Search results for: human action classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12311

Search results for: human action classification

11201 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning

Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman

Abstract:

Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.

Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning

Procedia PDF Downloads 97
11200 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model

Authors: Si Chen, Quanhong Jiang

Abstract:

In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.

Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics

Procedia PDF Downloads 76
11199 Cloning, Expression and N-Terminal Pegylation of Human Interferon Alpha-2b Analogs and Their Cytotoxic Evaluation against Cancer Cell Lines

Authors: Syeda Kiran Shahzadi, Nasir Mahmood, Muhammad Abdul Qadir

Abstract:

In the current research, three recombinant human interferon alpha-2b proteins (two modified and one normal form) were produced and Pegylated with an aim to produce more effective drugs against viral infections and cancers. The modified recombinant human interferon alpha-2b proteins were produced by site-directed modifications of interferon alpha 2b gene, targeting the amino acids at positions ‘R23’ and ‘H34’. The resulting chemically modified and unmodified forms of human interferon alpha 2b were conjugated with methoxy-polyethylene glycol propanealdehyde (400 KDa) and methoxy-polyethylene glycol succinimidyl succinate (400 KDa). Pegylation of normal and modified forms of Interferon alpha-2b prolong their release time and enhance their efficacy. The conjugation of PEG with modified and unmodified human interferon alpha 2b protein drugs was also characterized with 1H-NMR, HPLC, and SDS-PAGE. Antiproliferative assays of modified and unmodified forms of drugs were performed in cell based bioassays using MDBK cell lines. The results indicated that experimentally produced recombinant human interferon alpha-2b proteins were biologically active and resulted in significant inhibition of cell growth.

Keywords: protein refolding, antiproliferative activities, biomedical applications, human interferon alpha-2b, pegylation, mPEG-propionaldehyde, site directed mutagenesis, E. coli expression

Procedia PDF Downloads 175
11198 Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance

Authors: Alberto Sanchidrián, José A. Parra, Jesús Alonso, Julián Pecharromán, Antonia Pacios, Consuelo Huerta

Abstract:

Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary.

Keywords: glass plates, human impact test, modal test, plate boundary conditions

Procedia PDF Downloads 306
11197 Migration, Security, and Human Rights in Nigeria: Navigating National Interests Amidst Regional Crises

Authors: Otu Otu Akanu

Abstract:

The nexus between migration, national security, and human rights has become increasingly complex, particularly within Nigeria's geopolitical landscape. This study explores how Nigeria navigates the balance between safeguarding national security and upholding human rights amidst escalating regional crises, such as conflicts in the Lake Chad Basin and the Sahel. Through a comprehensive analysis of policy frameworks, security measures, and human rights protocols, this paper critically examines the challenges and opportunities in Nigeria's approach. The study employed a multidisciplinary methodology, integrating perspectives from International Relations, Human Security Studies, and Migration Law to provide a holistic understanding of the issue. Drawing on primary data from government reports, policy documents, and interviews with key stakeholders, alongside secondary literature, the study reveals a persistent tension between security imperatives and human rights obligations. While Nigeria has made strides in enhancing its security architecture, the findings highlight significant gaps in the protection of migrants' rights, often exacerbated by external pressures and domestic political dynamics. The paper argues that a recalibration of Nigeria's security and human rights policies is imperative for achieving sustainable peace and security in the region. By offering policy recommendations rooted in international best practices, this study contributes to the ongoing discourse on migration and security in West Africa and provides a framework for other nations grappling with similar challenges. This research underscores the need for an integrated approach that transcends traditional security paradigms, advocating a more inclusive and human-centered strategy in addressing the complexities of migration and national security.

Keywords: migration, national security, human rights, Nigeria, West Africa

Procedia PDF Downloads 16
11196 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 141
11195 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots

Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He

Abstract:

Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.

