Search results for: trained athletes
273 Impact of Preksha Meditation on Academic Anxiety of Female Teenagers
Authors: Neelam Vats, Madhvi Pathak Pillai, Rajender Lal, Indu Dabas
Abstract:
The pressure of scoring higher marks to be able to get admission in a higher ranked institution has become a social stigma for school students. It leads to various social and academic pressures on them, causing psychological anxiety. This undue stress on students sometimes may even steer to aggressive behavior or suicidal tendencies. Human mind is always surrounded by the some desires, emotions and passions, which usually disturbs our mental peace. In such a scenario, we look for a solution that helps in removing all the obstacles of mind and make us mentally peaceful and strong enough to be able to deal with all kind of pressure. Preksha meditation is one such technique which aims at bringing the positive changes for overall transformation of personality. Hence, the present study was undertaken to assess the impact of Preksha Meditation on the academic anxiety on female teenagers. The study was conducted on 120 high school students from the capital city of India. All students were in the age group of 13-15 years. They also belonged to similar social as well as economic status. The sample was equally divided into two groups i.e. experimental group (N = 60) and control group (N = 60). Subjects of the experimental group were given the intervention of Preksha Meditation practice by the trained instructor for one hour per day, six days a week, for three months for the first experimental stage and another three months for the second experimental stage. The subjects of the control group were not assigned any specific type of activity rather they continued doing their normal official activities as usual. The Academic Anxiety Scale was used to collect data during multi-level stages i.e. pre-experimental stage, post-experimental stage phase-I, and post-experimental stage phase-II. The data were statistically analyzed by computing the two-tailed-‘t’ test for inter group comparison and Sandler’s ‘A’ test with alpha = or p < 0.05 for intra-group comparisons. The study concluded that the practice for longer duration of Preksha Meditation practice brings about very significant and beneficial changes in the pattern of academic anxiety.Keywords: academic anxiety, academic pressure, Preksha, meditation
Procedia PDF Downloads 131272 Optimizing the Use of Google Translate in Translation Teaching: A Case Study at Prince Sultan University
Authors: Saadia Elamin
Abstract:
The quasi-universal use of smart phones with internet connection available all the time makes it a reflex action for translation undergraduates, once they encounter the least translation problem, to turn to the freely available web resource: Google Translate. Like for other translator resources and aids, the use of Google Translate needs to be moderated in such a way that it contributes to developing translation competence. Here, instead of interfering with students’ learning by providing ready-made solutions which might not always fit into the contexts of use, it can help to consolidate the skills of analysis and transfer which students have already acquired. One way to do so is by training students to adhere to the basic principles of translation work. The most important of these is that analyzing the source text for comprehension comes first and foremost before jumping into the search for target language equivalents. Another basic principle is that certain translator aids and tools can be used for comprehension, while others are to be confined to the phase of re-expressing the meaning into the target language. The present paper reports on the experience of making a measured and reasonable use of Google Translate in translation teaching at Prince Sultan University (PSU), Riyadh. First, it traces the development that has taken place in the field of translation in this age of information technology, be it in translation teaching and translator training, or in the real-world practice of the profession. Second, it describes how, with the aim of reflecting this development onto the way translation is taught, senior students, after being trained on post-editing machine translation output, are authorized to use Google Translate in classwork and assignments. Third, the paper elaborates on the findings of this case study which has demonstrated that Google Translate, if used at the appropriate levels of training, can help to enhance students’ ability to perform different translation tasks. This help extends from the search for terms and expressions, to the tasks of drafting the target text, revising its content and finally editing it. In addition, using Google Translate in this way fosters a reflexive and critical attitude towards web resources in general, maximizing thus the benefit gained from them in preparing students to meet the requirements of the modern translation job market.Keywords: Google Translate, post-editing machine translation output, principles of translation work, translation competence, translation teaching, translator aids and tools
Procedia PDF Downloads 473271 Drivers of Liking: Probiotic Petit Suisse Cheese
Authors: Helena Bolini, Erick Esmerino, Adriano Cruz, Juliana Paixao
Abstract:
The currently concern for health has increased demand for low-calorie ingredients and functional foods as probiotics. Understand the reasons that infer on food choice, besides a challenging task, it is important step for development and/or reformulation of existing food products. The use of appropriate multivariate statistical techniques, such as External Preference Map (PrefMap), associated with regression by Partial Least Squares (PLS) can help in determining those factors. Thus, this study aimed to determine, through PLS regression analysis, the sensory attributes considered drivers of liking in probiotic petit suisse cheeses, strawberry flavor, sweetened with different sweeteners. Five samples in same equivalent sweetness: PROB1 (Sucralose 0.0243%), PROB2 (Stevia 0.1520%), PROB3 (Aspartame 0.0877%), PROB4 (Neotame 0.0025%) and PROB5 (Sucrose 15.2%) determined by just-about-right and magnitude estimation methods, and three commercial samples COM1, COM2 and COM3, were studied. Analysis was done over data coming from QDA, performed by 12 expert (highly trained assessors) on 20 descriptor terms, correlated with data from assessment of overall liking in acceptance test, carried out by 125 consumers, on all samples. Sequentially, results were submitted to PLS regression using XLSTAT software from Byossistemes. As shown in results, it was possible determine, that three sensory descriptor terms might be considered drivers of liking of probiotic petit suisse cheese samples added with sweeteners (p<0.05). The milk flavor was noticed as a sensory characteristic with positive impact on acceptance, while descriptors bitter taste and sweet aftertaste were perceived as descriptor terms with negative impact on acceptance of petit suisse probiotic cheeses. It was possible conclude that PLS regression analysis is a practical and useful tool in determining drivers of liking of probiotic petit suisse cheeses sweetened with artificial and natural sweeteners, allowing food industry to understand and improve their formulations maximizing the acceptability of their products.Keywords: acceptance, consumer, quantitative descriptive analysis, sweetener
