Search results for: energy dissipation coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10338

Search results for: energy dissipation coefficient

9228 A Review of Tribological Excellence of Bronze Alloys

Authors: Ram Dhani chauhan

Abstract:

Tribology is a term that was developed from the Greek words ‘tribos’ (rubbing) and ‘logy’ (knowledge). In other words, a study of wear, friction and lubrication of material is known as Tribology. In groundwater irrigation, the life of submersible pump components like impeller, bush and wear ring will depend upon the wear and corrosion resistance of casted material. Leaded tin bronze (LTB) is an easily castable material with good mechanical properties and tribological behaviour and is utilised in submersible pumps at large. It has been investigated that, as Sn content increases from 4-8 wt. % in LTB alloys, the hardness of the alloys increases and the wear rate decreases. Similarly, a composite of copper with 3% wt. Graphite (threshold limit of mix) has a lower COF (coefficient of friction) and the lowest wear rate. In LTB alloys, in the initial low-speed range, wear increases and in the higher range, it was found that wear rate decreases.

Keywords: coefficent of friction, coefficient of wear, tribology, leaded tin bronze

Procedia PDF Downloads 11
9227 Energy Harvesting with Zinc Oxide Based Nanogenerator: Design and Simulation Using Comsol-4.3 Software

Authors: Akanksha Rohit, Ujjwala Godavarthi, Anshua Mukherjee

Abstract:

Nanotechnology is one of the promising sustainable solutions in the era of miniaturization due to its multidisciplinary nature. The most interesting aspect about nanotechnology is its wide ranging applications from electronics to military and biomedical. It tries to connect individuals more closely to the environment. In this paper, concept of parasitic energy harvesting is used in designing nanogenerators using COMSOL 4.3 software. The output of the nanogenerator is optimized using following constraints: ease of availability of the material, fabrication process and cost of the material. The nanogenerator is optimized using ZnO based nanowires, PMMA as insulator and aluminum and silicon as metal electrodes. The energy harvested from the model can be used to power nanobots, several other biomedical sensors and eventually to replace batteries. Thus, advancements in this field can be very challenging but it is the future of the nano era.

Keywords: zinc oxide, piezoelectric, PMMA, parasitic energy harvesting, renewable energy engineering

Procedia PDF Downloads 361
9226 Banks' Financial Performance in Pakistan from 2012-2015

Authors: Saima Akbar

Abstract:

The global financial crisis severely and adversely impacted the Pakistanis’ financial setups with far-reaching consequences for its victims. This study aimed to analyze the various determinants of the banks’ financial performance in Pakistan. The stepwise multiple regression analysis and pre-post analysis were carried out in this regard by using SPSS ver 22. The study found that the assets quality is the most influential determinant of return over assets followed by bank size and solvency. Advances, liquidity, investments, and size have positive while poor assets quality and deposits have a negative impact on the return over assets. The comparison of the pre-crisis and post-crisis coefficient values of the independent variables revealed that the global financial crisis had exerted a significant impact on the relative ability of the financial performance determinants to explain variations in return over assets.

Keywords: pre-crisis, post-crisis, coefficient values, determinants

Procedia PDF Downloads 273
9225 Rapid, Label-Free, Direct Detection and Quantification of Escherichia coli Bacteria Using Nonlinear Acoustic Aptasensor

Authors: Shilpa Khobragade, Carlos Da Silva Granja, Niklas Sandström, Igor Efimov, Victor P. Ostanin, Wouter van der Wijngaart, David Klenerman, Sourav K. Ghosh

Abstract:

Rapid, label-free and direct detection of pathogenic bacteria is critical for the prevention of disease outbreaks. This paper for the first time attempts to probe the nonlinear acoustic response of quartz crystal resonator (QCR) functionalized with specific DNA aptamers for direct detection and quantification of viable E. coli KCTC 2571 bacteria. DNA aptamers were immobilized through biotin and streptavidin conjugation, onto the gold surface of QCR to capture the target bacteria and the detection was accomplished by shift in amplitude of the peak 3f signal (3 times the drive frequency) upon binding, when driven near fundamental resonance frequency. The developed nonlinear acoustic aptasensor system demonstrated better reliability than conventional resonance frequency shift and energy dissipation monitoring that were recorded simultaneously. This sensing system could directly detect 10⁽⁵⁾ cells/mL target bacteria within 30 min or less and had high specificity towards E. coli KCTC 2571 bacteria as compared to the same concentration of S.typhi bacteria. Aptasensor response was observed for the bacterial suspensions ranging from 10⁽⁵⁾-10⁽⁸⁾ cells/mL. Conclusively, this nonlinear acoustic aptasensor is simple to use, gives real-time output, cost-effective and has the potential for rapid, specific, label-free direction detection of bacteria.

Keywords: acoustic, aptasensor, detection, nonlinear

Procedia PDF Downloads 560
9224 [Keynote Talk]: Quest for Sustainability in the Midst of Conflict Between Climate and Energy Security

Authors: Deepak L. Waikar

Abstract:

Unprecedented natural as well as human made disasters have been responsible for loss of hundreds of thousands of lives, injury & displacement of millions of people and damages in billions of dollars in various parts of the world. Scientists, experts, associations and united nation have been warning about colossal disregard for human safety and environment in exploiting natural resources for insatiable greed for economic growth and rising lavish life style of the rich. Usual blame game is routinely played at international forums & summits by vested interests in developing and developed nations, while billions of people continue to suffer in abject energy poverty. Energy security, on the other hand, is becoming illusive with the dominance of few players in the market, poor energy governance mechanisms, volatile prices and geopolitical conflicts in supply chain. Conflicting scenarios have been cited as one of the major barriers for transformation to a low carbon economy. Policy makers, researchers, academics, businesses, industries and communities have been evaluating sustainable alternatives, albeit at snail’s pace. This presentation focuses on technologies, energy governance, policies & practices, economics and public concerns about safe, prudent & sustainable harnessing of energy resources. Current trends and potential research & development projects in power & energy sectors which students can undertake will be discussed. Speaker will highlight on how youths can be engaged in meaningful, safe, enriching, inspiring and value added self-development programmes in our quest for sustainability in the midst of conflict between climate and energy security.

Keywords: clean energy, energy policy, energy security, sustainable energy

Procedia PDF Downloads 485
9223 Addressing Coastal Community Vulnerabilities with Alternative Marine Energy Projects

Authors: Danielle Preziuso, Kamila Kazimierczuk, Annalise Stein, Bethel Tarekegne

Abstract:

Coastal communities experience a variety of distinct socioeconomic, technical, and environmental vulnerabilities, all of which accrue heightened risk with increasingly frequent and severe climate change impacts. Marine renewable energy (MRE) offers a potential solution for mitigating coastal community vulnerabilities, especially water-energy dependencies while delivering promising co-benefits such as increased resilience and more sustainable energy outcomes. This paper explores coastal community vulnerabilities and service dependencies based on the local drivers that create them, with attention to climate change impacts and how they catalyze water-energy unmet needs in these communities. We examine the vulnerabilities through the lens of coastal Tribal communities (i.e., the Makah Tribe, the Kenaitze Tribe, Quinault Nation), as indigenous communities often face compounded impacts of technical, economic, and environmental vulnerabilities due to their underlying socio-demographic inequalities. We offer an environmental and energy justice indicators framework to understand how these vulnerabilities disproportionately manifest and impact the most vulnerable community members, and we subsequently utilize the framework to inform a weighted decision matrix tool that compares the viability of MRE-based alternative energy futures in addressing these vulnerabilities. The framework and complementary tool highlight opportunities for future MRE research and pilot demonstrations that directly respond to the vulnerabilities of coastal communities.

