Search results for: optical networks
3325 Biosensor Technologies in Neurotransmitters Detection
Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha
Abstract:
Catecholamines are vital neurotransmitters that mediate a variety of central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, optical techniques for the detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid-modified enzymatic sensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence as well as electrochemical sensing strategy for catecholamines detection.Keywords: biosensors, catecholamines, fluorescence, enzymes
Procedia PDF Downloads 1093324 Influence of La³⁺ on Structural, Magnetic, Optical and Dielectric Properties in CoFe₂O₄ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Combustion Method
Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek
Abstract:
Herein, we reported the influence of La³⁺ substitution on structural, magnetic and dielectric properties of CoFe₂O₄ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of La³⁺ ions doped CoFe₂O₄ nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of La³⁺ substituted CoFe₂O₄ nanoparticles. The field emission scanning electron microscopy study revealed that La³⁺ substituted CoFe2O4 nanoparticles were in the range of 10-40 nm. The magnetic properties of La³⁺ substituted CoFe₂O₄ nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with La³⁺ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied with change of concentration of La³⁺ ions in CoFe₂O₄ nanoparticles. The variation in optical properties was studied via UV-Vis absorption spectroscopy. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).Keywords: starch, sol-gel combustion method, nanoparticles, magnetic properties, dielectric properties
Procedia PDF Downloads 3133323 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms
Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani
Abstract:
This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.Keywords: tunnel fire, flame length, ANN, genetic algorithm
Procedia PDF Downloads 6423322 Ultrasonic Evaluation of Periodic Rough Inaccessible Surfaces from Back Side
Authors: Chanh Nghia Nguyen, Yu Kurokawa, Hirotsugu Inoue
Abstract:
The surface roughness is an important parameter for evaluating the quality of material surfaces since it affects functions and performance of industrial components. Although stylus and optical techniques are commonly used for measuring the surface roughness, they are applicable only to accessible surfaces. In practice, surface roughness measurement from the back side is sometimes demanded, for example, in inspection of safety-critical parts such as inner surface of pipes. However, little attention has been paid to the measurement of back surface roughness so far. Since back surface is usually inaccessible by stylus or optical techniques, ultrasonic technique is one of the most effective among others. In this research, an ultrasonic pulse-echo technique is considered for evaluating the pitch and the height of back surface having periodic triangular profile as a very first step. The pitch of the surface profile is measured by applying the diffraction grating theory for oblique incidence; then the height is evaluated by numerical analysis based on the Kirchhoff theory for normal incidence. The validity of the proposed method was verified by both numerical simulation and experiment. It was confirmed that the pitch is accurately measured in most cases. The height was also evaluated with good accuracy when it is smaller than a half of the pitch because of the approximation in the Kirchhoff theory.Keywords: back side, inaccessible surface, periodic roughness, pulse-echo technique, ultrasonic NDE
Procedia PDF Downloads 2743321 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks
Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee
Abstract:
Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)
Procedia PDF Downloads 1073320 Study on Network-Based Technology for Detecting Potentially Malicious Websites
Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park
Abstract:
Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits
Procedia PDF Downloads 3653319 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon
Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi
Abstract:
The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range to MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.Keywords: Bhagwat-Gambhir-Patil density, Coulomb modified Glauber model, halo nucleus, optical limit approximation
Procedia PDF Downloads 1603318 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.Keywords: EEG, functional connectivity, graph theory, TFCMI
Procedia PDF Downloads 4313317 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data
Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin
Abstract:
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.Keywords: honey, fluorescence, PARAFAC, artificial neural networks
Procedia PDF Downloads 9533316 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 693315 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)
Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini
Abstract:
Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria
Procedia PDF Downloads 993314 A Single-Use Endoscopy System for Identification of Abnormalities in the Distal Oesophagus of Individuals with Chronic Reflux
Authors: Nafiseh Mirabdolhosseini, Jerry Zhou, Vincent Ho
Abstract:
The dramatic global rise in acid reflux has also led to oesophageal adenocarcinoma (OAC) becoming the fastest-growing cancer in developed countries. While gastroscopy with biopsy is used to diagnose OAC patients, this labour-intensive and expensive process is not suitable for population screening. This study aims to design, develop, and implement a minimally invasive system to capture optical data of the distal oesophagus for rapid screening of potential abnormalities. To develop the system and understand user requirements, a user-centric approach was employed by utilising co-design strategies. Target users’ segments were identified, and 38 patients and 14 health providers were interviewed. Next, the technical requirements were developed based on consultations with the industry. A minimally invasive optical system was designed and developed considering patient comfort. This system consists of the sensing catheter, controller unit, and analysis program. Its procedure only takes 10 minutes to perform and does not require cleaning afterward since it has a single-use catheter. A prototype system was evaluated for safety and efficacy for both laboratory and clinical performance. This prototype performed successfully when submerged in simulated gastric fluid without showing evidence of erosion after 24 hours. The system effectively recorded a video of the mid-distal oesophagus of a healthy volunteer (34-year-old male). The recorded images were used to develop an automated program to identify abnormalities in the distal oesophagus. Further data from a larger clinical study will be used to train the automated program. This system allows for quick visual assessment of the lower oesophagus in primary care settings and can serve as a screening tool for oesophageal adenocarcinoma. In addition, this system is able to be coupled with 24hr ambulatory pH monitoring to better correlate oesophageal physiological changes with reflux symptoms. It also can provide additional information on lower oesophageal sphincter functions such as opening times and bolus retention.Keywords: endoscopy, MedTech, oesophageal adenocarcinoma, optical system, screening tool
Procedia PDF Downloads 863313 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks
Authors: Shahzad Yousaf, Imran Shafi
Abstract:
This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions
Procedia PDF Downloads 3883312 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification
Authors: Malgorzata Schwab, Ashis Kumer Biswas
Abstract:
In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.Keywords: trusted, neural, invertible, API
Procedia PDF Downloads 1453311 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 1263310 Spectroscopy and Electron Microscopy for the Characterization of CdSxSe1-x Quantum Dots in a Glass Matrix
Authors: C. Fornacelli, P. Colomban, E. Mugnaioli, I. Memmi Turbanti
Abstract:
When semiconductor particles are reduced in scale to nanometer dimension, their optical and electro-optical properties strongly differ from those of bulk crystals of the same composition. Since sampling is often not allowed concerning cultural heritage artefacts, the potentialities of two non-invasive techniques, such as Raman and Fiber Optic Reflectance Spectroscopy (FORS), have been investigated and the results of the analysis on some original glasses of different colours (from yellow to orange and deep red) and periods (from the second decade of the 20th century to present days) are reported in the present study. In order to evaluate the potentialities of the application of non-invasive techniques to the investigation of the structure and distribution of nanoparticles dispersed in a glass matrix, Scanning Electron Microscopy (SEM) and energy-disperse spectroscopy (EDS) mapping, together with Transmission Electron Microscopy (TEM) and Electron Diffraction Tomography (EDT) have also been used. Raman spectroscopy allows a fast and non-destructive measure of the quantum dots composition and size, thanks to the evaluation of the frequencies and the broadening/asymmetry of the LO phonons bands, respectively, though the important role of the compressive strain arising from the glass matrix and the possible diffusion of zinc from the matrix to the nanocrystals should be taken into account when considering the optical-phonons frequency values. The incorporation of Zn has been assumed by an upward shifting of the LO band related to the most abundant anion (S or Se), while the role of the surface phonons as well as the confinement-induced scattering by phonons with a non-zero wavevectors on the Raman peaks broadening has been verified. The optical band gap varies from 2.42 eV (pure CdS) to 1.70 eV (CdSe). For the compositional range between 0.5≤x≤0.2, the presence of two absorption edges has been related to the contribution of both pure CdS and the CdSxSe1-x solid solution; this particular feature is probably due to the presence of unaltered cubic zinc blende structures of CdS that is not taking part to the formation of the solid solution occurring only between hexagonal CdS and CdSe. Moreover, the band edge tailing originating from the disorder due to the formation of weak bonds and characterized by the Urbach edge energy has been studied and, together with the FWHM of the Raman signal, has been assumed as a good parameter to evaluate the degree of topological disorder. SEM-EDS mapping showed a peculiar distribution of the major constituents of the glass matrix (fluxes and stabilizers), especially concerning those samples where a layered structure has been assumed thanks to the spectroscopic study. Finally, TEM-EDS and EDT were used to get high-resolution information about nanocrystals (NCs) and heterogeneous glass layers. The presence of ZnO NCs (< 4 nm) dispersed in the matrix has been verified for most of the samples, while, for those samples where a disorder due to a more complex distribution of the size and/or composition of the NCs has been assumed, the TEM clearly verified most of the assumption made by the spectroscopic techniques.Keywords: CdSxSe1-x, EDT, glass, spectroscopy, TEM-EDS