Keywords: microbial identification, laser scattering, peak identification, binned plots classification

Procedia PDF Downloads 146
11194 Hand Controlled Mobile Robot Applied in Virtual Environment

Authors: Jozsef Katona, Attila Kovari, Tibor Ujbanyi, Gergely Sziladi

Abstract:

By the development of IT systems, human-computer interaction is also developing even faster and newer communication methods become available in human-machine interaction. In this article, the application of a hand gesture controlled human-computer interface is being introduced through the example of a mobile robot. The control of the mobile robot is implemented in a realistic virtual environment that is advantageous regarding the aspect of different tests, parallel examinations, so the purchase of expensive equipment is unnecessary. The usability of the implemented hand gesture control has been evaluated by test subjects. According to the opinion of the testing subjects, the system can be well used, and its application would be recommended on other application fields too.

Keywords: human-machine interface (HCI), mobile robot, hand control, virtual environment

Procedia PDF Downloads 295
11193 Migration and Human Security: An Analysis of a Neglected Ethnic Rohingya's Exodus in Myanmar and Its Regional Security Implications

Authors: Zarina Othman, Bakri Mat, Aini Fatihah Roslam

Abstract:

The Burmese ethnic known as Rohingya is one of the world’s most persecuted ethnic minorities on earth. They have been massacred, discriminated, humiliated, gang-raped, trafficked, abused and neglected. More than one million Rohingyas have been displaced internally and overseas. Currently, Rohingya asylum seekers can be found in India, Bangladesh, Thailand, Malaysia, and Indonesia. This forced migration is unacceptable since the Rohingya are stateless although they have been part of Myanmar for more than one century. Why the Rohingyas crisis is important to be analyse from human security perspectives? Understanding the human security of the Rohingya is important because the crisis may have implication on the regional stability in South and South-East Asia. The objectives of the research are to provide an explanation to the current human security situation in Myanmar, to analyse the regional implication of the Rohingya’s crisis and to recommend the workable solution that may help to reduce the tension. To analyze and demonstrate the case, the research has adopted the BAGHUS or Bangi Human Security Approach, a Southeast Asian human security model, designed to protect the weakest and the vital core of human life across national borders. Based on a qualitative research, and a review of literature from secondary sources of books, reports and academic journals, the research has conducted interviews with 1) Rohingya respondents in Cox’s Baza in February 2017; 2) experts and scholars in the field in Bangladesh, Myanmar and Malaysia. Preliminary findings suggest that conflicts lead to displacement and migration across borders, human insecurity is an issue where the implementation of human rights is too slow to take place even in sovereign state like Myanmar. The political and economic interests of many extraregional powers have further contributed to the current crisis. Human security perspectives is suggested as the workable solution for stability and peace in the region.

Keywords: human security, migration, Myanmar, regional security, Rohingya

Procedia PDF Downloads 152
11192 Determination of Neighbor Node in Consideration of the Imaging Range of Cameras in Automatic Human Tracking System

Authors: Kozo Tanigawa, Tappei Yotsumoto, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara

Abstract:

An automatic human tracking system using mobile agent technology is realized because a mobile agent moves in accordance with a migration of a target person. In this paper, we propose a method for determining the neighbor node in consideration of the imaging range of cameras.

Keywords: human tracking, mobile agent, Pan/Tilt/Zoom, neighbor relation

Procedia PDF Downloads 515
11191 Investigating the Relationship between the Kuwait Stock Market and Its Marketing Sectors

Authors: Mohamad H. Atyeh, Ahmad Khaldi

Abstract:

The main objective of this research is to measure the relationship between the Kuwait stock Exchange (KSE) index and its two marketing sectors after the new market classification. The findings of this research are important for Public economic policy makers as they need to know if the new system (new classification) is efficient and to what level, to monitor the markets and intervene with appropriate measures. The data used are the daily index of the whole Kuwaiti market and the daily closing price, number of deals and volume of shares traded of two marketing sectors (consumer goods and consumer services) for the period from the 13th of May 2012 till the 12th of December 2016. The results indicate a positive direct impact of the closing price, volume and deals indexes of the consumer goods and the consumer services companies on the overall KSE index, volume and deals of the Kuwaiti stock market (KSE).