Keywords: coastal communities, decision matrix, energy equity, energy vulnerability, marine energy, service dependency

Procedia PDF Downloads 73
9222 Useful Effects of Silica Nanoparticles in Ionic Liquid Electrolyte for Energy Storage

Authors: Dong Won Kim, Hye Ji Kim, Hyun Young Jung

Abstract:

Improved energy storage is inevitably needed to improve energy efficiency and to be environmentally friendly to chemical processes. Ionic liquids (ILs) can play a crucial role in addressing these needs due to inherent adjustable properties including low volatility, low flammability, inherent conductivity, wide liquid range, broad electrochemical window, high thermal stability, and recyclability. Here, binary mixtures of ILs were prepared with fumed silica nanoparticles and characterized to obtain ILs with conductivity and electrochemical properties optimized for use in energy storage devices. The solutes were prepared by varying the size and the weight percent concentration of the nanoparticles and made up 10 % of the binary mixture by weight. We report on the physical and electrochemical properties of the individual ILs and their binary mixtures.

Keywords: ionic liquid, silica nanoparticle, energy storage, electrochemical properties

Procedia PDF Downloads 210
9221 Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators

Authors: A. Kianifar, M. Afzali, I. Pishbin

Abstract:

In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency.

Keywords: concentrator thermoelectric generator, CTEG, solar energy, thermoelectric cells

Procedia PDF Downloads 298
9220 Global Developmental Delay and Its Association with Risk Factors: Validation by Structural Equation Modelling

Authors: Bavneet Kaur Sidhu, Manoj Tiwari

Abstract:

Global Developmental Delay (GDD) is a common pediatric condition. Etiologies of GDD might, however, differ in developing countries. In the last decade, sporadic families are being reported in various countries. As to the author’s best knowledge, many risk factors and their correlation with the prevalence of GDD have been studied but its statistical correlation has not been done. Thus we propose the present study by targeting the risk factor, prevalence and their statistical correlation with GDD. FMR1 gene was studied to confirm the disease and its penetrance. A complete questionnaire-based performance was designed for the statistical studies having a personal, past and present medical history along with their socio-economic status as well. Methods: We distributed the children’s age in 4 different age groups having 5-year intervals and applied structural equation modeling (SEM) techniques, Spearman’s rank correlation coefficient, Karl Pearson correlation coefficient, and chi-square test.Result: A total of 1100 families were enrolled for this study; among them, 330 were clinically and biologically confirmed (radiological studies) for the disease, 204 were males (61.8%), 126 were females (38.18%). We found that 27.87% were genetic and 72.12 were sporadic, out of 72.12 %, 43.277% cases from urban and 56.72% from the rural locality, the mothers' literacy rate was 32.12% and working women numbers were 41.21%. Conclusions: There is a significant association between mothers' age and GDD prevalence, which is also followed by mothers' literacy rate and mothers' occupation, whereas there was no association between fathers' age and GDD.

Keywords: global developmental delay, FMR1 gene, spearman’ rank correlation coefficient, structural equation modeling

Procedia PDF Downloads 129
9219 A Study on the Application of Accelerated Life Test to Electric Motor for Machine Tools

Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim

Abstract:

This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out, and it is compared with the life expectancy by finite element method (FEM) and bearing theory.

Keywords: acceleration coefficient, bearing, HALT, life expectancy, motor

Procedia PDF Downloads 276
9218 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 55
9217 Piezoelectric Approach on Harvesting Acoustic Energy

Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap

Abstract:

An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.