Procedia PDF Downloads 446270 The Effects of the GAA15 (Gaelic Athletic Association 15) on Lower Extremity Injury Incidence and Neuromuscular Functional Outcomes in Collegiate Gaelic Games: A 2 Year Prospective Study
Authors: Brenagh E. Schlingermann, Clare Lodge, Paula Rankin
Abstract:
Background: Gaelic football, hurling and camogie are highly popular field games in Ireland. Research into the epidemiology of injury in Gaelic games revealed that approximately three quarters of the injuries in the games occur in the lower extremity. These injuries can have player, team and institutional impacts due to multiple factors including financial burden and time loss from competition. Research has shown it is possible to record injury data consistently with the GAA through a closed online recording system known as the GAA injury surveillance database. It has been established that determining the incidence of injury is the first step of injury prevention. The goals of this study were to create a dynamic GAA15 injury prevention programme which addressed five key components/goals; avoid positions associated with a high risk of injury, enhance flexibility, enhance strength, optimize plyometrics and address sports specific agilities. These key components are internationally recognized through the Prevent Injury, Enhance performance (PEP) programme which has proven reductions in ACL injuries by 74%. In national Gaelic games the programme is known as the GAA15 which has been devised from the principles of the PEP. No such injury prevention strategies have been published on this cohort in Gaelic games to date. This study will investigate the effects of the GAA15 on injury incidence and neuromuscular function in Gaelic games. Methods: A total of 154 players (mean age 20.32 ± 2.84) were recruited from the GAA teams within the Institute of Technology Carlow (ITC). Preseason and post season testing involved two objective screening tests; Y balance test and Three Hop Test. Practical workshops, with ongoing liaison, were provided to the coaches on the implementation of the GAA15. The programme was performed before every training session and game and the existing GAA injury surveillance database was accessed to monitor player’s injuries by the college sports rehabilitation athletic therapist. Retrospective analysis of the ITC clinic records were performed in conjunction with the database analysis as a means of tracking injuries that may have been missed. The effects of the programme were analysed by comparing the intervention groups Y balance and three hop test scores to an age/gender matched control group. Results: Year 1 results revealed significant increases in neuromuscular function as a result of the GAA15. Y Balance test scores for the intervention group increased in both the posterolateral (p=.005 and p=.001) and posteromedial reach directions (p= .001 and p=.001). A decrease in performance was determined for the three hop test (p=.039). Overall twenty-five injuries were reported during the season resulting in an injury rate of 3.00 injuries/1000hrs of participation; 1.25 injuries/1000hrs training and 4.25 injuries/1000hrs match play. Non-contact injuries accounted for 40% of the injuries sustained. Year 2 results are pending and expected April 2016. Conclusion: It is envisaged that implementation of the GAA15 will continue to reduce the risk of injury and improve neuromuscular function in collegiate Gaelic games athletes.Keywords: GAA15, Gaelic games, injury prevention, neuromuscular training
Procedia PDF Downloads 339269 Mental Health Conditions and Their Risk Factors Among Women in Garissa County, Kenya
Authors: Njoroge Margaret W., Johnson Deborah
Abstract:
Gender-specific risk factors for common mental disorders that disproportionately affect women include but are not limited to gender-based violence, socioeconomic disadvantage, sociocultural factors and unrelenting responsibility for the care of others. The overall objective of this study was to assess mental health conditions and their risk factors among women in Garissa County, Kenya. The study adopted both quantitative and qualitative research designs. The study participants were 100 adult women and 20 key informants from different sectors in the region. Data was collected using DSM-5 (PCL-5) and Kessler Psychological Distress, interviews schedule and focus group discussions. Analysis of quantitative data was done using univariate analysis, while qualitative data was analyzed using thematic analysis. The results revealed that about 60% of women presented with moderate to severe psychological distress (PD), while 53% presented with PTSD. Additionally, women who have undergone female genital mutilation had higher PTSD and PD scores. They also presented with low self-esteem, depressive symptoms, sex anxiety, avoidance of reminders and intrusive memories of the event, especially those who developed fistula. The risk factors for poor mental health outcomes include lack of awareness/knowledge of mental health, retrogressive cultural practices (child marriage and female genital mutilation), as well as beliefs about the causes of mental disorders. The study also established that people with mental illness are neglected, abused and stigmatized. Preferred treatment approaches include prayers and the use of witch doctors and traditional healers. The study recommends gendered and culturally responsive interventions geared towards increasing community awareness and knowledge on mental health, reducing stigma and improving mental-health-seeking behaviors for women and girls in the region. Supported by the Ministry of Health, the approach should be spearheaded by trained community lay counselors.Keywords: women, mental health conditions, cultural beliefs/practices, stigma, poverty, psychological distress, PTSD
Procedia PDF Downloads 52268 Walking Progression in Ambulatory Individuals with Spinal Cord Injury Who Daily Walked with a Walking Device
Authors: Makamas Kumprou, Pipatana Amatachaya, Sugalya Amatachaya, Thiwabhorn Thaweewannakij, Preeda Arayawichanon
Abstract:
Many individuals with spinal cord injury (SCI) need an ambulatory assistive device (AAD) to promote their independence and experience of task-specific walking practice. Without a periodic follow-up for their walking progression, however, many individuals may use the same AAD even though up to 66% of them had the potential to progress walking ability. This may distort their optimal ability and increase the possibility of having negative impacts due to the long-lasting used of an AAD. However, these findings were cross-sectionally collected without data confirmation for the benefit or negative impacts of those who changed the types of AAD used. Therefore, this study prospectively assessed the proportion of ambulatory individuals with SCI who were able to progress their walking ability as determined using a type of AAD, and the changes of their functional ability as well as the incidence of falls over 6 months. Twenty-four subjects with SCI who daily walked with an AAD were involved in the study for 2 visits over 6 months. At the first visit (baseline assessments), the subjects were assessed for their spatiotemporal variables (i.e., cadence, step length, stride length, and step symmetry) and walking ability using the 10-meter walk test (10MWT). Then, they were assessed for the possibility of their walking progression as determined using the ability of walking with the least support AAD with no more than contact guarding assist. Those who were capable of changing an AAD were trained for the ability to walk with a new AAD. Thereafter, all subjects were monthly monitored for incidence of fall over 6 months. At the second visit (after 6 months followed-up), subjects were reassessed for their spatiotemporal variables and 10MWT. The findings indicated that, of all 24 subjects, 8 subjects (33.3%) were able to walk with less support AAD than their usual one. The walking cadence, step length symmetry, and walking ability of these subjects improved significantly greater than those who walked with the same AAD (p < 0.05). Among these subjects, one subject (12.5%) reported fell (3 times) during the follow-up period, whereas 5 subjects (31.3%) who walked with the same AAD experienced at least one fall (range 1 – 16 times). The findings indicated that a large proportion of ambulatory individuals with SCI who daily walked with an AAD could progress their walking ability, whereby their walking ability and safety also significantly improved after they walked with an optimal AAD. The findings suggest the need for a periodic follow-up for an appropriate AAD used for these individuals.Keywords: walking device, walker, crutches, cane, rehabilitation
Procedia PDF Downloads 126267 War and Peace in the Hands of the Media: Review of Global Media Reports and Their Influencing Factors on the Foreign and Security Policy Opinions of the Population
Authors: Ismahane Emma Karima Bessi
Abstract:
Military sociology is largely avoided. Discussing the military as a societal phenomenon and the social dimensions of war and peace is now considered a disgraceful and neglected province of social science that has a major impact on global populations. The first official press war began with William Howard Russell in the mid-19th century. The media are crucial to war and peace. Even Gaius Julius Caesar, with his "commentarii bello gallico", was a media tool to influence his warfare. Napoleon Bonaparte also knew how important the press was for his actions. This shows how important history is for crisis and war journalism. The one-sided media coverage that every country is confronted with ultimately prevents people from having a certain interest in the truth and from gross knowledge gaps in order to get an accurate picture of reality. There is a need to examine the relationship between the military, war, and the media to look at the modality in which the media is involved in military conflicts, in this case, as an adjunct, i.e., war because of the media. These are promoted or initiated by the following factors: photos intended for the visual manipulation of the population, the pressure from politicians and parties who are urging and exerting their influence on the global media to share the same pattern of opinion, and, most importantly, the media profiting from the war by listening to popular reactions and passing them on promoting with new visuals. These influence political elections. The media occupies a huge and ubiquitous part of the population. These have the ability to make a country that is in constant crisis and war mode appear in a brilliant light of peace. An article or photograph taken by one journalist has a tremendous impact as it can control the minds of millions of people. Most wars currently have state-political reasons. The parties, therefore, want to have their (potential) voters on their side, who are inflated by the media. The military is loathed or loved. Thinking must be created that a well-trained military in the instances of natural sciences, history, and sociology can save or protect the lives of many people. Theoretical methods for this are defined and evaluated in more detail in this paper.Keywords: war, history, military, science, journalism, crisis
Procedia PDF Downloads 83266 Antecedents and Impacts of Human Capital Flight in the Sub-Saharan Africa with Specific Reference to the Higher Education Sector: Conceptual Model
Authors: Zelalem B. Gurmessa, Ignatius W. Ferreira, Henry F. Wissink
Abstract:
The aim of this paper is to critically examine the factors contributing to academic brain drain in the Sub-Saharan Africa with specific reference to the higher education sector. Africa in general and Sub-Saharan African (SSA) countries, in particular, are experiencing an exodus of highly trained, qualified and competent human resources to other developing and developed countries thereby threatening the overall development of the relevant regions and impeding both public and private service delivery systems in the nation states. The region is currently in a dire situation in terms of health care services, education, science, and technology. The contribution of SSA countries to Science, Technology and Innovation is relatively minimal owing to the migration of skilled professionals due to both push and pull factors. The phenomenon calls for both international and trans-boundary, regional, national and institutional interventions to curb the exodus. Based on secondary data and the review of the literature, the article conceptualizes the antecedents and impacts of human capital flight or brain drain in the SSA countries from a higher education perspective. To this end, the article explores the magnitude, causes, and impacts of brain drain in the region. Despite the lack of consistent data on the magnitude of academic brain drain in the region, a critical analysis of the existing sources shows that pay disparity between developing and developed countries, the lack of enabling working conditions at source countries, fear of security due to political turmoil or unrest, the availability of green pastures and opportunity for development in the receiving countries were identified as major factors contributing to academic brain drain in the region. This hampers the socio-economic, technological and political development of the region. The paper also recommends that further research can be undertaken on the magnitude, causes, characteristics and impact of brain drain on the sustainability and competitiveness of SSA higher education institutions in the region.Keywords: brain drain, higher education, sub-Saharan Africa, sustainable development
Procedia PDF Downloads 258265 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 167264 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 159263 Body Mass Index and Dietary Habits among Nursing College Students Living in the University Residence in Kirkuk City, Iraq
Authors: Jenan Shakoor
Abstract:
Obesity prevalence is increasing worldwide. University life is a challenging period especially for students who have to leave their familiar surroundings and settle in a new environment. The current study aimed to assess the diet and exercise habits and their association with body mass index (BMI) among nursing college students living at Kirkuk University residence. This was a descriptive study. A non-probability (purposive) sample of 101 students living in Kirkuk University residence was recruited during the period from the 15th November 2015 to the 5th May 2016. A questionnaire was constructed for the purpose of the study which consisted of four parts: the demographic characteristics of the study sample, eating habits, eating at college and healthy habits. The data were collected by interviewing the study sample and the weight and height were measured by a trained researcher at the college. Descriptive statistical analysis was undertaken. Data were prepared, organized and entered into the computer file; the Statistical Package for Social Science (SPSS 20) was used for data analysis. A p value≤ 0.05 was accepted as statistical significant. A total of 63 (62.4%) of the sample were aged20-21with a mean age of 22.1 (SD±0.653). A third of the sample 38 (37.6%) were from level four at college, 67 (66.3%) were female and 46 45.5% of participants were from a middle socio-economic status. 14 (13.9%) of the study sample were overweight (BMI =25-29.9kg/m2) and 6 (5.9%) were obese (BMI≥30kg/m2) compared to 73 (72.3%) were of normal weight (BMI =18.5-24.9kg/m2). With regard to eating habits and exercise, 42 (41.6%) of the students rarely ate breakfast, 79 (78.2%) eat lunch at university residence, 77 (78.2%) of the students reported rarely doing exercise and 62 (61.4%) of them were sleeping for less than eight hours. No significant association was found between the variables age, sex, level of college and socio-economic status and BMI, while there was a significant association between eating lunch at university and BMI (p =0.03). No significant association was found between eating habits, healthy habits and BMI. The prevalence of overweight and obesity among the study sample was 19.8% with female students being more obese than males. Further studies are needed to identify BMI among residence students in other colleges and increasing the awareness of undergraduate students to healthy food habits.Keywords: body mass index, diet, obesity, university residence
Procedia PDF Downloads 220262 Mindmax: Building and Testing a Digital Wellbeing Application for Australian Football Players
Authors: Jo Mitchell, Daniel Johnson
Abstract:
MindMax is a digital community and learning platform built to maximise the wellbeing and resilience of AFL Players and Australian men. The MindMax application engages men, via their existing connection with sport and video games, in a range of wellbeing ideas, stories and actions, because we believe fit minds, kick goals. MindMax is an AFL Players Association led project, supported by a Movember Foundation grant, to improve the mental health of Australian males aged between 16-35 years. The key engagement and delivery strategy for the project was digital technology, sport (AFL) and video games, underpinned by evidenced based wellbeing science. The project commenced April 2015, and the expected completion date is March 2017. This paper describes the conceptual model underpinning product development, including progress, key learnings and challenges, as well as the research agenda. Evaluation of the MindMax project is a multi-pronged approach of qualitative and quantitative methods, including participatory design workshops, online reference groups, longitudinal survey methods, a naturalistic efficacy trial and evaluation of the social and economic return on investment. MindMax is focused on the wellness pathway and maximising our mind's capacity for fitness by sharing and promoting evidence-based actions that support this. A range of these ideas (from ACT, mindfulness and positive psychology) are already being implemented in AFL programs and services, mostly in face-to-face formats, with strong engagement by players. Player's experience features strongly as part of the product content. Wellbeing science is a discipline of psychology that explores what helps individuals and communities to flourish in life. Rather than ask questions about illness and poor functioning, wellbeing scientists and practitioners ask questions about wellness and optimal functioning. While illness and wellness are related, they operate as separate constructs and as such can be influenced through different pathways. The essential idea was to take the evidence-based wellbeing science around building psychological fitness to the places and spaces that men already frequent, namely sport and video games. There are 800 current senior AFL players, 5000+ past players, and 11 million boys and men that are interested in the lives of AFL Players; what they think and do to be their best both on and off field. AFL Players are also keen video gamers – using games as one way to de-stress, connect and build wellbeing. There are 9.5 million active gamers in Australia with 93% of households having a device for playing games. Video games in MindMax will be used as an engagement and learning tool. Gamers (including AFL players) can also share their personal experience of how games help build their mental fitness. Currently available games (i.e., we are not in the game creation business) will also be used to motivate and connect MindMax participants. The MindMax model is built with replication by other sport codes (e.g., Cricket) in mind. It is intended to not only support our current crop of athletes but also the community that surrounds them, so they can maximise their capacity for health and wellbeing.Keywords: Australian football league, digital application, positive psychology, wellbeing
Procedia PDF Downloads 238261 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems
Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra
Abstract:
Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.Keywords: automated, biomechanics, team-sports, sprint
Procedia PDF Downloads 119260 Implementation of Distributor Management Solution and Its Effects on Supply Chain Performance
Authors: Charles Amoatey, Ebenezer Kumah
Abstract:
Purpose: The purpose of this paper is to assess the effects of implementation of Distributor Management Solution (DMS) on supply chain performance in the Fast Moving Consumer Goods (FMCG) industry in Ghana. Methodology: A purposive sampling approach was used in selecting the respondents for the study. Data was collected from senior management and field supervisors from sales, distribution and customer service units of the case study firm and its channel members. This study made use of systematic literature review and results of survey data analysis to assess how information system has been used to improve supply chain performance. Findings: Results from the study showed that the critical effect factors from implementation of a DMS include (1) Obtain prompt and reliable feedback from the market; (2) Building the capacity and skills levels of employees as well as 3rd Party Agents; (3) Motivated top management to invest in MIS; and (4) Performance improvement in sales route management. The most critical challenges to an effective and sustainable MIS implementation are lack of enough trained IT employees and high barriers to cultural change especially with distributors. The paper recommends consistent investment in IS infrastructure and development of IT skills. Research limitations/implications: This study contributes to the literature by exploring the effects of distribution management solution implementation and supply chain performance in a developing country context. Considering the fact that this study is based on data from only one case study firm and its channel members, generalization of the results should be treated with caution. Practical implications: The findings have confirmed the benefits of implementing a Management Information System. The result should encourage channel members to allocate adequate resources for building MIS capacity to enhance their supply chain performance. Originality/Value: In this paper, the relationship between DMS/MIS implementation and improvement in supply chain performance, in the Ghanaian context, has been established.Keywords: distributor management solution, fast-moving consumer goods, supply chain management, information systems, Ghana
Procedia PDF Downloads 562259 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies
Authors: Elżbieta Turska
Abstract:
Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.Keywords: mood disorders, adolescents, family, artificial intelligence
Procedia PDF Downloads 101258 Peer-Assisted Learning of Ebm in, a UK Medical School: Evaluation of the NICE Evidence Search Student Champion Scheme
Authors: Emily Jin, Harry Sharples, Anne Weist
Abstract:
Introduction: NICE Evidence Search Student Champion Scheme is a peer-assisted learning scheme that aims to improve the routine use of evidence-based information by future health and social care staff. The focus is on the NICE evidence search portal that provides selected information from more than 800 reliable health, social care, and medicines sources, including up-to-date guidelines and information for the public. This paper aims to evaluate the effectiveness of the scheme when implemented in Liverpool School of Medicine and to understand the experiences of those attending. Methods: Twelve student champions were recruited and trained in February 2020 as peer tutors during a workshop facilitated by NICE. Cascade sessions were then organised and delivered on an optional basis for students, in small groups of < 10 to approximately 70 attendees. Surveys were acquired immediately before and 8-12 weeks after cascade sessions (n=47 and 45 respectively). Data from these surveys facilitated the analysis of the scheme. Results: Surveys demonstrated 74% of all attendees frequently searched for health and social care information online as a part of their studies. However, only 15% of attendees reported having prior formal training on searching for health information, despite receiving such training earlier on in the curriculum. After attending cascade sessions, students reported a 58% increase in confidence when searching for information using evidence search, from a pre-session a baseline of 36%. Conclusion: NICE Evidence Search Student Champion Scheme provided clear benefits for attending students, increasing confidence in searching for peer-reviewed, mainly secondary sources of health information. The lack of reported training represents the unmet need that the champion scheme satisfies, and this likely benefits student champions as well as attendees. Increasing confidence in searching for healthcare information online may support future evidence-based decision-making.Keywords: evidence-based medicine, NICE, medical education, medical school, peer-assisted learning
Procedia PDF Downloads 130257 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware
Authors: Subham Ghosh, Banani Basu, Marami Das
Abstract:
Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease
Procedia PDF Downloads 7256 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks
Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft
Abstract:
Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: autonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 396255 Peace through Language Policy as a Solution to the Ethnic Conflict in Sri Lanka
Authors: R. M. W. Rajapakshe
Abstract:
Sri Lanka, which is officially called the Democratic Socialist Republic of Sri Lanka is an island nation situated near India. It is a multi-lingual, multi- religious and multi – ethnic country, where Sinhalese form the majority and the Tamils form the largest ethnic minority. The composition of the population (ethnic basis) in Sri Lanka is as follows: Sinhalese: 74.5%, Tamil (Sri Lankan): 12.6%, Muslim: 7.5 %, Tamil (Indian): 5.5%, Malay: 0.3%, Burgher: 0.3 %, other: 0.2 %. The Tamil people use the Tamil language as their mother tongue and the Sinhala people use the Sinhala language as their mother tongue. A very few people in both communities use English as their mother tongue and however, a large number of people use English as a second language. The Sinhala Language was declared the only official language in Sri Lanka in 1959. However, it was not acceptable to Tamil politicians as well as to the common Tamil people and it was the beginning of long standing ethnic crisis which later became a military war where a lot of blood was shed. As a solution to the above ethnic crisis the thirteenth amendment to the constitution of Sri Lanka was introduced in 1987 and according to it both Sinhala and Tamil were declared official languages and English as the link language in Sri Lanka. Thus, a new programme namely, second language teaching programme under which Sinhala was taught to Tamil students and Tamil was taught to Sinhala students, was introduced at government schools. Language teaching includes knowledge of the culture of the target language. As all cultures are mixed and have common features students have reduced their enmity about the other community and learned to respect the other culture. On the other hand as all languages are mixed, students came to the understanding that there are no pure languages. Thus, they learned to respect the other language. In the case of Sri Lanka the Sinhala language is mixed with the Tamil language and vice versa. Thus, the development of second language teaching is the prominent way to solve the above ethnic problem and this study clearly shows it. However, the above programme suffers with lack of trained second language teachers, infrastructure facilities and insufficient funds and, they can be considered as the main obstacles to develop the second language teaching programme. Yet, there are no satisfactory answers to those problems. The data were collected from relevant books, articles and other documents based on research and forty five recordings, each with one hour duration, of natural conversations covering all factions of the Sinhala community.Keywords: ethnic crisis, official language, second language teaching, Sinhala, Tami
