Search results for: high-strength steel
606 Treatment of Leaden Sludge of Algiers Refinery by Electrooxidation
Authors: K. Ighilahriz, M. Taleb Ahmed, R. Maachi
Abstract:
Oil industries are responsible for most cases of contamination of our ecosystem by oil and heavy metals. They are toxic and considered carcinogenic and dangerous even when they exist in trace amounts. At Algiers refinery, production, transportation, and refining of crude oil generate considerable waste in storage tanks; these residues result from the gravitational settling. The composition of these residues is essentially a mixture of hydrocarbon and lead. We propose in this work the application of electrooxidation treatment for the leachate of the leaden sludge. The effect of pH, current density and the electrolysis time were studied, the effectiveness of the processes is evaluated by measuring the chemical oxygen demand (COD). The dissolution is the best way to mobilize pollutants from leaden mud, so we conducted leaching before starting the electrochemical treatment. The process was carried out in batch mode using graphite anode and a stainless steel cathode. The results clearly demonstrate the compatibility of the technique used with the type of pollution studied. In fact, it allowed COD removal about 80%.Keywords: electrooxidation, leaching, leaden sludge, oil industry
Procedia PDF Downloads 227605 Fuel Properties of Distilled Tire Pyrolytic Oil and Its Blends with Biodiesel and Commercial Diesel Fuel
Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng
Abstract:
Tires are extremely challenging to recycle due to the available chemically cross-linked polymer which constitutes their nature and therefore, they are neither fusible nor soluble and consequently, cannot be remoulded into other shapes without serious degradation. Pyrolysis of tires produces four valuable products namely; char, steel, tire pyrolytic oil (TPO) and non-condensable gases. TPO has been reported to have similar properties to commercial diesel fuel (CDF). In this study, distillation of TPO was carried out in a batch distillation column and biodiesel was produced from waste cooking oil. FTIR analysis proved that TPO can be used as a fuel due to the available compounds detected and GC analysis displayed 94% biodiesel concentration from waste cooking oil. Different blends of TPO/biodiesel, TPO/CDF and biodiesel/CDF were prepared at different ratios. Fuel properties such as viscosity, density, flash point, and calorific value were studied. Viscosity and density models were also studied to measure the quality of different blends.Keywords: biodiesel, distillation, pyrolysis, tire
Procedia PDF Downloads 158604 Numerical Investigation of the Influence on Buckling Behaviour Due to Different Launching Bearings
Authors: Nadine Maier, Martin Mensinger, Enea Tallushi
Abstract:
In general, today, two types of launching bearings are used in the construction of large steel and steel concrete composite bridges. These are sliding rockers and systems with hydraulic bearings. The advantages and disadvantages of the respective systems are under discussion. During incremental launching, the center of the webs of the superstructure is not perfectly in line with the center of the launching bearings due to unavoidable tolerances, which may have an influence on the buckling behavior of the web plates. These imperfections are not considered in the current design against plate buckling, according to DIN EN 1993-1-5. It is therefore investigated whether the design rules have to take into account any eccentricities which occur during incremental launching and also if this depends on the respective launching bearing. Therefore, at the Technical University Munich, large-scale buckling tests were carried out on longitudinally stiffened plates under biaxial stresses with the two different types of launching bearings and eccentric load introduction. Based on the experimental results, a numerical model was validated. Currently, we are evaluating different parameters for both types of launching bearings, such as load introduction length, load eccentricity, the distance between longitudinal stiffeners, the position of the rotation point of the spherical bearing, which are used within the hydraulic bearings, web, and flange thickness and imperfections. The imperfection depends on the geometry of the buckling field and whether local or global buckling occurs. This and also the size of the meshing is taken into account in the numerical calculations of the parametric study. As a geometric imperfection, the scaled first buckling mode is applied. A bilinear material curve is used so that a GMNIA analysis is performed to determine the load capacity. Stresses and displacements are evaluated in different directions, and specific stress ratios are determined at the critical points of the plate at the time of the converging load step. To evaluate the load introduction of the transverse load, the transverse stress concentration is