Keywords: piezoelectric, acoustic, energy harvester

Procedia PDF Downloads 279
9216 Sizing Residential Solar Power Systems Based on Site-Specific Energy Statistics

Authors: Maria Arechavaleta, Mark Halpin

Abstract:

In the United States, costs of solar energy systems have declined to the point that they are viable options for most consumers. However, there are no consistent procedures for specifying sufficient systems. The factors that must be considered are energy consumption, potential solar energy production, and cost. The traditional method of specifying solar energy systems is based on assumed daily levels of available solar energy and average amounts of daily energy consumption. The mismatches between energy production and consumption are usually mitigated using battery energy storage systems, and energy use is curtailed when necessary. The main consumer decision question that drives the total system cost is how much unserved (or curtailed) energy is acceptable? Of course additional solar conversion equipment can be installed to provide greater peak energy production and extra energy storage capability can be added to mitigate longer lasting low solar energy production periods. Each option increases total cost and provides a benefit which is difficult to quantify accurately. An approach to quantify the cost-benefit of adding additional resources, either production or storage or both, based on the statistical concepts of loss-of-energy probability and expected unserved energy, is presented in this paper. Relatively simple calculations, based on site-specific energy availability and consumption data, can be used to show the value of each additional increment of production or storage. With this incremental benefit-cost information, consumers can select the best overall performance combination for their application at a cost they are comfortable paying. The approach is based on a statistical analysis of energy consumption and production characteristics over time. The characteristics are in the forms of curves with each point on the curve representing an energy consumption or production value over a period of time; a one-minute period is used for the work in this paper. These curves are measured at the consumer location under the conditions that exist at the site and the duration of the measurements is a minimum of one week. While greater accuracy could be obtained with longer recording periods, the examples in this paper are based on a single week for demonstration purposes. The weekly consumption and production curves are overlaid on each other and the mismatches are used to size the battery energy storage system. Loss-of-energy probability and expected unserved energy indices are calculated in addition to the total system cost. These indices allow the consumer to recognize and quantify the benefit (probably a reduction in energy consumption curtailment) available for a given increase in cost. Consumers can then make informed decisions that are accurate for their location and conditions and which are consistent with their available funds.

Keywords: battery energy storage systems, loss of load probability, residential renewable energy, solar energy systems

Procedia PDF Downloads 231
9215 Integrated Modeling of Transformation of Electricity and Transportation Sectors: A Case Study of Australia

Authors: T. Aboumahboub, R. Brecha, H. B. Shrestha, U. F. Hutfilter, A. Geiges, W. Hare, M. Schaeffer, L. Welder, M. Gidden

Abstract:

The proposed stringent mitigation targets require an immediate start for a drastic transformation of the whole energy system. The current Australian energy system is mainly centralized and fossil fuel-based in most states with coal and gas-fired plants dominating the total produced electricity over the recent past. On the other hand, the country is characterized by a huge, untapped renewable potential, where wind and solar energy could play a key role in the decarbonization of the Australia’s future energy system. However, integrating high shares of such variable renewable energy sources (VRES) challenges the power system considerably due to their temporal fluctuations and geographical dispersion. This raises the concerns about flexibility gap in the system to ensure the security of supply with increasing shares of such intermittent sources. One main flexibility dimension to facilitate system integration of high shares of VRES is to increase the cross-sectoral integration through coupling of electricity to other energy sectors alongside the decarbonization of the power sector and reinforcement of the transmission grid. This paper applies a multi-sectoral energy system optimization model for Australia. We investigate the cost-optimal configuration of a renewable-based Australian energy system and its transformation pathway in line with the ambitious range of proposed climate change mitigation targets. We particularly analyse the implications of linking the electricity and transport sectors in a prospective, highly renewable Australian energy system.