Keywords: correlation, market capitalization, Kuwait Stock Exchange (KSE), marketing sectors, stock performance

Procedia PDF Downloads 326
11190 The Interaction between Human and Environment on the Perspective of Environmental Ethics

Authors: Mella Ismelina Farma Rahayu

Abstract:

Environmental problems could not be separated from unethical human perspectives and behaviors toward the environment. There is a fundamental error in the philosophy of people’s perspective about human and nature and their relationship with the environment, which in turn will create an inappropriate behavior in relation to the environment. The aim of this study is to investigate and to understand the ethics of the environment in the context of humans interacting with the environment by using the hermeneutic approach. The related theories and concepts collected from literature review are used as data, which were analyzed by using interpretation, critical evaluation, internal coherence, comparisons, and heuristic techniques. As a result of this study, there will be a picture related to the interaction of human and environment in the perspective of environmental ethics, as well as the problems of the value of ecological justice in the interaction of humans and environment. We suggest that the interaction between humans and environment need to be based on environmental ethics, in a spirit of mutual respect between humans and the natural world.

Keywords: environment, environmental ethics, interaction, value

Procedia PDF Downloads 420
11189 Sentiment Classification of Documents

Authors: Swarnadip Ghosh

Abstract:

Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.

Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation

Procedia PDF Downloads 400
11188 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 134
11187 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches

Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg

Abstract:

In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.

Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence

Procedia PDF Downloads 211
11186 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 128
11185 Small Target Recognition Based on Trajectory Information

Authors: Saad Alkentar, Abdulkareem Assalem

Abstract:

Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).

Keywords: small targets, drones, trajectory information, TBD, multivariate time series

Procedia PDF Downloads 44
11184 Fuzzy Decision Support System for Human-Realistic Overtaking in Railway Traffic Simulations

Authors: Tomáš Vyčítal

Abstract:

In a simulation model of a railway system it is important, besides other crucial algorithms, to have correct behaviour of train overtaking in stochastic conditions. This problem is being addressed in many simulation tools focused on railway traffic, however these are not very human-realistic. The goal of this paper is to create a more human-realistic overtaking decision support system for the use in railway traffic simulations. A fuzzy system has been chosen for this task as fuzzy systems are well-suited for human-like decision making. The fuzzy system designed takes into account timetables, train positions, delays and buffer times as inputs and provides an instruction to overtake or not overtake.

Keywords: decision-making support, fuzzy systems, simulation, railway, transport

Procedia PDF Downloads 138
11183 The Effect of Awareness-Raising on Household Water Consumption

Authors: R. Morbidelli, C. Saltalippi, A. Flammini, J. Dari

Abstract:

This work analyses what effect systematic awareness-raising of the population on domestic water consumption produces. In a period where the availability of water is continually decreasing due to reduced rainfall, it is of paramount importance to raise awareness among the population. We conducted an experiment on a large sample of homes in urban areas of Central Italy. In the first phase, lasting three weeks, normal per capita, water consumption was quantified. Subsequently, instructions were given on how to save water during various uses in the household (showers, cleaning hands, use of water in toilets, watering small green areas, use of water in the kitchen, ...), and small visual messages were posted at water dispensers to remind users to behave properly. Finally, household consumption was assessed again for a further three weeks. This experiment made it possible to quantify the effect of the awareness-raising action on the reduction of water consumption without the use of any structural action (replacement of dispensers, improvement of the water system, ...).