plotted on a defined longitudinal section on the web. In the same way, the rotation of the flange is evaluated in order to show the influence of the different degrees of freedom of the launching bearings under eccentric load introduction and to be able to make an assessment for the case, which is relevant in practice. The input and the output are automatized and depend on the given parameters. Thus we are able to adapt our model to different geometric dimensions and load conditions. The programming is done with the help of APDL and a Python code. This allows us to evaluate and compare more parameters faster. Input and output errors are also avoided. It is, therefore, possible to evaluate a large spectrum of parameters in a short time, which allows a practical evaluation of different parameters for buckling behavior. This paper presents the results of the tests as well as the validation and parameterization of the numerical model and shows the first influences on the buckling behavior under eccentric and multi-axial load introduction.Keywords: buckling behavior, eccentric load introduction, incremental launching, large scale buckling tests, multi axial stress states, parametric numerical modelling
Procedia PDF Downloads 106603 Dynamic Foot Pressure Measurement System Using Optical Sensors
Authors: Tanapon Keatsamarn, Chuchart Pintavirooj
Abstract:
Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library.Keywords: foot, foot pressure, image processing, optical sensors
Procedia PDF Downloads 245602 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process
Authors: S. Ghorbani, N. I. Polushin
Abstract:
The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.Keywords: decision tree forest, GMDH, surface roughness, Taguchi method, turning process
Procedia PDF Downloads 437601 Statistical Analysis of Failure Cases in Aerospace
Authors: J. H. Lv, W. Z. Wang, S.W. Liu
Abstract:
The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures.Keywords: aerospace, disk, failure analysis, fatigue
Procedia PDF Downloads 330600 Semi-automatic Design and Fabrication of Ring-Bell Control by IoT
Authors: Samart Rungjarean, Benchalak Muangmeesri, Dechrit Maneetham
Abstract:
Monks' and Novices' chimes may have some restrictions, such as during the rain when a structure or location chimes or at a certain period. Alternately, certain temple bells may be found atop a tall, difficult-to-reach bell tower. As a result, the concept of designing a brass bell for use with a mobile phone over great distances was proposed. The Internet of Things (IoT) system will be used to regulate the bell by testing each of the three beatings with a wooden head. A stone-beating head and a steel beater. The sound resonates nicely, with the distance and rhythm of the hit contributing to this. An ESP8266 microcontroller is used by the control system to manage its operations and will communicate with the pneumatic system to convey a signal. Additionally, a mobile phone will be used to operate the entire system. In order to precisely direct and regulate the rhythm, There is a resonance of roughly 50 dB for this test, and the operating distance can be adjusted. Timing and accuracy were both good.Keywords: automatic ring-bell, microcontroller, ring-bell, iot
Procedia PDF Downloads 108599 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips
Authors: Djamal Atlaoui, Youcef Bouafia
Abstract:
This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.Keywords: characterization, chips fibers, cracking mode, ductility, undulation, shear
Procedia PDF Downloads 132598 [Keynote Talk]: Determination of the Quality of the Machined Surface Using Fuzzy Logic
Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović
Abstract:
This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.Keywords: fuzzy logic, metal machining, process modeling, surface roughness
Procedia PDF Downloads 158597 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics
Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari
Abstract:
This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.Keywords: axial loading, computational mechanics, energy absorption performance, crashworthiness behavior, deformation mode
Procedia PDF Downloads 439596 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 371595 Airfield Pavements Made of Reinforced Concrete: Dimensioning According to the Theory of Limit States and Eurocode
Abstract:
In the previous airfield construction industry, pavements made of reinforced concrete have been used very rarely; however, the necessity to use this type of pavements in an emergency situations justifies the need reference to this issue. The paper concerns the problem of airfield pavement dimensioning made of reinforced concrete and the evaluation of selected dimensioning methods of reinforced concrete slabs intended for airfield pavements. Analysis of slabs dimensioning, according to classical method of limit states has been performed and it has been compared to results obtained in case of methods complying with Eurocode 2 guidelines. Basis of an analysis was a concrete slab of class C35/45 with reinforcement, located in tension zone. Steel bars of 16.0 mm have been used as slab reinforcement. According to comparative analysis of obtained results, conclusions were reached regarding application legitimacy of the discussed methods and their design advantages.Keywords: rainforced concrete, cement concrete, airport pavements, dimensioning