Keywords: decarbonization, energy system modelling, renewable energy, sector coupling

Procedia PDF Downloads 128
9214 Impact of Air Flow Structure on Distinct Shape of Differential Pressure Devices

Authors: A. Bertašienė

Abstract:

Energy harvesting from any structure makes a challenge. Different structure of air/wind flows in industrial, environmental and residential applications emerge the real flow investigation in detail. Many of the application fields are hardly achievable to the detailed description due to the lack of up-to-date statistical data analysis. In situ measurements aim crucial investments thus the simulation methods come to implement structural analysis of the flows. Different configurations of testing environment give an overview how important is the simple structure of field in limited area on efficiency of the system operation and the energy output. Several configurations of modeled working sections in air flow test facility was implemented in CFD ANSYS environment to compare experimentally and numerically air flow development stages and forms that make effects on efficiency of devices and processes. Effective form and amount of these flows under different geometry cases define the manner of instruments/devices that measure fluid flow parameters for effective operation of any system and emission flows to define. Different fluid flow regimes were examined to show the impact of fluctuations on the development of the whole volume of the flow in specific environment. The obtained results rise the discussion on how these simulated flow fields are similar to real application ones. Experimental results have some discrepancies from simulation ones due to the models implemented to fluid flow analysis in initial stage, not developed one and due to the difficulties of models to cover transitional regimes. Recommendations are essential for energy harvesting systems in both, indoor and outdoor cases. Further investigations aim to be shifted to experimental analysis of flow under laboratory conditions using state-of-the-art techniques as flow visualization tool and later on to in situ situations that is complicated, cost and time consuming study.

Keywords: fluid flow, initial region, tube coefficient, distinct shape

Procedia PDF Downloads 334
9213 Multi-Criteria Evaluation of Integrated Renewable Energy Systems for Community-Scale Applications

Authors: Kuanrong Qiu, Sebnem Madrali, Evgueniy Entchev

Abstract:

To achieve the satisfactory objectives in deploying integrated renewable energy systems, it is crucial to consider all the related parameters affecting the design and decision-making. The multi-criteria evaluation method is a reliable and efficient tool for achieving the most appropriate solution. The approach considers the influential factors and their relative importance in prioritizing the alternatives. In this paper, a multi-criteria decision framework, based on the criteria including technical, economic, environmental and reliability, is developed to evaluate and prioritize renewable energy technologies and configurations of their integrated systems for community applications, identify their viability, and thus support the adoption of the clean energy technologies and the decision-making regarding energy transitions and transition patterns. Case studies for communities in Canada show that resource availability and the configurations of the integrated systems significantly impact the economic performance and environmental performance.

Keywords: multi-criteria, renewables, integrated energy systems, decision-making, model

Procedia PDF Downloads 91
9212 Green Bonds as a Financing Mechanism for Energy Transition in Emerging Markets: The Case of Morocco

Authors: Abdelhamid Nechad, Ahmed Maghni, Khaoula Zahir

Abstract:

Energy transition is one of Morocco's key sustainable development issues and is at the heart of the 2030 National Sustainable Development Strategy. On the one hand, it reflects the Moroccan government's determination to reduce the negative impact of energy consumption on the environment, and on the other, its determination to rely essentially on renewable energies to meet its energy needs. With this in mind, several tools are being implemented, including green bonds designed to finance projects with a high environmental or climate impact. Thus, since 2015, several green bonds have been issued for a cumulative total of $0.4 Billion . This article aims to examine the impact of green bonds on Morocco's energy transition. Through the Granger causality and cointegration test, this article examines the existence of a short- and long-term causal relationship between green bond issuance and investment in renewable energy projects on the one hand, and between green bond issuance and CO₂ emission reductions on the other. The results suggest that there is no short-term causal relationship between green bond issuance and renewable energy investments on one hand and CO₂ emissions reduction on the other hand. However, in the long run, there is a relationship between green bond issuance and CO₂ emissions reduction in Morocco.

Keywords: climate impact, CO₂ emissions, energy transition, green bonds, Morocco

Procedia PDF Downloads 4
9211 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation

Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo

Abstract:

This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.

Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology

Procedia PDF Downloads 70
9210 A Combinatorial Representation for the Invariant Measure of Diffusion Processes on Metric Graphs

Authors: Michele Aleandri, Matteo Colangeli, Davide Gabrielli

Abstract:

We study a generalization to a continuous setting of the classical Markov chain tree theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique invariant measure has an atomic component on the vertices and an absolutely continuous part on the edges. We show that the corresponding density at x can be represented by a normalized superposition of the weights associated to metric arborescences oriented toward the point x. A metric arborescence is a metric tree oriented towards its root. The weight of each oriented metric arborescence is obtained by the product of the exponential of integrals of the form ∫a/b², where b is the drift and σ² is the diffusion coefficient, along the oriented edges, for a weight for each node determined by the local orientation of the arborescence around the node and for the inverse of the diffusion coefficient at x. The metric arborescences are obtained by cutting the original metric graph along some edges.

Keywords: diffusion processes, metric graphs, invariant measure, reversibility

Procedia PDF Downloads 169
9209 Loss Analysis by Loading Conditions of Distribution Transformers

Authors: A. Bozkurt, C. Kocatepe, R. Yumurtaci, İ. C. Tastan, G. Tulun

Abstract:

Efficient use of energy, with the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system were analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.

Keywords: distribution system, distribution transformer, power cable, technical losses

Procedia PDF Downloads 643
9208 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow

Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani

Abstract:

Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200, in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.

Keywords: nanofluid, heat transfer, unsteady flow, forced convection, cross-flow

Procedia PDF Downloads 392
9207 High Performance Methyl Orange Capture on Magnetic Nanoporous MCM-41 Prepared by Incipient Wetness Impregnation Method

Authors: Talib M. Albayati, Omar S. Mahdy, Ghanim M. Alwan

Abstract:

This work is aimed to prepare magnetic nanoporous material Fe/MCM-41 and study its Physical characterization in order to enhance the magnetic properties for study the operating conditions on separation efficiency of methyl orange (MO) from wastewater by adsorption process. The experimental results are analysed to select the best operating conditions for different studied parameters which were obtained for both adsorbents mesoporous material samples MCM-41 and magnetic Fe/MCM-41 as follow: constant temperature (20 ºC), pH: (2) adsorbent dosage (0.03 gm), contact time (10 minute) and concentrations (30 mg/L). The results are demonstrated that the adsorption processes can be well fitted by the Langmuir isotherm model for pure MCM-41 with a higher correlation coefficient (0.999) and fitted by the freundlich isotherm model for magnetic Fe/MCM-41 with a higher correlation coefficient of (0.994).

Keywords: adsorption, nanoporous materials, mcm-41, magnetic material, wastewater, orange, wastewater

Procedia PDF Downloads 388
9206 Variations in Wood Traits across Major Gymnosperm and Angiosperm Tree Species and the Driving Factors in China

Authors: Meixia Zhang, Chengjun Ji, Wenxuan Han

Abstract:

Many wood traits are important functional attributes for tree species, connected with resource competition among species, community dynamics, and ecosystem functions. Large variations in these traits exist among taxonomic categories, but variation in these traits between gymnosperms and angiosperms is still poorly documented. This paper explores the systematic differences in 12 traits between the two tree categories and the potential effects of environmental factors and life form. Based on a database of wood traits for major gymnosperm and angiosperm tree species across China, the values of 12 wood traits and their driving factors in gymnosperms vs. angiosperms were compared. The results are summarized below: i) Means of wood traits were all significantly lower in gymnosperms than in angiosperms. ii) Air-dried density (ADD) and tangential shrinkage coefficient (TSC) reflect the basic information of wood traits for gymnosperms, while ADD and radial shrinkage coefficient (RSC) represent those for angiosperms, providing higher explanation power when used as the evaluation index of wood traits. iii) For both gymnosperm and angiosperm species, life form exhibits the largest explanation rate for large-scale spatial patterns of ADD, TSC (RSC), climatic factors the next, and edaphic factors have the least effect, suggesting that life form is the dominant factor controlling spatial patterns of wood traits. Variations in the magnitude and key traits between gymnosperms and angiosperms and the same dominant factors might indicate the evolutionary divergence and convergence in key functional traits among woody plants.