Keywords: water saving, urban areas, awareness-raising, climate change

Procedia PDF Downloads 104
11182 Mode of Action of Surface Bound Antimicrobial Peptides Melimine and Mel4 against Pseudomonas aeruginosa

Authors: Muhammad Yasir, Debarun Dutta, Mark Willcox

Abstract:

Biomaterial-associated infections are a multi-billion dollar burden globally. Antimicrobial peptide-based coatings may be able to prevent such infections. The aim of this study was to investigate the mechanism of action surface bound peptides (AMPs) against Pseudomonas aeruginosa 6294. Melimine and Mel4 were covalently attached to glass coverslips using azido-benzoic acid. Attachment was confirmed using X-ray photoelectron spectroscopy. P. aeruginosa was allowed to attach to AMP-coated glass for up to 6 hours. The effect of the surface-bound AMPs on bacterial cell membranes was evaluated using the dyes DiSC3-(5), Sytox green, SYTO 9 and propidium iodide with fluorescence microscopy. Release of cytoplasmic materials ATP and DNA/RNA were determined in the surrounding fluid. The amount of cell death was estimated by agar plate counts. The AMPs were successfully covalently bound to the glass as demonstrated by increases in %nitrogen of 3.6% (melimine) and 2.3% (Mel4) compared to controls. Immobilized peptides disrupted the cytoplasmic membrane potential of P. aeruginosa within 10 min. This was followed by the release of ATP after 2 h. Membrane permeabilization started at 3 h of contact with glass coated AMPs. There was a significant number of bacteria (59% for melimine; 36% for Mel-4) with damaged membranes after 4 h of contact. At the 6 h time point, release of DNA occurred with melimine releasing 2 times the amount of DNA/RNA than Mel4 surfaces (p < 0.05). Surface bound AMPs were able to disrupt cell membranes with subsequent release of cytoplasmic materials, and ultimately resulting in bacterial death.

Keywords: biomaterials, immobilized antimicrobial peptides, P. aeruginosa, mode of action

Procedia PDF Downloads 134
11181 Real Time Activity Recognition Framework for Health Monitoring Support in Home Environments

Authors: Shaikh Farhad Hossain, Liakot Ali

Abstract:

Technology advances accelerate the quality and type of services provided for health care and especially for monitoring health conditions. Sensors have turned out to be more effective to detect diverse physiological signs and can be worn on the human body utilizing remote correspondence modules. An assortment of programming devices have been created to help in preparing a difference rundown of essential signs by examining and envisioning information produced by different sensors. In this proposition, we presented a Health signs and Activity acknowledgment monitoring system. Utilizing off-the-rack sensors, we executed a movement location system for identifying five sorts of action: falling, lying down, sitting, standing, and walking. The framework collects and analyzes sensory data in real-time, and provides different feedback to the users. In addition, it can generate alerts based on the detected events and store the data collected to a medical server.

Keywords: ADL, SVM, TRIL , MEMS

Procedia PDF Downloads 393
11180 Human Resource Management: A Study of Human Resource Practices in 'Maharatna' Central Public Sector Enterprises in India

Authors: Shashi Pingolia

Abstract:

The paper discusses best practices developed and followed by 07 'Maharatna' Central Public sector Enterprises in India. The paper begins with brief analyses of the contribution of ‘Maharatna’ companies in the growth story of India Inc. Progressively; it enlists Human Resource practices and approach of these 'Maharatna' companies in the areas such as Recruitment, Pay structure, Employee Benefits and Development, Rewards and Recognition practices, Performance Management Systems, etc. In the later part of the paper, HR factors that led some of these 'Maharatna' companies from average employers to 'Best Place at Work' are discussed in brief.

Keywords: central public sector enterprises in India, Maharatna companies in India, human resource management, best place to work

Procedia PDF Downloads 354
11179 Readiness of Military Professionals for Challenging Situations

Authors: Petra Hurbišová, Monika Davidová

Abstract:

The article deals with the readiness of military professionals for challenging situations. It discusses higher requirements on the psychical endurance of military professionals arising from the specific nature of the military occupation, which is typical for being very difficult to maintain regularity, which is in accordance with the hygiene of work alternated by relaxation. The soldier must be able to serve in the long term and constantly intense performance that goes beyond human tolerance to stress situations. A challenging situation is always associated with overcoming difficulties, obstacles and complicated circumstances or using unusual methods, ways and means to achieve the desired (expected) objectives, performing a given task or satisfying an important need. This paper describes the categories of challenging situations, their classification and characteristics. Attention is also paid to the formation of personality in challenging situations, coping with stress in challenging situations, Phases of solutions of stressful situations, resistance to challenging life situations and its factors. Finally, the article is focused on increasing the readiness of military professionals for challenging situations.

