Search results for: odor classification
1141 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures
Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hannachi Naceur Eddine, Hamizi Mohand
Abstract:
The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed.Keywords: seismic performance, pushover method, characterization of seismic motion, harmfulness of the seismic
Procedia PDF Downloads 3811140 Post-Soviet LULC Analysis of Tbilisi, Batumi and Kutaisi Using of Remote Sensing and Geo Information System
Authors: Lela Gadrani, Mariam Tsitsagi
Abstract:
Human is a part of the urban landscape and responsible for it. Urbanization of cities includes the longest phase; thus none of the environment ever undergoes such anthropogenic impact as the area of large cities. The post-Soviet period is very interesting in terms of scientific research. The changes that have occurred in the cities since the collapse of the Soviet Union have not yet been analyzed best to our knowledge. In this context, the aim of this paper is to analyze the changes in the land use of the three large cities of Georgia (Tbilisi, Kutaisi, Batumi). Tbilisi as a capital city, Batumi as a port city, and Kutaisi as a former industrial center. Data used during the research process are conventionally divided into satellite and supporting materials. For this purpose, the largest topographic maps (1:10 000) of all three cities were analyzed, Tbilisi General Plans (1896, 1924), Tbilisi and Kutaisi historical maps. The main emphasis was placed on the classification of Landsat images. In this case, we have classified the images LULC (LandUse / LandCover) of all three cities taken in 1987 and 2016 using the supervised and unsupervised methods. All the procedures were performed in the programs: Arc GIS 10.3.1 and ENVI 5.0. In each classification we have singled out the following classes: built-up area, water bodies, agricultural lands, green cover and bare soil, and calculated the areas occupied by them. In order to check the validity of the obtained results, additionally we used the higher resolution images of CORONA and Sentinel. Ultimately we identified the changes that took place in the land use in the post-Soviet period in the above cities. According to the results, a large wave of changes touched Tbilisi and Batumi, though in different periods. It turned out that in the case of Tbilisi, the area of developed territory has increased by 13.9% compared to the 1987 data, which is certainly happening at the expense of agricultural land and green cover, in particular, the area of agricultural lands has decreased by 4.97%; and the green cover by 5.67%. It should be noted that Batumi has obviously overtaken the country's capital in terms of development. With the unaided eye it is clear that in comparison with other regions of Georgia, everything is different in Batumi. In fact, Batumi is an unofficial summer capital of Georgia. Undoubtedly, Batumi’s development is very important both in economic and social terms. However, there is a danger that in the uneven conditions of urban development, we will eventually get a developed center - Batumi, and multiple underdeveloped peripheries around it. Analysis of the changes in the land use is of utmost importance not only for quantitative evaluation of the changes already implemented, but for future modeling and prognosis of urban development. Raster data containing the classes of land use is an integral part of the city's prognostic models.Keywords: analysis, geo information system, remote sensing, LULC
Procedia PDF Downloads 4491139 Nature-Based Solutions: An Intelligent Method to Enhance Urban Resilience in Response to Climate Change
Authors: Mario Calabrese, Francesca Iandolo, Pietro Vito, Raffaele D'Amore, Francesco Caputo
Abstract:
This article presents a synopsis of Nature-Based Solutions (NBS), a fresh and emerging concept in mitigating and adapting to climate change. It outlines a classification of NBS, from the least intrusive to the most advanced engineering, and provides illustrations of each. Moreover, it gives an overview of the 'Life Metro Adapt' initiative, which dealt with the climatic challenges faced by the Milan Metropolitan City and encouraged the development of climate change adaptation methods using alternative, nature-focused solutions. Lastly, the article emphasizes the necessity of raising awareness about environmental issues to ensure that NBS becomes a regular practice today and can be refined in the future.Keywords: nature-based solutions, urban resilience, climate change adaptation, life metro adapt initiative
Procedia PDF Downloads 1111138 Economic Stability in a Small Open Economy with Income Effect on Leisure Demand
Authors: Yu-Shan Hsu