Keywords: allometry, functional traits, phylogeny, shrinkage coefficient, wood density

Procedia PDF Downloads 271
9205 Passive Retrofitting Strategies for Windows in Hot and Humid Climate Vijayawada

Authors: Monica Anumula

Abstract:

Nowadays human beings attain comfort zone artificially for heating, cooling and lighting the spaces they live, and their main importance is given to aesthetics of building and they are not designed to protect themselves from climate. They depend on artificial sources of energy resulting in energy wastage. In order to reduce the amount of energy being spent in the construction industry and Energy Package goals by 2020, new ways of constructing houses is required. The larger part of energy consumption of a building is directly related to architectural aspects hence nature has to be integrated into the building design to attain comfort zone and reduce the dependency on artificial source of energy. The research is to develop bioclimatic design strategies and techniques for the walls and roofs of Vijayawada houses. Study and analysis of design strategies and techniques of various cases like Kerala, Mangalore etc. for similar kind of climate is examined in this paper. Understanding the vernacular architecture and modern techniques of that various cases and implementing in the housing of Vijayawada not only decreases energy consumption but also enhances socio cultural values of Vijayawada. This study focuses on the comparison of vernacular techniques and modern building bio climatic strategies to attain thermal comfort and energy reduction in hot and humid climate. This research provides further thinking of new strategies which include both vernacular and modern bioclimatic techniques.

Keywords: bioclimatic design, energy consumption, hot and humid climates, thermal comfort

Procedia PDF Downloads 175
9204 Antecedent and Outcome of New Product Development in Leather Industry, Bangkok and Vicinity, Thailand

Authors: Bundit Pungnirund

Abstract:

The purposes of this research were to develop and to monitor the antecedent factors which directly affected the success rate of new product development. This was a case study of the leather industry in Bangkok, Thailand. A total of 350 leather factories were used as a sample group. The findings revealed that the new product development model was harmonized with the empirical data at the acceptable level, the statistic values are: x^2=6.45, df= 7, p-value = .48856; RMSEA = .000; RMR = .0029; AGFI = .98; GFI = 1.00. The independent variable that directly influenced the dependent variable at the highest level was marketing outcome which had a influence coefficient at 0.32 and the independent variables that indirectly influenced the dependent variables at the highest level was a clear organization policy which had a influence coefficient at 0.17, whereas, all independent variables can predict the model at 48 percent.

Keywords: antecedent, new product development, leather industry, Thailand

Procedia PDF Downloads 296
9203 Development of Solar Energy Resources for Land along the Transportation Infrastructure: Taking the Lan-Xin Railway in the Silk Road Economic Belt as an Example

Authors: Dan Han, Yukun Zhang, Jie Zheng, Rui Zhang

Abstract:

Making full use of space along transportation infrastructure to develop renewable energy sources, especially solar energy resources, has become a research focus in relevant fields. In recent years, relevant international researches can be classified into three stages of theoretical and technical exploration, exploratory practice as well as planning implementation. Compared with traditional solar energy development mode, the development of solar energy resources in places along the transportation infrastructure has special advantages, which can also bring forth new opportunities for the development of green transportation. 'Road Integrated Photovoltaic', a development model of combining transport and new energy, has been actively studied and applied in developed countries, but it was still in its infancy in China. 'New Silk Road Economic Belt' has great advantage to carry out the 'Road Integrated Photovoltaic' because of the rich solar energy resources in its path, the shortages of renewable energy, the constraints of agricultural land and other reasons. Especially the massive amount of construction of transportation infrastructure brought by Silk Road Economic Belt, large area of developable land along the transportation line will be generated. Abundant solar energy recourses along the Silk Road will provide extremely superb practical opportunities to the land development along transportation infrastructure. We take PVsyst, GIS and Google map software for simulation of its potential by taking Lan-Xin Railway as an example, so potential electrical energy generation can be quantified and further analyzed. Research of 'New Silk Road Economic Belt' combined with 'Road Integrated Photovoltaic' is a creative development for the along transport and energy infrastructure. It not only can make full use of solar radiation and land in its path, but also bring more long-term advantages and benefits.