Procedia PDF Downloads 346254 Application and Evaluation of Teaching-Learning Guides Based on Swebok for the Requirements Engineering Area
Authors: Mauro Callejas-Cuervo, Andrea Catherine Alarcon-Aldana, Lorena Paola Castillo-Guerra
Abstract:
The software industry requires highly-trained professionals, capable of developing the roles integrated in the cycle of software development. That is why a large part of the task is the responsibility of higher education institutions; often through a curriculum established to orientate the academic development of the students. It is so that nowadays there are different models that support proposals for the improvement of the curricula for the area of Software Engineering, such as ACM, IEEE, ABET, Swebok, of which the last stands out, given that it manages and organises the knowledge of Software Engineering and offers a vision of theoretical and practical aspects. Moreover, it has been applied by different universities in the pursuit of achieving coverage in delivering the different topics and increasing the professional quality of future graduates. This research presents the structure of teaching and learning guides from the objectives of training and methodological strategies immersed in the levels of learning of Bloom’s taxonomy with which it is intended to improve the delivery of the topics in the area of Requirements Engineering. Said guides were implemented and validated in a course of Requirements Engineering of the Systems and Computer Engineering programme in the Universidad Pedagógica y Tecnológica de Colombia (Pedagogical and Technological University of Colombia) using a four stage methodology: definition of the evaluation model, implementation of the guides, guide evaluation, and analysis of the results. After the collection and analysis of the data, the results show that in six out of the seven topics proposed in the Swebok guide, the percentage of students who obtained total marks within the 'High grade' level, that is between 4.0 and 4.6 (on a scale of 0.0 to 5.0), was higher than the percentage of students who obtained marks within the 'Acceptable' range of 3.0 to 3.9. In 86% of the topics and the strategies proposed, the teaching and learning guides facilitated the comprehension, analysis, and articulation of the concepts and processes of the students. In addition, they mainly indicate that the guides strengthened the argumentative and interpretative competencies, while the remaining 14% denotes the need to reinforce the strategies regarding the propositive competence, given that it presented the lowest average.Keywords: pedagogic guide, pedagogic strategies, requirements engineering, Swebok, teaching-learning process
Procedia PDF Downloads 286253 An Educational Electronic Health Record with a Configurable User Interface
Authors: Floriane Shala, Evangeline Wagner, Yichun Zhao
Abstract:
Background: Proper educational training and support are proven to be major components of EHR (Electronic Health Record) implementation and use. However, the majority of health providers are not sufficiently trained in EHR use, leading to adverse events, errors, and decreased quality of care. In response to this, students studying Health Information Science, Public Health, Nursing, and Medicine should all gain a thorough understanding of EHR use at different levels for different purposes. The design of a usable and safe EHR system that accommodates the needs and workflows of different users, user groups, and disciplines is required for EHR learning to be efficient and effective. Objectives: This project builds several artifacts which seek to address both the educational and usability aspects of an educational EHR. The artifacts proposed are models for and examples of such an EHR with a configurable UI to be learned by students who need a background in EHR use during their degrees. Methods: Review literature and gather professional opinions from domain experts on usability, the use of workflow patterns, UI configurability and design, and the educational aspect of EHR use. Conduct interviews in a semi-casual virtual setting with open discussion in order to gain a deeper understanding of the principal aspects of EHR use in educational settings. Select a specific task and user group to illustrate how the proposed solution will function based on the current research. Develop three artifacts based on the available research, professional opinions, and prior knowledge of the topic. The artifacts capture the user task and user’s interactions with the EHR for learning. The first generic model provides a general understanding of the EHR system process. The second model is a specific example of performing the task of MRI ordering with a configurable UI. The third artifact includes UI mock-ups showcasing the models in a practical and visual way. Significance: Due to the lack of educational EHRs, medical professionals do not receive sufficient EHR training. Implementing an educational EHR with a usable and configurable interface to suit the needs of different user groups and disciplines will help facilitate EHR learning and training and ultimately improve the quality of patient care.Keywords: education, EHR, usability, configurable
Procedia PDF Downloads 157252 An Automatic Large Classroom Attendance Conceptual Model Using Face Counting
Authors: Sirajdin Olagoke Adeshina, Haidi Ibrahim, Akeem Salawu
Abstract:
large lecture theatres cannot be covered by a single camera but rather by a multicamera setup because of their size, shape, and seating arrangements. Although, classroom capture is achievable through a single camera. Therefore, a design and implementation of a multicamera setup for a large lecture hall were considered. Researchers have shown emphasis on the impact of class attendance taken on the academic performance of students. However, the traditional method of carrying out this exercise is below standard, especially for large lecture theatres, because of the student population, the time required, sophistication, exhaustiveness, and manipulative influence. An automated large classroom attendance system is, therefore, imperative. The common approach in this system is face detection and recognition, where known student faces are captured and stored for recognition purposes. This approach will require constant face database updates due to constant changes in the facial features. Alternatively, face counting can be performed by cropping the localized faces on the video or image into a folder and then count them. This research aims to develop a face localization-based approach to detect student faces in classroom images captured using a multicamera setup. A selected Haar-like feature cascade face detector trained with an asymmetric goal to minimize the False Rejection Rate (FRR) relative to the False Acceptance Rate (FAR) was applied on Raspberry Pi 4B. A relationship between the two factors (FRR and FAR) was established using a constant (λ) as a trade-off between the two factors for automatic adjustment during training. An evaluation of the proposed approach and the conventional AdaBoost on classroom datasets shows an improvement of 8% TPR (output result of low FRR) and 7% minimization of the FRR. The average learning speed of the proposed approach was improved with 1.19s execution time per image compared to 2.38s of the improved AdaBoost. Consequently, the proposed approach achieved 97% TPR with an overhead constraint time of 22.9s compared to 46.7s of the improved Adaboost when evaluated on images obtained from a large lecture hall (DK5) USM.Keywords: automatic attendance, face detection, haar-like cascade, manual attendance