Keywords: coping, challenging situations, stress, stressful situations, military professionals, resilience

Procedia PDF Downloads 315
11178 The Effects of Myelin Basic Protein Charge Isomers on the Methyl Cycle Metabolites in Glial Cells

Authors: Elene Zhuravliova, Tamar Barbakadze, Irina Kalandadze, Elnari Zaalishvili, Lali Shanshiashvili, David Mikeladze

Abstract:

Background: Multiple sclerosis (MS) is an inflammatory, neurodegenerative disease, which is accompanied by demyelination and autoimmune response to myelin proteins. Among post-translational modifications, which mediate the modulation of inflammatory pathways during MS, methylation is the main one. The methylation of DNA, also amino acids lysine and arginine, occurs in the cell. It was found that decreased trans-methylation is associated with neuroinflammatory diseases. Therefore, abnormal regulation of the methyl cycle could induce demyelination through the action on PAD (peptidyl-arginine-deiminase) gene promoter. PAD takes part in protein citrullination and targets myelin basic protein (MBP), which is affected during demyelination. To determine whether MBP charge isomers are changing the methyl cycle, we have estimated the concentrations of methyl cycle metabolites in MBP-activated primary astrocytes and oligodendrocytes. For this purpose, the action of the citrullinated MBP- C8 and the most cationic MBP-C1 isomers on the primary cells were investigated. Methods: Primary oligodendrocyte and astrocyte cell cultures were prepared from whole brains of 2-day-old Wistar rats. The methyl cycle metabolites, including homocysteine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH), were estimated by HPLC analysis using fluorescence detection and prior derivatization. Results: We found that the action of MBP-C8 and MBP-C1 induces a decrease in the concentration of both methyl cycle metabolites, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), in astrocytes compared to the control cells. As for oligodendrocytes, the concentration of SAM was increased by the addition of MBP-C1, while MBP-C8 has no significant effect. As for SAH, its concentration was increased compared to the control cells by the action of both MBP-C1 and MBP-C8. A significant increase in homocysteine concentration was observed by the action of the MBP-C8 isomer in both oligodendrocytes and astrocytes. Conclusion: These data suggest that MBP charge isomers change the concentration of methyl cycle metabolites. MBP-C8 citrullinated isomer causes elevation of homocysteine in astrocytes and oligodendrocytes, which may be the reason for decreased astrocyte proliferation and increased oligodendrocyte cell death which takes place in neurodegenerative processes. Elevated homocysteine levels and subsequent abnormal regulation of methyl cycles in oligodendrocytes possibly change the methylation of DNA that activates PAD gene promoter and induces the synthesis of PAD, which in turn provokes the process of citrullination, which is the accompanying process of demyelination. Acknowledgment: This research was supported by the SRNSF Georgia RF17_534 grant.

Keywords: myelin basic protein, astrocytes, methyl cycle metabolites, homocysteine, oligodendrocytes

Procedia PDF Downloads 154
11177 Improving Climate Awareness and the Knowledge Related to Climate Change's Health Impacts on Medical Schools

Authors: Abram Zoltan

Abstract:

Over the past hundred years, human activities, particularly the burning of fossil fuels, have released enough carbon dioxide and other greenhouse gases to dissipate additional heat into the lower atmosphere and affect the global climate. Climate change affects many social and environmental determinants of health: clean air, safe drinking water, and adequate food. Our aim is to draw attention to the effects of climate change on the health and health care system. Improving climate awareness and the knowledge related to climate change's health impacts are essential among medical students and practicing medical doctors. Therefore, in their everyday practice, they also need some assistance and up-to-date knowledge of how climate change can endanger human health and deal with these novel health problems. Our activity, based on the cooperation of more universities, aims to develop new curriculum outlines and learning materials on climate change's health impacts for medical schools. Special attention is intended to pay to the possible preventative measures against these impacts. For all of this, the project plans to create new curriculum outlines and learning materials for medical students, elaborate methodological guidelines and create training materials for medical doctors' postgraduate learning programs. The target groups of the project are medical students, educational staff of medical schools and universities, practicing medical doctors with special attention to the general practitioners and family doctors. We had searched various surveys, domestic and international studies about the effects of climate change and statistical estimation of the possible consequences. The health effects of climate change can be measured only approximately by considering only a fraction of the potential health effects and assuming continued economic growth and health progress. We can estimate that climate change is expected to cause about 250,000 more deaths. We conclude that climate change is one of the most serious problems of the 21st century, affecting all populations. In the short- to medium-term, the health effects of climate change will be determined mainly by human vulnerability. In the longer term, the effects depend increasingly on the extent to which transformational action is taken now to reduce emissions. We can contribute to reducing environmental pollution by raising awareness and by educating the population.

Keywords: climate change, health impacts, medical students, education

Procedia PDF Downloads 125
11176 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients

Authors: Soha A. Bahanshal, Byung G. Kim

Abstract:

Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.

Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission

Procedia PDF Downloads 184
11175 Mobile Asthma Action Plan for Adolescent with Asthma: A Systematic Review

Authors: Reisy Tane

Abstract:

Asthma is the common health problems in adolescents. Self-management is one way to improve health status in adolescent with asthma. Mobile technology has the potential to improve self-management in adolescents with asthma. Objective: the aim of this study to determine the effectiveness of using the mobile technology Asthma Action Plan to improve self management. Method: this study is Systematic review approach using PRISM template. The literature search started on first September 2017 by using electronic data Pro Quest and Google Scholars with keywords ‘Mobile AAP’ and ‘Adolescent Asthma’. Results and Conclusion: M-AAP is effective to improve adolescent self-management with asthma because it is easy to use and provide information appropriately. The improvement of self-management in teenagers will enhance the quality of life of adolescents with asthma. The recommendation of this study is the addition of parental control content in the application appropriate with Family Centered Care (FCC) philosophy on pediatric nursing. In addition, it is expected the development of applications for other chronic diseases such as diabetes mellitus and congestive heart failure.

Keywords: asthma, mobile AAP, adolescent, self-management

Procedia PDF Downloads 195
11174 Stream Extraction from 1m-DTM Using ArcGIS

Authors: Jerald Ruta, Ricardo Villar, Jojemar Bantugan, Nycel Barbadillo, Jigg Pelayo

Abstract:

Streams are important in providing water supply for industrial, agricultural and human consumption, In short when there are streams there are lives. Identifying streams are essential since many developed cities are situated in the vicinity of these bodies of water and in flood management, it serves as basin for surface runoff within the area. This study aims to process and generate features from high-resolution digital terrain model (DTM) with 1-meter resolution using Hydrology Tools of ArcGIS. The raster was then filled, processed flow direction and accumulation, then raster calculate and provide stream order, converted to vector, and clearing undesirable features using the ancillary or google earth. In field validation streams were classified whether perennial, intermittent or ephemeral. Results show more than 90% of the extracted feature were accurate in assessment through field validation.

Keywords: digital terrain models, hydrology tools, strahler method, stream classification

Procedia PDF Downloads 267
11173 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)

Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira

Abstract:

Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.

Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina

Procedia PDF Downloads 210
11172 Classification of IoT Traffic Security Attacks Using Deep Learning

Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem

Abstract:

The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.

Keywords: IoT, traffic security, deep learning, classification

Procedia PDF Downloads 151