Procedia PDF Downloads 2983309 Internet Use, Social Networks, Loneliness and Quality of Life among Adults Aged 50 and Older: Mediating and Moderating Effects
Authors: Rabia Khaliala, Adi Vitman-Schorr
Abstract:
Background: The increase in longevity of people on one hand, and on the other hand the fact that the social networks in later life become increasingly narrower, highlight the importance of Internet use to enhance quality of life (QoL). However, whether Internet use increases or decreases social networks, loneliness and quality of life is not clear-cut. Purposes: To explore the direct and/or indirect effects of Internet use on QoL, and to examine whether ethnicity and time the elderly spent with family moderate the mediation effect of Internet use on quality of life throughout loneliness. Methods: This descriptive-correlational study was carried out in 2016 by structured interviews with a convenience sample of 502 respondents aged 50 and older, living in northern Israel. Bootstrapping with resampling strategies was used for testing mediation a model. Results: Use of the Internet was found to be positively associated with QoL. However, this relationship was mediated by loneliness, and moderated by the time the elderly spent with family members. In addition, respondents' ethnicity significantly moderated the mediation effect between Internet use and loneliness. Conclusions: Internet use can enhance QoL of older adults directly or indirectly by reducing loneliness. However, these effects are conditional on other variables. The indirect effect moderated by ethnicity, and the direct effect moderated by the time the elderly spend with their families. Researchers and practitioners should be aware of these interactions which can impact loneliness and quality of life of older persons differently.Keywords: internet use, loneliness, quality of life, social contacts
Procedia PDF Downloads 1853308 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 1823307 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems
Authors: Emily Kambalame
Abstract:
Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluationKeywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems
Procedia PDF Downloads 593306 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application
Authors: Jurijs Salijevs, Katrina Bolocko
Abstract:
The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare
Procedia PDF Downloads 1033305 The Effect of Technology on Legal Securities and Privacy Issues
Authors: Nancy Samuel Reyad Farhan
Abstract:
even though international crook law has grown considerably inside the ultimate decades, it still remains fragmented and lacks doctrinal cohesiveness. Its idea is defined within the doctrine as pretty disputable. there is no concrete definition of the term. in the home doctrine, the hassle of crook law troubles that rise up within the worldwide setting, and international troubles that get up in the national crook regulation, is underdeveloped each theoretically and nearly. To the exceptional of writer’s know-how, there aren't any studies describing worldwide elements of crook law in a complete way, taking a more expansive view of the difficulty. This paper provides consequences of a part of the doctoral studies, assignment a theoretical framework of the worldwide crook law. It ambitions at checking out the present terminology on international components of criminal law. It demonstrates differences among the notions of global crook regulation, criminal regulation international and law worldwide crook. It confronts the belief of crook regulation with associated disciplines and indicates their interplay. It specifies the scope of international criminal regulation. It diagnoses the contemporary criminal framework of global components of criminal regulation, referring to each crook law issues that rise up inside the international setting, and international problems that rise up within the context of national criminal law. ultimately, de lege lata postulates had been formulated and route of modifications in global criminal law turned into proposed. The followed studies hypothesis assumed that the belief of international criminal regulation became inconsistent, not understood uniformly, and there has been no conformity as to its location inside the system of regulation, objective and subjective scopes, while the domestic doctrine did not correspond with international requirements and differed from the global doctrine. applied research strategies covered inter alia a dogmatic and legal technique, an analytical technique, a comparative approach, in addition to desk studies.Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures
Procedia PDF Downloads 303304 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks
Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang
Abstract:
For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.Keywords: high-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network
Procedia PDF Downloads 4323303 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks
Authors: Ahmed Negm, George Aggidis, Xiandong Ma
Abstract:
With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management
Procedia PDF Downloads 903302 Modified Single-Folded Potentials for the Alpha-²⁴Mg and Alpha-²⁸Si Elastic Scattering