Procedia PDF Downloads 71251 Translation of Scientific and Technological Terms into Hausa Language: A Guide to Hausa Language Translator in an Electronic Media (Radio)
Authors: Surajo Ladan
Abstract:
There is no doubt nowadays, the media plays a crucial role in the development of languages. Media practitioners influence and set our linguistic norms to a greater extent. Their strategic position makes them influential than school teachers as linguistic pacesetters and models. This is so because of the direct access to the general public that media enjoys being public, oriented and at the same time being patronized by the public, the media is regarded as an authority as far as language use is concerned. In the modern world, listening to the news has become part and parcel of our daily lives. Easy communication has made the world a global village. Contact between countries and people are increasing daily. In Nigeria and indeed the whole of West Africa, radio is the most widely spread out of the three types of media (radio, television, and print). This is because of its (radio) cheapness and less cumbersome and flexibility. Therefore, the positive or negative effect of radio on the lives of a typical Nigerian or African cannot be over emphasized. Hausa language, on the other hand, is one of the most widely spoken languages in West Africa and, of course, the lingua franca in the Northern part of Nigeria and Southern Niger. The language has been in use to a large extent by almost all the popular foreign media houses of BBC, VOA, Deutsche Welle Radio, Radio France International, Radio China, etc. The many people in Nigeria and West Africa depend so much on the news in this language. In fact even government programmes, mobilization, education and sensitization of the populace are done in this language through the broadcast media. It is against this background, for effective and efficient work of this nature it requires the services of a trained translator for the purpose of translating scientific and technological terms. The main thrust of this paper was necessitated for the fact that no nation develops using foreign or borrowed language. This is in lined with UNESCO declaration of 1953 where it says 'the best Language of Instruction (LOI) is the vernacular or the Mother Tongue (MT) of the learner'. This idea is in the right direction especially nowadays that the developing nations have come to terms with realities that their destiny is really in their own hands, not in the hands of the so-called developed nations.Keywords: translation, scientific, technological, language, radio, media
Procedia PDF Downloads 374250 Efficacy of the Culturally Adapted Stepping Stones Positive Parenting Program on Parents of Children with Autism and down Syndrome
Authors: Afsheen Masood, Sumaira Rashid, Shama Mazahir
Abstract:
The main aim of this research is to evaluate the efficacy of a culturally adapted management program The Stepping Stones Positive Parenting Program (Tripple P; SSTP) for caregivers of children with autism spectrum disorders and Down syndrome. Positive psychology has catered new dimensions to the traditional perspectives of parenting. The current study was designed to determine the adoptions of positive parenting elements such as parenting styles, parental satisfaction, parental competency, and management of parental stress in alignment with behavioral problems of children with special needs after their parents get trained on Positive Parenting Techniques. This research study was devised in liaison with rehabilitation institute that is extending services for children with Autism Spectrum Disorder and Down syndrome. A Quasi experimental research design was employed with pre-test, post-test control group study in order to evaluate the changes in parenting patterns of parents with children (with Autism and Down syndrome). Caregivers of children diagnosed with Autism and Down syndrome between the age ranges of 25 to 45 years, n=20 from autism group and 20 from Down syndrome group (while their children with special needs in the age ranges of 8 to 14 years) participated in the current research. Parenting scale encompassing areas of parental efficacy, parental satisfaction was used in addition to Parenting Stress Index (SF), indigenously developed Child Behavior Problems Checklist and demographic sheet. Findings revealed statistically significant improvement for caregivers in intervention group from pretest to posttest situation. There was considerable decrease in reported mean behavioral issues of children with Down syndrome when parents in experimental group started practicing Positive Parenting Techniques with their special needs children. This change was somehow not recorded in parents of children with autism. Thus these findings establish the efficacy of culturally adapted parenting program that is evidence based and is established in western empirical research. This carries significant implication for practitioners in special needs domain and for school psychologists in Pakistan.Keywords: Autism and Parenting, Downsyndrome and Parenting , Positive Parenting, Stepping Stone Positive Parenting Program, Mangement of Behavioral Problems with positive parenting
Procedia PDF Downloads 252249 Content-Aware Image Augmentation for Medical Imaging Applications
Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang
Abstract:
Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving
Procedia PDF Downloads 222248 Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations
Authors: Eugene Y. C. Wong, Daniel Y. W. Mo, Cosmo T. Y. Ng, Jessica K. Y. Chan, Leith K. Y. Chan, Henry Y. K. Lau
Abstract:
The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos.Keywords: air cargo load planning, optimisation, virtual reality, weight and balance, unit load device
Procedia PDF Downloads 345247 Musical Diversity: The Differences between Public and Private Kindergartens in China
Authors: Kunyu Yan
Abstract:
Early childhood music education plays a significant role in an individual’s growth. Music can help children understand themselves and relate to others, and make connections between family, school, and society. In recent years, with the development of early childhood education in China, an increasing number of kindergartens have been established, and many of them pay more attention to music education. This research has two main aims. One is to discover how and why music is used in both public and private kindergartens. The second aim is to make recommendations for widening the use of music in kindergartens. In order to achieve these aims, the research uses two main methods. Firstly, it considers the historical background and cultural context of early childhood education in China; and secondly, it uses an approach that compares public and private kindergartens. In this research, six kindergartens were chosen from Qingdao city in Shandong Province as case studies, including 3 public kindergartens and 3 private kindergartens. This research was based on using three types of data collection methods: observation, semi-structured interviews with teachers, and questionnaires with parents. Participant and non-participant observational methods were used and included in daily routines at the kindergartens in order to experience the situation of music education first-hand. Interviews were associated with teachers’ views of teaching and learning music, the perceptions of the music context, and their strategies of using music. Lastly, the questionnaire was designed to obtain the views of current music education from the children’s parents in the respective kindergartens. The results are shown with three main themes: (1) distinct characteristics of public kindergartens (e.g., similar equipment, low tuition fee, qualified teachers, etc); (2) distinct characteristics of private kindergartens (e.g., various tuition fees, own teaching system, trained teachers, etc); and (3) differences between public and private kindergartens (e.g., funding, requirements for teachers, parents’ demands, etc). According to the results, we can see that the main purpose of using music in China is to develop the musical ability of children, and teachers focus on musical learning, such as singing in tune and playing instruments. However, as revealed in this research, there are many other uses and functions of music in these educational settings, including music used for non-musical learning (e.g., counting, learning language, etc.) or in supporting social routines.Keywords: differences between private and public school, early childhood education, music education, uses and functions of music
Procedia PDF Downloads 221246 Protection of Patients and Staff in External Beam Radiotherapy Using Linac in Kenya
Authors: Calvince Okome Odeny
Abstract:
There is a current action to increase radiotherapy services in Kenya. The National government of Kenya, in collaboration with the county governments, has embarked on building radiotherapy centers in all 47 regions of the country. As these new centers are established in Kenya, it has to be ensured that minimum radiation safety standards are in place prior to operation. For full implementation of this, it is imperative that more Research and training for regulators are done on radiation protection, and safety and national regulatory infrastructure is geared towards ensuring radiation protection and safety in all aspects of the use of external radiotherapy practices. The present work aims at reviewing the level of protection and safety for patients and staff during external beam radiotherapy using Linac in Kenya and provides relevant guidance to improve protection and safety. A retrospective evaluation was done to verify whether those occupationally exposed workers and patients are adequately protected from the harmful effect of radiation exposure during the treatment procedures using Linac. The project was experimental Research, also including an analysis of resource documents obtained from the literature and international organizations. The critical findings of the work revealed that the key elements of protection of occupationally exposed workers and patients include a comprehensive quality Management system governing all planned activities from siting, safety, and design of the Facility, construction, acceptance testing, commissioning, operation, and decommissioning of the Facility; Government empowering the Regulatory Authority to license Medical Linear facilities and to enforce the applicable regulations to ensure adequate protection; A comprehensive Radiation Protection and Safety program must be established to ensure adequate safety and protection of workers and patients during treatment planning and treatment delivery of patients and categories of staff associated with the Facility must be well educated and trained to perform professionally with a commitment to sound safety culture. Relevant recommendations from the findings are shared with the Medical Linear Accelerator facilities and the regulatory authority to provide guidance and continuous improvement of protection and safety to improve regulatory oversight.Keywords: oncology, radiotherapy, protection, staff
Procedia PDF Downloads 75245 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 33244 A Study of Anthropometric Correlation between Upper and Lower Limb Dimensions in Sudanese Population
Authors: Altayeb Abdalla Ahmed
Abstract:
Skeletal phenotype is a product of a balanced interaction between genetics and environmental factors throughout different life stages. Therefore, interlimb proportions are variable between populations. Although interlimb proportion indices have been used in anthropology in assessing the influence of various environmental factors on limbs, an extensive literature review revealed that there is a paucity of published research assessing interlimb part correlations and possibility of reconstruction. Hence, this study aims to assess the relationships between upper and lower limb parts and develop regression formulae to reconstruct the parts from one another. The left upper arm length, ulnar length, wrist breadth, hand length, hand breadth, tibial length, bimalleolar breadth, foot length, and foot breadth of 376 right-handed subjects, comprising 187 males and 189 females (aged 25-35 years), were measured. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then sex-specific simple and multiple linear regression models were used to estimate upper limb parts from lower limb parts and vice-versa. The results of this study indicated significant sexual dimorphism for all variables. The results indicated a significant correlation between the upper and lower limbs parts (p < 0.01). Linear and multiple (stepwise) regression equations were developed to reconstruct the limb parts in the presence of a single or multiple dimension(s) from the other limb. Multiple stepwise regression equations generated better reconstructions than simple equations. These results are significant in forensics as it can aid in identification of multiple isolated limb parts particularly during mass disasters and criminal dismemberment. Although a DNA analysis is the most reliable tool for identification, its usage has multiple limitations in undeveloped countries, e.g., cost, facility availability, and trained personnel. Furthermore, it has important implication in plastic and orthopedic reconstructive surgeries. This study is the only reported study assessing the correlation and prediction capabilities between many of the upper and lower dimensions. The present study demonstrates a significant correlation between the interlimb parts in both sexes, which indicates a possibility to reconstruction using regression equations.Keywords: anthropometry, correlation, limb, Sudanese
Procedia PDF Downloads 295