Procedia PDF Downloads 253594 The Investigation of Cracking on the Shell of Dryers (tag No. 2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC)
Authors: Ali Haghiri
Abstract:
This research has been to investigate the cause of the stress corrosion cracking on dryer equipment (2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC). These dryers are as a drying powder Terphetalic acid in CTA2 and CTA1 unit. After passing through RVF equipment, wet cake moisture content of about 14% and temperature of 90C changed into a dry cake with a moisture content of less than 0.1% and the final temperature of about 140C and sent out Final Silo (FS-1820). After the declaration of the operation department concerning the observation of acid leakage under the primary insulation was decided that at the first opportunity, this issue must be investigated. So, after the shutdown of a unit at the date 2012/10/20 (2DR-1745) and 2021/11/24 (DR-1402) and after washing the dryer wall, insulation around the wall opened and it was found to crack and leakage from some points.Keywords: stress corrosion cracking, residual stress, austenitic stainless steel, Br- ion
Procedia PDF Downloads 160593 The Effect of H2S on Crystal Structure
Authors: C. Venkataraman B. E., J. Nagarajan B. E., V. Srinivasan M. Tech
Abstract:
For a better understanding on sulfide stress corrosion cracking, a theoretical approach based on crystal structure, molecule behavior, flow of electrons and electrochemical reaction is developed. Its impact on different materials such as carbon steel, low alloy, alloy for sour (H2S) environments is studied. This paper describes the theories on various disaster and failures occurred in the industry by Stress Corrosion Cracking (SCC). Parameters such as pH of process fluid, partial pressure of CO2, O2, Chlorine, effect of internal pressure (crystal structure deformation by stress), and external environment condition are considered. An analytical line graph is then created for process fluid parameter verses time, temperature, induced/residual stress due to local pressure build-up. By comparison with the load test result of NACE and ASTM, it is possible to predict and simplify the control of SCC by use of materials like ferritic, Austenitic material in the oil and gas & petroleum industries.Keywords: crystal structure deformation, failure assessment, alloy-environment combination, H2S
Procedia PDF Downloads 400592 Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study
Authors: Riccardo Angiuli, Michele Giannuzzi, Rodolfo Franchi, Gabriele Papadia
Abstract:
Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing.Keywords: machining, infrared thermography, FEM, temperature measurement
Procedia PDF Downloads 183591 Effect of Post Hardening on PVD Coated Tools
Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli
Abstract:
In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing
Procedia PDF Downloads 348590 Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System
Authors: Asad Naeem, Jinkoo Kim
Abstract:
This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces.Keywords: seismic retrofit, spring viscous damper, shaking table test, earthquake resistant structures
Procedia PDF Downloads 176589 Development of Orbital TIG Welding Robot System for the Pipe
Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim
Abstract:
This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).Keywords: adaptive welding, automatic welding, pipe welding, orbital welding, laser vision sensor, LVS, welding D/B
Procedia PDF Downloads 686588 Crushing Behaviour of Thin Tubes with Various Corrugated Sections Using Finite Element Modelling
Authors: Shagil Akhtar, Syed Muneeb Iqbal, Mohammed R. Rahim
Abstract:
Common steel tubes with similar confines were used in simulation of tubes with distinctive type of corrugated sections. These corrugated cross-sections were arc-tangent, triangular, trapezoidal and square corrugated sections. The outcome of fluctuating structures of tube cross-section shape on the deformation feedback, collapse form and energy absorption characteristics of tubes under quasi-static axial compression have been prepared numerically. The finite element package of ANSYS Workbench was applied in the current analysis. The axial load-displacement products accompanied by the fold formation of disparate tubes were inspected and compared. Deviation of the initial peak load and the mean crushing force of the tubes with distinctive cross-sections were conscientiously examined.Keywords: absorbed energy, axial loading, corrugated tubes, finite element, initial peak load, mean crushing force
