regarding the sudden expansion under the magnetohydrodynamics framework, but none considering a colloidal suspension of magnetic particles out of the superparamagnetic regime. The vorticity-stream function formulation is implemented and results in a clear coupling between the flow vorticity and its magnetization field. Our simulations indicate a systematic decay on the length of the recirculation zone as increasing physical parameters of the flow, such as the intensity of the applied field and the volume fraction of particles. The results all are discussed from a physical point of view in terms of the dynamical non-dimensional parameters. We argue that the decrease/reduction in the recirculation region of the flow is a direct consequence of the magnetic torque balancing the action of the torque produced by viscous and inertial forces of the flow. For the limit of small Reynolds and magnetic Reynolds parameters, the diffusion of vorticity balances the diffusion of the magnetic torque on the flow. These mechanics control the growth of the recirculation region.

Keywords: boundary layer detachment, ferrofluid, ferrohydrodynamics, magnetization, sudden expansion

Procedia PDF Downloads 195
1381 Flow Reproduction Using Vortex Particle Methods for Wake Buffeting Analysis of Bluff Structures

Authors: Samir Chawdhury, Guido Morgenthal

Abstract:

The paper presents a novel extension of Vortex Particle Methods (VPM) where the study aims to reproduce a template simulation of complex flow field that is generated from impulsively started flow past an upstream bluff body at certain Reynolds number Re-Vibration of a structural system under upstream wake flow is often considered its governing design criteria. Therefore, the attention is given in this study especially for the reproduction of wake flow simulation. The basic methodology for the implementation of the flow reproduction requires the downstream velocity sampling from the template flow simulation; therefore, at particular distances from the upstream section the instantaneous velocity components are sampled using a series of square sampling-cells arranged vertically where each of the cell contains four velocity sampling points at its corner. Since the grid free Lagrangian VPM algorithm discretises vorticity on particle elements, the method requires transformation of the velocity components into vortex circulation, and finally the simulation of the reproduction of the template flow field by seeding these vortex circulations or particles into a free stream flow. It is noteworthy that the vortex particles have to be released into the free stream exactly at same rate of velocity sampling. Studies have been done, specifically, in terms of different sampling rates and velocity sampling positions to find their effects on flow reproduction quality. The quality assessments are mainly done, using a downstream flow monitoring profile, by comparing the characteristic wind flow profiles using several statistical turbulence measures. Additionally, the comparisons are performed using velocity time histories, snapshots of the flow fields, and the vibration of a downstream bluff section by performing wake buffeting analyses of the section under the original and reproduced wake flows. Convergence study is performed for the validation of the method. The study also describes the possibilities how to achieve flow reproductions with less computational effort.

Keywords: vortex particle method, wake flow, flow reproduction, wake buffeting analysis

Procedia PDF Downloads 294