Abstract:
This paper studies a two-sector growth model with a technology of social constant returns and with a utility that features either a zero or a positive income effect on the demand for leisure. The purpose is to investigate how the existence of aggregate instability or equilibrium indeterminacy depends on both the intensity of the income effect on the demand for leisure and the value of the labor supply elasticity. The main finding is that when there is a factor intensity reversal between the private perspective and the social perspective, indeterminacy arises even if the utility has a positive income effect on leisure demand. Moreover, we find that a smaller value of the labor supply elasticity increases the range of the income effect on leisure demand and thus increases the possibility of equilibrium indeterminacy. JEL classification: E3; O41Keywords: indeterminacy, non-separable preferences, income effect, labor supply elasticity
Procedia PDF Downloads 1751137 Evidence of Scientific-Ness of Scriptures
Authors: Shyam Sunder Gupta
Abstract:
Written scriptures are created out of Words of God, revealed or inspired. This process of conversion, from revealed Words to written scriptures, happens after a long gap of time and with the involvement of a large number of persons, and unintentionally, scientific and other types of errors get into scriptures; otherwise, scriptures are, in reality, truly scientific. Description of Chronology of life in the womb (Fetal Development), Rotation of Universe, spherical shape of the earth, evolution process of non-living matter and living species, classification of species by nature of birth, etc., most convincing prove that scriptures are truly scientific. In fact, there are many facts for which, to date, science has not found answers but are available in scriptures, like the creation of singularity from which the Big Bang took place and the Universe got created innumerable universes, and the most fundamental particle Param-anu. These findings demonstrate that scriptures contain scientific knowledge that predates scientific discoveries.Keywords: Big Bang, evolution, Param-anu, scientific, scriptures, singularity, universe
Procedia PDF Downloads 311136 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms
Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan
Abstract:
This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.Keywords: binary classifier, CNN, spectrogram, instrument
Procedia PDF Downloads 761135 Impact of Popular Passive Physiological Diversity Drivers on Thermo-Physiology
Authors: Ilango Thiagalingam, Erwann Yvin, Gabriel Crehan, Roch El Khoury
Abstract:
An experimental investigation is carried out in order to evaluate the relevance of a customization approach of the passive thermal mannikin. The promise of this approach consists in the following assumption: physiological differences lead to distinct thermo-physiological responses that explain a part of the thermal appraisal differences between people. Categorizing people and developing an appropriate thermal mannikin for each group would help to reduce the actual dispersion on the subjective thermal comfort perception. The present investigation indicates that popular passive physiological diversity drivers such as sex, age and BMI are not the correct parameters to consider. Indeed, very little or no discriminated global thermo-physiological responses arise from the physiological classification of the population using these parameters.Keywords: thermal comfort, thermo-physiology, customization, thermal mannikin
Procedia PDF Downloads 981134 An Ontology Model for Systems Engineering Derived from ISO/IEC/IEEE 15288: 2015: Systems and Software Engineering - System Life Cycle Processes
Authors: Lan Yang, Kathryn Cormican, Ming Yu
Abstract:
ISO/IEC/IEEE 15288: 2015, Systems and Software Engineering - System Life Cycle Processes is an international standard that provides generic top-level process descriptions to support systems engineering (SE). However, the processes defined in the standard needs improvement to lift integrity and consistency. The goal of this research is to explore the way by building an ontology model for the SE standard to manage the knowledge of SE. The ontology model gives a whole picture of the SE knowledge domain by building connections between SE concepts. Moreover, it creates a hierarchical classification of the concepts to fulfil different requirements of displaying and analysing SE knowledge.Keywords: knowledge management, model-based systems engineering, ontology modelling, systems engineering ontology
Procedia PDF Downloads 4231133 Effects of Abiotic Stress on the Phytochemical Content and Bioactivity of Pistacia lentiscus L.