Procedia PDF Downloads 386587 Behavior of A Vertical Pile Under the Effect of an Inclined Load in Loose Sand
Authors: Fathi Mohamed Abdrabbo, Khaled Esayed Gaaver, Musab Musa Eldooma
Abstract:
This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements of pile head, as well as the deformation profiles along the pile and the pile stiffness, are significantly affected by α. It was observed that the P-Y curves of the pile-soil system are independent of α. Also, the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal load component of the applied load on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile.Keywords: deep foundation, piles, inclined load, pile deformations
Procedia PDF Downloads 147586 Assessment of Mechanical Properties of Induction Furnace Slag as Partial Replacement of Fine Aggregate in Concrete
Authors: Muhammad Javed Bhatti, Tariq Ali, Muazz Ali
Abstract:
Due to growing environmental awareness in Pakistan, the researchers are increasingly turning to assess and analyze properties of industrial waste and finding solutions on using industrial waste as secondary material. Due to industrialization, enormous by-products are produced and to utilize these by-products is the main challenge faced in Pakistan. Induction furnace slag is one of the industrial by-products from the iron and steel making industries. This paper highlights the true utilization of induction furnace slag as partial replacement of fine aggregate. For the experimental investigation, mixes were prepared with fine aggregate replacement using 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent and 40 percent induction furnace slag to evaluate the workability, compaction factor, compressive strength, flexural strength, modulus of elasticity.Keywords: compressive strength, deflection, induction furnace slag, workability
Procedia PDF Downloads 303585 Flame Acceleration of Premixed Natural Gas/Air Explosion in Closed Pipe
Authors: H. Mat Kiah, Rafiziana M. Kasmani, Norazana Ibrahim, Roshafima R. Ali, Aziatul N.Sadikin
Abstract:
An experimental study has been done to investigate the flame acceleration in a closed pipe. A horizontal steel pipe, 2m long and 0.1 m in diameter (L/D of 20), was used in this work. For tests with 90 degree bends, the bend had a radius of 0.1 m and thus, the pipe was lengthened 1 m (based on the centreline length of the segment). Ignition was affected one end of the vessel while the other end was closed. Only stoichiometric concentration (Ф, = 1.0) of natural gas/air mixtures will be reported in this paper. It was demonstrated that bend pipe configuration gave three times higher in maximum over-pressure (5.5 bars) compared to straight pipe (2.0 bars). From the results, the highest flame speed of 63 m s-1 was observed in a gas explosion with bent pipe, greater by a factor of ~3 as compared with straight pipe (23 m s-1). This occurs because bending acts similar to an obstacle, in which this mechanism can induce more turbulence, initiating combustion in an unburned pocket at the corner region and causing a high mass burning rate which increases the flame speed.Keywords: bending, gas explosion, bending, flame acceleration, over-pressure
Procedia PDF Downloads 407584 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel During PIN on Disk Dry Wear Testing
Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed
Abstract:
This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between the contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load while dropped with the increase in ambient temperature. The highest Tdiff was 289°C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400°C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data revealed good agreement.Keywords: pin on disk test, contact temperature, wear, sliding surface, friction, ambient temperature
Procedia PDF Downloads 79583 Centrifuge Modeling of Monopiles Subjected to Lateral Monotonic Loading
Authors: H. R. Khodaei, M. Moradi, A. H. Tajik
Abstract:
The type of foundation commonly used today for berthing dolphins is a set of tubular steel piles with large diameters, which are known as monopiles. The design of these monopiles is based on the theories related with laterally loaded piles. One of the most common methods to analyze and design the piles subjected to lateral loads is the p-y curves. In the present study, centrifuge tests are conducted in order to obtain the p-y curves. Series of tests were designed in order to investigate the scaling laws in the centrifuge for monotonic loading. Also, two important parameters, the embedded depth L of the pile in the soil and free length e of the pile, as well as their ratios were studied via five experimental tests. Finally, the p-y curves of API are presented to be compared with the curves obtained from the tests so that the differences could be demonstrated. The results show that the p-y curves proposed by API highly overestimate the lateral load bearing capacity. It suggests that these curves need correction and modification for each site as the soil conditions change.Keywords: centrifuge modeling, monopile, lateral loading, p-y curves