Keywords: land use, silk road economic belt, solar energy, transportation infrastructure

Procedia PDF Downloads 237
9202 Clean Energy and Free Trade: Redefining 'Like Products' to Account for Climate Change

Authors: M. Barsa

Abstract:

This paper argues that current jurisprudence under the Dormant Commerce Clause of the United States Constitution and the WTO should be altered to allow states to more freely foster clean energy production. In particular, free trade regimes typically prevent states from discriminating against 'like' products, and whether these products are considered 'like' is typically measured by how they appear to the consumer. This makes it challenging for states to discriminate in favor of clean energy, such as low-carbon fuels. However, this paper points out that certain courts in the US—and decisions of the WTO—have already begun taking into account how a product is manufactured in order to determine whether a state may discriminate against it. There are also compelling reasons for states to discriminate against energy sources with high carbon footprints in order to allow those states to protect themselves against climate change. In other words, fuel sources with high and low carbon footprints are not, in fact, 'like' products, and courts should more freely recognize this in order to foster clean energy production.

Keywords: clean energy, climate change, discrimination, free trade

Procedia PDF Downloads 119
9201 On the Effectiveness of Electricity Market Development Strategies: A Target Model for a Developing Country

Authors: Ezgi Avci-Surucu, Doganbey Akgul

Abstract:

Turkey’s energy reforms has achieved energy security through a variety of interlinked measures including electricity, gas, renewable energy and energy efficiency legislation; the establishment of an energy sector regulatory authority; energy price reform; the creation of a functional electricity market; restructuring of state-owned energy enterprises; and private sector participation through privatization and new investment. However, current strategies, namely; “Electricity Sector Reform and Privatization Strategy” and “Electricity Market and Supply Security Strategy” has been criticized for various aspects. The present paper analyzes the implementation of the aforementioned strategies in the framework of generation scheduling, transmission constraints, bidding structure and general aspects; and argues the deficiencies of current strategies which decelerates power investments and creates uncertainties. We conclude by policy suggestions to eliminate these deficiencies in terms of price and risk management, infrastructure, customer focused regulations and systematic market development.

Keywords: electricity markets, risk management, regulations, balancing and settlement, bilateral trading, generation scheduling, bidding structure

Procedia PDF Downloads 549
9200 Transnational Rurality: Bridging Two Towns with Renewable Energy

Authors: Yaprak Aydin

Abstract:

The rural is no longer a space of only agricultural activities that gave into the global market demands; or an idyll to return after retirement; or only a reservoir of cultural values, but rather a vision to redefine the future in terms of production and consumption relations. Gulpınar in Turkey and Ashtarak in Armenia are two towns where a new ground of dialogue between two communities has been initiated: ‘energy democracy’, which is a significant driving force in a sense of gathering people of two historically conflicted communities around common future concerns; and in a sense of transforming the accepted knowledge on the rurality and all the social structures it represents. This paper seeks to provoke a discussion of to what extent such a rurality is attainable by contextualizing – through visits and meetings in person – two towns and two communities within a renewable energy project called 'Under the Same Sun' carried out by two local civil society organizations together at two public spaces.

Keywords: civil society, energy democracy, prosumer communities, renewable energy, transnational rurality

Procedia PDF Downloads 144
9199 A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery

Authors: Moiz Masood Syed, Seong-Jun Hong, Geun-Hie Rim, Kyung-Ae Cho, Hyoung-Suk Kim

Abstract:

In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system.

Keywords: energy storage system, photovoltaic, DC/DC converter, DC/AC inverter

Procedia PDF Downloads 635