Authors: S. Mamoucha, N. Tsafantakis, Α. Ioannidis, S. Chatzipanagiotou, C. Nikolaou, L. Skaltsounis, N. Fokialakis, N. Christodoulakis
Abstract:
Introduction: Plant secondary metabolites (SM) can be grouped into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing compounds. For many years the adaptive significance of SM was unknown. They were thought to be functionless end-products. Currently it is accepted that many secondary metabolites (also known as natural products) have important ecological roles in plants. For instance, they serve as attractants (odor, color, taste) for pollinators and seed-dispersing animals. Moreover, they protect plants from herbivores, microbial pathogens and from environmental stress (high and low temperatures, drought, alkalinity, salinity, radiation etc). It is well known that both biotic and abiotic stress often increase the accumulation of SM. The local climatic conditions, seasonal changes, external factors such as light, temperature, humidity affect the biosynthesis and composition of secondary metabolites. A well known dioecious evergreen plant, Pistacia lentiscus L. (mastic tree), was selected in order to study the metabolic variations occur in response to the different climate conditions, due to the seasonal variation and its effect on the biosynthesis of bioactive compounds. Materials-methods: Young and mature leaves were collected in January and July 2014, dried and extracted by accelerated solvent extraction (Dionex ASE™ 350) using solvents of increased polarity (DCM, MeOH, and H2O). GC-MS and UHPLC-HRMS analysis were carried out in order to define the nature and the relative abundance of SM. The antibacterial activity was evaluated by using the Agar Disc Diffusion Assay against ATCC and clinical isolates strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Streptococcus mutans and Klebsiella pneumoniae. All tests were carried out in duplicate and the average radii of the inhibition zones were calculated for each extract. Results: According to the phytochemical profile obtained from each extract, the biosynthesis of SM varied both qualitatively and quantitatively under the two different types of seasonal stress. With exception of the biologically inactive nonpolar DCM extract of July, all extracts inhibited the growth of most of the investigated microorganisms. A clear positive correlation has been observed between the relative abundance of SM and the bioactivity of the DCM extracts of January and July. Observed changes during phytochemical analysis were mainly focused on the triterpenoid content. On the other hand, the bioactivity of the polar extracts (MeOH and H2O) of January and July resulted practically invariable against most of the microorganisms, besides the significant variation of the SM content due to the seasonal variation. Conclusion: Our results clearly confirmed the hypothesis of abiotic stress as an important regulating factor that significantly affects the biosynthesis of secondary metabolites and thus the presence of bioactive compounds. Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.Keywords: antibacterial screening, phytochemical profile, Pistacia lentiscus, abiotic stress
Procedia PDF Downloads 2551132 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area
Authors: Kamalpreet Kaur, Renu Dhir
Abstract:
Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.Keywords: climate, satellite images, prediction, classification
Procedia PDF Downloads 711131 Burden of Cardiovascular Diseases in Dubrovnik- Neretva County 2018-2021
Authors: Tarnai Tena, Strinić Dean
Abstract:
Chronic non-communicable diseases are today the leading cause of mortality, morbidity and mortality disability at the world level and in Croatia. Among them are the most represented precisely cardiovascular diseases (CVD), so today we are talking about their global card epidemic. From 2018 to 2021, cardiovascular diseases are the leading cause of death for both women and men in the Dubrovnik- Neretva County. With regard to the COVID-19 pandemic, which has taken over, without forgetting how much these patients are additionally affected, we are still talking about the primary cause of sickness and death in the population of this county and region. In this record, we present collected data processed according to gender and disease classification. We also bring a kind of overview because, for years, we have been following how the population of one of the origins of the Mediterranean diet has been struggling with cardiovascular diseases.Keywords: cardiovascular disease, burden, COVID-19, epidemiology, ishemic heart disease, cardiovascular medicine
Procedia PDF Downloads 821130 Real Time Multi Person Action Recognition Using Pose Estimates
Authors: Aishrith Rao
Abstract:
Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks
Procedia PDF Downloads 1381129 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5131128 Singularization: A Technique for Protecting Neural Networks
Authors: Robert Poenaru, Mihail Pleşa
Abstract:
In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.Keywords: machine learning, ANE, CNN, security
Procedia PDF Downloads 121127 Strategies of Spatial Optimization for Open Space in the Old-Age Friendly City: An Investigation of the Behavior of the Elderly in Xicheng Square in Hangzhou