Authors: M. N. A. Abdullah, Pritha Roy, R. R. Shil, D. R. Sarker
Abstract:
Alpha-nucleus interaction is obscured because it produces enhanced cross-sections at large scattering angles known as anomaly in large angle scattering (ALAS). ALAS is prominent in the elastic scattering of α-particles as well as in non-elastic processes involving α-particles for incident energies up to 50 MeV and for targets of mass A ≤ 50. The Woods-Saxon type of optical model potential fails to describe the processes in a consistent manner. Folded potential is a good candidate and often used to construct the potential which is derived from the microscopic as well as semi-microscopic folding calculations. The present work reports the analyses of the elastic scattering of α-particles from ²⁴Mg and ²⁸Si at Eα=22-100 MeV and 14.4-120 MeV incident energies respectively in terms of the modified single-folded (MSF) potential. To derive the MSF potential, we take the view that the nucleons in the target nuclei ²⁴Mg and ²⁸Si are primarily in α-like clusters and the rest of the time in unclustered nucleonic configuration. The MSF potential, found in this study, does not need any renormalization over the whole range of incident α energies, and the renormalization factor has been found to be exactly 1 for both the targets. The best-fit parameters yield 4Aα = 21 and AN = 3 for α-²⁴Mg potential, and 4Aα = 26 and AN = 2 for α-²⁸Si potential in time-average pictures. The root-mean-square radii of both ²⁴Mg and ²⁸Si are also deduced, and the results obtained from this work agree well with the outcomes of other studies.Keywords: elastic scattering, optical model, folded potential, renormalization
Procedia PDF Downloads 2223301 Design and Implementation of a Cross-Network Security Management System
Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai
Abstract:
In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).Keywords: network security management, device organization, emergency response, cross-network
Procedia PDF Downloads 1673300 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 1133299 Real-Space Mapping of Surface Trap States in Cigse Nanocrystals Using 4D Electron Microscopy
Authors: Riya Bose, Ashok Bera, Manas R. Parida, Anirudhha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, Omar F. Mohammed
Abstract:
This work reports visualization of charge carrier dynamics on the surface of copper indium gallium selenide (CIGSe) nanocrystals in real space and time using four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and correlates it with the optoelectronic properties of the nanocrystals. The surface of the nanocrystals plays a key role in controlling their applicability for light emitting and light harvesting purposes. Typically for quaternary systems like CIGSe, which have many desirable attributes to be used for optoelectronic applications, relative abundance of surface trap states acting as non-radiative recombination centre for charge carriers remains as a major bottleneck preventing further advancements and commercial exploitation of these nanocrystals devices. Though ultrafast spectroscopic techniques allow determining the presence of picosecond carrier trapping channels, because of relative larger penetration depth of the laser beam, only information mainly from the bulk of the nanocrystals is obtained. Selective mapping of such ultrafast dynamical processes on the surfaces of nanocrystals remains as a key challenge, so far out of reach of purely optical probing time-resolved laser techniques. In S-UEM, the optical pulse generated from a femtosecond (fs) laser system is used to generate electron packets from the tip of the scanning electron microscope, instead of the continuous electron beam used in the conventional setup. This pulse is synchronized with another optical excitation pulse that initiates carrier dynamics in the sample. The principle of S-UEM is to detect the secondary electrons (SEs) generated in the sample, which is emitted from the first few nanometers of the top surface. Constructed at different time delays between the optical and electron pulses, these SE images give direct and precise information about the carrier dynamics on the surface of the material of interest. In this work, we report selective mapping of surface dynamics in real space and time of CIGSe nanocrystals applying 4D S-UEM. We show that the trap states can be considerably passivated by ZnS shelling of the nanocrystals, and the carrier dynamics can be significantly slowed down. We also compared and discussed the S-UEM kinetics with the carrier dynamics obtained from conventional ultrafast time-resolved techniques. Additionally, a direct effect of the state trap removal can be observed in the enhanced photoresponse of the nanocrystals after shelling. Direct observation of surface dynamics will not only provide a profound understanding of the photo-physical mechanisms on nanocrystals’ surfaces but also enable to unlock their full potential for light emitting and harvesting applications.Keywords: 4D scanning ultrafast microscopy, charge carrier dynamics, nanocrystals, optoelectronics, surface passivation, trap states
Procedia PDF Downloads 2933298 Optical Coherence Tomography in Parkinson’s Disease: A Potential in-vivo Retinal α-Synuclein Biomarker in Parkinson’s Disease
Authors: Jessica Chorostecki, Aashka Shah, Fen Bao, Ginny Bao, Edwin George, Navid Seraji-Bozorgzad, Veronica Gorden, Christina Caon, Elliot Frohman
Abstract:
Background: Parkinson’s Disease (PD) is a neuro degenerative disorder associated with the loss of dopaminergic cells and the presence α-synuclein (AS) aggregation in of Lewy bodies. Both dopaminergic cells and AS are found in the retina. Optical coherence tomography (OCT) allows high-resolution in-vivo examination of retinal structure injury in neuro degenerative disorders including PD. Methods: We performed a cross-section OCT study in patients with definite PD and healthy controls (HC) using Spectral Domain SD-OCT platform to measure the peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular volume (TMV). We performed intra-retinal segmentation with fully automated segmentation software to measure the volume of the RNFL, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), and the outer nuclear layer (ONL). Segmentation was performed blinded to the clinical status of the study participants. Results: 101 eyes from 52 PD patients (mean age 65.8 years) and 46 eyes from 24 HC subjects (mean age 64.1 years) were included in the study. The mean pRNFL thickness was not significantly different (96.95 μm vs 94.42 μm, p=0.07) but the TMV was significantly lower in PD compared to HC (8.33 mm3 vs 8.58 mm3 p=0.0002). Intra-retinal segmentation showed no significant difference in the RNFL volume between the PD and HC groups (0.95 mm3 vs 0.92 mm3 p=0.454). However, GCL, IPL, INL, and ONL volumes were significantly reduced in PD compared to HC. In contrast, the volume of OPL was significantly increased in PD compared to HC. Conclusions: Our finding of the enlarged OPL corresponds with mRNA expression studies showing localization of AS in the OPL across vertebrate species and autopsy studies demonstrating AS aggregation in the deeper layers of retina in PD. We propose that the enlargement of the OPL may represent a potential biomarker of AS aggregation in PD. Longitudinal studies in larger cohorts are warranted to confirm our observations that may have significant implications in disease monitoring and therapeutic development.Keywords: Optical Coherence Tomography, biomarker, Parkinson's disease, alpha-synuclein, retina
Procedia PDF Downloads 4363297 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications
Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram
Abstract:
Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method
Procedia PDF Downloads 4053296 Two Component Source Apportionment Based on Absorption and Size Distribution Measurement
Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Gábor Szabó, Zoltán Bozóki
Abstract:
Beyond its climate and health related issues ambient light absorbing carbonaceous particulate matter (LAC) has also become a great scientific interest in terms of its regulations recently. It has been experimentally demonstrated in recent studies, that LAC is dominantly composed of traffic and wood burning aerosol particularly under wintertime urban conditions, when the photochemical and biological activities are negligible. Several methods have been introduced to quantitatively apportion aerosol fractions emitted by wood burning and traffic but most of them require costly and time consuming off-line chemical analysis. As opposed to chemical features, the microphysical properties of airborne particles such as optical absorption and size distribution can be easily measured on-line, with high accuracy and sensitivity, especially under highly polluted urban conditions. Recently a new method has been proposed for the apportionment of wood burning and traffic aerosols based on the spectral dependence of their absorption quantified by the Aerosol Angström Exponent (AAE). In this approach the absorption coefficient is deduced from transmission measurement on a filter accumulated aerosol sample and the conversion factor between the measured optical absorption and the corresponding mass concentration (the specific absorption cross section) are determined by on-site chemical analysis. The recently developed multi-wavelength photoacoustic instruments provide novel, in-situ approach towards the reliable and quantitative characterization of carbonaceous particulate matter. Therefore, it also opens up novel possibilities on the source apportionment through the measurement of light absorption. In this study, we demonstrate an in-situ spectral characterization method of the ambient carbon fraction based on light absorption and size distribution measurements using our state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS) and Single Mobility Particle Sizer (SMPS) The carbonaceous particulate selective source apportionment study was performed for ambient particulate matter in the city center of Szeged, Hungary where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. The proposed model is based on the parallel, in-situ measurement of optical absorption and size distribution. AAEff and AAEwb were deduced from the measured data using the defined correlation between the AOC(1064nm)/AOC(266nm) and N100/N20 ratios. σff(λ) and σwb(λ) were determined with the help of the independently measured temporal mass concentrations in the PM1 mode. Furthermore, the proposed optical source apportionment is based on the assumption that the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed here by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data. The results by the proposed novel optical absorption based source apportionment method prove its applicability whenever measurements are performed at an urban site where traffic and wood burning are the dominant carbonaceous sources of emission.Keywords: absorption, size distribution, source apportionment, wood burning, traffic aerosol
Procedia PDF Downloads 226