Procedia PDF Downloads 245582 Efficient Prediction of Surface Roughness Using Box Behnken Design
Authors: Ajay Kumar Sarathe, Abhinay Kumar
Abstract:
Production of quality products required for specific engineering applications is an important issue. The roughness of the surface plays an important role in the quality of the product by using appropriate machining parameters to eliminate wastage due to over machining. To increase the quality of the surface, the optimum machining parameter setting is crucial during the machining operation. The effect of key machining parameters- spindle speed, feed rate, and depth of cut on surface roughness has been evaluated. Experimental work was carried out using High Speed Steel tool and AlSI 1018 as workpiece material. In this study, the predictive model has been developed using Box-Behnken Design. An experimental investigation has been carried out for this work using BBD for three factors and observed that the predictive model of Ra value is closed to predictive value with a marginal error of 2.8648 %. Developed model establishes a correlation between selected key machining parameters that influence the surface roughness in a AISI 1018. FKeywords: ANOVA, BBD, optimisation, response surface methodology
Procedia PDF Downloads 158581 Effect of Hooked-End Steel Fibres Geometry on Pull-Out Behaviour of Ultra-High Performance Concrete
Authors: Sadoon Abdallah, Mizi Fan, Xiangming Zhou
Abstract:
In this study, a comprehensive approach has been adopted to examine in detail the effect of various hook geometries on bond-slip characteristics. Extensive single fibre pull-out tests on ultra-high performance matrix with three different W/B ratios and embedded lengths have been carried out. Test results showed that the mechanical deformation of fibre hook is the main mechanism governing the pull-out behaviour. Furthermore, the quantitative analyses have been completed to compare the hook design contribution of 3D, 4D and 5D fibres to assess overall pull-out behaviour. It was also revealed that there is a strong relationship between the magnitude of hook contribution and W/B ratio (i.e. matrix strength). Reducing the W/B ratio from 0.20 to 0.11 greatly optimizes the interfacial transition zone (ITZ) and enables better mobilization, straightening of the hook and results in bond-slip-hardening behaviour.Keywords: bobond mechanisms, fibre-matrix interface, hook geometry, pullout behaviour and water to binder ratio
Procedia PDF Downloads 385580 The Nonlinear Research on Rotational Stiffness of Cuplock Joint
Authors: Liuyu Zhang, Di Mo, Qiang Yan, Min Liu
Abstract:
As the important equipment in the construction field, cuplock scaffold plays an important role in the construction process. As a scaffold connecting member, cuplock joint is of great importance. In order to explore the rotational stiffness nonlinear characteristics changing features of different structural forms of cuplock joint in different tightening torque condition under different conditions of load, ANSYS is used to establish four kinds of cuplock joint models with different forces to simulate the real force situation. By setting the different load conditions which means the cuplock is loaded at a certain distance from the cuplock joint in a certain direction until the cuplock is damaged and considering the gap between the cross bar joint and the vertical bar, the differences in the influence of the structural form and tightening torque on the rotation stiffness of the cuplock under different load conditions are compared. It is significantly important to improve the accuracy of calculating bearing capacity and stability of the cuplock steel pipe scaffold.Keywords: cuplock joint, highway tunnel, non-linear characteristics, rotational stiffness, scaffold stability, theoretical analysis
Procedia PDF Downloads 120579 Study on Connecting Method of Box Pontoons
Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee
Abstract:
Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.Keywords: connection, floating container terminal, pontoon, pre-stressing, shear key
Procedia PDF Downloads 317578 New Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading
Authors: Amar Sabih, James Nemes
Abstract:
The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a new workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion.Keywords: adiabatic sher band, ductile failure, stress instability, workability criterion
Procedia PDF Downloads 90577 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete
Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews
Abstract:
In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).Keywords: debonding, fibre reinforced polymers (FRP), pull-out test, stepwise regression analysis
Procedia PDF Downloads 246