Authors: Yunxiang Fang
Abstract:
With the aging trend continuing to accelerate, open space is important for the daily life of the elderly, and its old-age friendliness is worthy of attention. Based on behavioral observation and literature research, this paper studies the behavior of the elderly in urban open space. Through the investigation, classification and quantitative analysis of the activity types, time characteristics and spatial behavior order of the elderly in Xicheng Square in Hangzhou, it summarizes the square space suitable for the psychological needs, physiology and activity needs of the elderly, combined with the basis of literature research. Finally, the suggestions for the improvement of the old-age friendship of Xicheng Square are put forward, from the aspects of microclimate, safety and accessibility, space richness and service facility quality.Keywords: behavior characteristics, old-age friendliness, open space, square
Procedia PDF Downloads 1671126 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 4061125 Analysis of Fish Preservation Methods for Traditional Fishermen Boat
Authors: Kusno Kamil, Andi Asni, Sungkono
Abstract:
According to a report of the World Food and Agriculture Agency (FAO): the post-harvest fish losses in Indonesia reaches 30 percent from 170 trillion rupiahs of marine fisheries reserves, then the potential loss reaches 51 trillion rupiahs (end of 2016 data). This condition is caused by traditionally vulnerable fish catches damaged due to disruption of the cold chain of preservation. The physical and chemical changes in fish flesh increase rapidly, especially if exposed to the scorching heat in the middle of the sea, exacerbated by the low awareness of catch hygiene; many unclean catches which contain blood are often treated without special attention and mixed with freshly caught fish, thereby increasing the potential for faster fish spoilage. This background encourages research on traditional fisherman catch preservation methods that aim to find the best and most affordable methods and/or combinations of fish preservation methods so that they can help fishermen increase their fishing duration without worrying that their catch will be damaged, thereby reducing their economic value when returning to the beach to sell their catches. This goal is expected to be achieved through experimental methods of treatment of fresh fish catches in containers with the addition of anti-bacterial copper, liquid smoke solution, and the use of vacuum containers. The other three treatments combined the three previous treatment variables with an electrically powered cooler (temperature 0~4 ᵒC). As a control specimen, the untreated fresh fish (placed in the open air and in the refrigerator) were also prepared for comparison for 1, 3, and 6 days. To test the level of freshness of fish for each treatment, physical observations were used, which were complemented by tests for bacterial content in a trusted laboratory. The content of copper (Cu) in fish meat (which is suspected of having a negative impact on consumers) was also part of the examination on the 6th day of experimentation. The results of physical observations on the test specimens (organoleptic method) showed that preservation assisted by the use of coolers was still better for all treatment variables. The specimens, without cooling, sequentially showed that the best preservation effectiveness was the addition of copper plates, the use of vacuum containers, and then liquid smoke immersion. Especially for liquid smoke, soaking for 6 days of preservation makes the fish meat soft and easy to crumble, even though it doesn't have a bad odor. The visual observation was then complemented by the results of testing the amount of growth (or retardation) of putrefactive bacteria in each treatment of test specimens within similar observation periods. Laboratory measurements report that the minimum amount of putrefactive bacteria achieved by preservation treatment combining cooler with liquid smoke (sample A+), then cooler only (D+), copper layer inside cooler (B+), vacuum container inside cooler (C+), respectively. Other treatments in open air produced a hundred times more putrefactive bacteria. In addition, treatment of the copper layer contaminated the preserved fresh fish more than a thousand times bigger compared to the initial amount, from 0.69 to 1241.68 µg/g.Keywords: fish, preservation, traditional, fishermen, boat
Procedia PDF Downloads 671124 Self-Supervised Learning for Hate-Speech Identification
Authors: Shrabani Ghosh
Abstract:
Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.Keywords: attention learning, language model, offensive language detection, self-supervised learning
Procedia PDF Downloads 1031123 Optimal Mother Wavelet Function for Shoulder Muscles of Upper Limb Amputees
Authors: Amanpreet Kaur
Abstract:
Wavelet transform (WT) is a powerful statistical tool used in applied mathematics for signal and image processing. The different mother, wavelet basis function, has been compared to select the optimal wavelet function that represents the electromyogram signal characteristics of upper limb amputees. Four different EMG electrode has placed on different location of shoulder muscles. Twenty one wavelet functions from different wavelet families were investigated. These functions included Daubechies (db1-db10), Symlets (sym1-sym5), Coiflets (coif1-coif5) and Discrete Meyer. Using mean square error value, the significance of the mother wavelet functions has been determined for teres, pectorals, and infraspinatus around shoulder muscles. The results show that the best mother wavelet is the db3 from the Daubechies family for efficient classification of the signal.Keywords: Daubechies, upper limb amputation, shoulder muscles, Symlets, Coiflets
Procedia PDF Downloads 2341122 Analysis of Spatial and Temporal Data Using Remote Sensing Technology
Authors: Kapil Pandey, Vishnu Goyal
Abstract:
Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing
Procedia PDF Downloads 4301121 Photogrammetry and Topographic Information for Urban Growth and Change in Amman
Authors: Mahmoud M. S. Albattah
Abstract:
Urbanization results in the expansion of administrative boundaries, mainly at the periphery, ultimately leading to changes in landcover. Agricultural land, naturally vegetated land, and other land types are converted into residential areas with a high density of constructs, such as transportation systems and housing. In urban regions of rapid growth and change, urban planners need regular information on up to date ground change. Amman (the capital of Jordan) is growing at unprecedented rates, creating extensive urban landscapes. Planners interact with these changes without having a global view of their impact. The use of aerial photographs and satellite images data combined with topographic information and field survey could provide effective information to develop urban change and growth inventory which could be explored towards producing a very important signature for the built-up area changes.Keywords: highway design, satellite technologies, remote sensing, GIS, image segmentation, classification
Procedia PDF Downloads 4421120 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris
Authors: Piyush Samant, Ravinder Agarwal
Abstract:
Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction
Procedia PDF Downloads 4061119 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation
Procedia PDF Downloads 7291118 Research on Urban Thermal Environment Climate Map Based on GIS: Taking Shapingba District, Chongqing as an Example
Authors: Zhao Haoyue
Abstract:
Due to the combined effects of climate change, urban expansion, and population growth, various environmental issues, such as urban heat islands and pollution, arise. Therefore, reliable information on urban environmental climate is needed to address and mitigate the negative effects. The emergence of urban climate maps provides a practical basis for urban climate regulation and improvement. This article takes Shapingba District, Chongqing City, as an example to study the construction method of urban thermal environment climate maps based on GIS spatial analysis technology. The thermal load, ventilation potential analysis map, and thermal environment comprehensive analysis map were obtained. Based on the classification criteria obtained from the climate map, corresponding protection and planning mitigation measures have been proposed.Keywords: urban climate, GIS, heat island analysis, urban thermal environment
Procedia PDF Downloads 1111117 Decision Trees Constructing Based on K-Means Clustering Algorithm
Authors: Loai Abdallah, Malik Yousef
Abstract:
A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.Keywords: ensemble clustering, decision trees, classification, K nearest neighbors
Procedia PDF Downloads 1891116 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 851115 Transarterial Chemoembolization (TACE) in Hepatocellular Carcinoma (HCC)
Authors: Ilirian Laçi, Alketa Spahiu
Abstract:
Modality of treatment in hepatocellular carcinoma (HCC) patients depends on the stage of the disease. The Barcelona Clinic Liver Cancer Classification (BCLC) is the preferred staging system. There are many patients initially present with intermediate-stage disease. For these patients, transarterial chemoembolization (TACE) is the treatment of choice. The differences in individual factors that are not captured by the BCLC framework, such as the tumor growth pattern, degree of hypervascularity, and vascular supply, complicate further evaluation of these patients. Because of these differences, not all patients benefit equally from TACE. Several tools have been devised to aid the decision-making process, which have shown promising initial results but have failed external evaluation and have not been translated to the clinic aspects. Criteria for treatment decisions in daily clinical practice are needed in all stages of the disease.Keywords: hepatocellular carcinoma, transarterial chemoembolization, TACE, liver
Procedia PDF Downloads 961114 Modeling of Geotechnical Data Using GIS and Matlab for Eastern Ahmedabad City, Gujarat
Authors: Rahul Patel, S. P. Dave, M. V Shah
Abstract:
Ahmedabad is a rapidly growing city in western India that is experiencing significant urbanization and industrialization. With projections indicating that it will become a metropolitan city in the near future, various construction activities are taking place, making soil testing a crucial requirement before construction can commence. To achieve this, construction companies and contractors need to periodically conduct soil testing. This study focuses on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical Geo-database involves three essential steps. Firstly, borehole data is collected from reputable sources. Secondly, the accuracy and redundancy of the data are verified. Finally, the geotechnical information is standardized and organized for integration into the database. Once the Geo-database is complete, it is integrated with GIS. This integration allows users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. The GIS map generated by this study enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This approach highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers. The information generated by this study can be utilized by engineers to make informed decisions during construction activities. For instance, they can use the data to optimize foundation designs and improve site selection. In conclusion, the rapid growth experienced by Ahmedabad requires extensive construction activities, necessitating soil testing. This study focused on the process of creating a comprehensive geotechnical database integrated with GIS. The database was developed by collecting borehole data from reputable sources, verifying its accuracy and redundancy, and organizing the information for integration. The GIS map generated by this study is an efficient solution that offers greater accuracy and generates valuable information that can be used as input for correlation analysis. It also serves as a decision support tool for geotechnical engineers, allowing them to make informed decisions during construction activities.Keywords: arcGIS, borehole data, geographic information system (GIS), geo-database, interpolation, SPT N-value, soil classification, φ-value, bearing capacity
Procedia PDF Downloads 671113 A Comparative Study of Motion Events Encoding in English and Italian
Authors: Alfonsina Buoniconto
Abstract:
The aim of this study is to investigate the degree of cross-linguistic and intra-linguistic variation in the encoding of motion events (MEs) in English and Italian, these being typologically different languages both showing signs of disobedience to their respective types. As a matter of fact, the traditional typological classification of MEs encoding distributes languages into two macro-types, based on the preferred locus for the expression of Path, the main ME component (other components being Figure, Ground and Manner) characterized by conceptual and structural prominence. According to this model, Satellite-framed (SF) languages typically express Path information in verb-dependent items called satellites (e.g. preverbs and verb particles) with main verbs encoding Manner of motion; whereas Verb-framed languages (VF) tend to include Path information within the verbal locus, leaving Manner to adjuncts. Although this dichotomy is valid altogether, languages do not always behave according to their typical classification patterns. English, for example, is usually ascribed to the SF type due to the rich inventory of postverbal particles and phrasal verbs used to express spatial relations (i.e. the cat climbed down the tree); nevertheless, it is not uncommon to find constructions such as the fog descended slowly, which is typical of the VF type. Conversely, Italian is usually described as being VF (cf. Paolo uscì di corsa ‘Paolo went out running’), yet SF constructions like corse via in lacrime ‘She ran away in tears’ are also frequent. This paper will try to demonstrate that such a typological overlapping is due to the fact that the semantic units making up MEs are distributed within several loci of the sentence –not only verbs and satellites– thus determining a number of different constructions stemming from convergent factors. Indeed, the linguistic expression of motion events depends not only on the typological nature of languages in a traditional sense, but also on a series morphological, lexical, and syntactic resources, as well as on inferential, discursive, usage-related, and cultural factors that make semantic information more or less accessible, frequent, and easy to process. Hence, rather than describe English and Italian in dichotomic terms, this study focuses on the investigation of cross-linguistic and intra-linguistic variation in the use of all the strategies made available by each linguistic system to express motion. Evidence for these assumptions is provided by parallel corpora analysis. The sample texts are taken from two contemporary Italian novels and their respective English translations. The 400 motion occurrences selected (200 in English and 200 in Italian) were scanned according to the MODEG (an acronym for Motion Decoding Grid) methodology, which grants data comparability through the indexation and retrieval of combined morphosyntactic and semantic information at different levels of detail.Keywords: construction typology, motion event encoding, parallel corpora, satellite-framed vs. verb-framed type
Procedia PDF Downloads 2581112 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust
Authors: Marina Yurievna Aleksandrova
Abstract:
Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest
Procedia PDF Downloads 179