Search results for: artificial teacher
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3457

Search results for: artificial teacher

2347 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms

Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama

Abstract:

Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.

Keywords: machine learning, ChatGPT, education, learning, implications

Procedia PDF Downloads 230
2346 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide

Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović

Abstract:

Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.

Keywords: ANN regression, GC/MS, Satureja montana, terpenes

Procedia PDF Downloads 451
2345 Beyond Rhetoric and Buzzword, Policies and Politics: Towards Practical Institutional Involvement in Science and Technology Teacher Education Programmes for Sustainable Development

Authors: Alvin Uchenna Ugwu

Abstract:

The United Nation’s 2030 agenda and Global Action Programme (GAP) for implementation of the Sustainable Development Goals (SDGs), has mandated all sectors in the societies, including education, to develop strategies towards actualizing sustainability in all facets of the society, by the year 2030. Education is no doubt a key tool for social change. However, educational institutions in most African nations need a paradigmatic shift to strike a balance between policies (curricular) and practices, with regards to Education for Sustainable Development (ESD). The paradigm shift in this regard is described as whole-institution/school approach. The whole institution approaches advocate action-focused ESD. In other words, ESD policy and curriculum makers, formal and non-formal education institutions, need to ‘practice what they preach’. This paper is developed from an ongoing study carried out by the author and guided by two research questions: -What are the views of intermediate phase science and technology preservice teachers on the ESD content included in the science and technology modules? -What challenges or enable intermediate phase science and technology pre-service teachers to learn about ESD in science and technology modules? The study drew from the views and experiences of preservice science teachers, learning about ESD in a university’s college of education in South Africa. Using qualitative case study research design, the research data were generated via questionnaires and focus group discussions. Analysis of generated data indicates that universities and institutions of higher learning need to demonstrate practical involvement while implementing ESD in societies, rather than just standing as knowledge media. Findings of the study further suggest that natural sciences and technology courses in teacher education programmes and other institutions of higher learning, should be perceived as key transformative tools in shaping the consciousness of students towards integrating and fostering ESD in developing countries such as South Africa. Thus, this paper seeks to promote ‘Whole Institution Involvement’ in teacher education colleges in South Africa, as a measure of improving ESD in higher education settings. The paper suggests that in order to achieve ESD in higher education settings and beyond, policies and practices should be reexamined beyond rhetoric and buzzwords. The paper further argues that implementation of ESD is largely influenced by context, hence two different contexts should be examined empirically.

Keywords: education for sustainable development, higher education institutions, pre-service science teachers, qualitative case study research, whole institution involvement

Procedia PDF Downloads 172
2344 Adult Learners’ Code-Switching in the EFL Classroom: An Analysis of Frequency and Type of Code-Switching

Authors: Elizabeth Patricia Beck

Abstract:

Stepping into various English as foreign language classrooms, one will see some fundamental similarities. There will likely be groups of students working collaboratively, possibly sitting at tables together. They will be using a set coursebook or photocopies of materials developed by publishers or the teacher. The teacher will be carefully monitoring students’ behaviour and progress. The teacher will also likely be insisting that the students only speak English together, possibly having implemented a complex penalty and award systems to encourage this. This is communicative language teaching and it is commonly how foreign languages are taught around the world. Recently, there has been much interest in the codeswitching behaviour of learners in foreign or second language classrooms. It is a significant topic as it relates to second language acquisition theory, language teaching training and policy, and student expectations and classroom practice. Generally in an English as a foreign language context, an ‘English Only’ policy is the norm. This is based on historical factors, socio-political influence and theories surrounding language learning. The trend, however, is shifting and, based on these same factors, a re-examination of language use in the foreign language classroom is taking place. This paper reports the findings of an examination into the codeswitching behaviour of learners with a shared native language in an English classroom. Specifically, it addresses the question of classroom code-switching by adult learners in the EFL classroom during student-to-student, spoken interaction. Three generic categories of code switching are proposed based on published research and classroom practice. Italian adult learners at three levels were observed and patterns of language use were identified, recorded and analysed using the proposed categories. After observations were completed, a questionnaire was distributed to the students focussing on attitudes and opinions around language choice in the EFL classroom, specifically, the usefulness of L1 for specific functions in the classroom. The paper then investigates the relationship between learners’ foreign language proficiency and the frequency and type of code-switching that they engaged in, and the relationship between learners’ attitudes to classroom code-switching and their behaviour. Results show that code switching patterns underwent changes as the students’ level of English language proficiency improved, and that students’ attitudes towards code-switching generally correlated with their behaviour with some exceptions, however. Finally, the discussion focusses on the details of the language produced in observation, possible influencing factors that may affect the frequency and type of code switching that took place, and additional influencing factors that may affect students’ attitudes towards code switching in the foreign language classroom. An evaluation of the limitations of this study is offered and some suggestions are made for future research in this field of study.

Keywords: code-switching, EFL, second language aquisition, adult learners

Procedia PDF Downloads 275
2343 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, NDT, artificial defect, ultrasonic testing

Procedia PDF Downloads 473
2342 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 105
2341 Exploring Utility and Intrinsic Value among UAE Arabic Teachers in Integrating M-Learning

Authors: Dina Tareq Ismail, Alexandria A. Proff

Abstract:

The United Arab Emirates (UAE) is a nation seeking to advance in all fields, particularly education. One area of focus for UAE 2021 agenda is to restructure UAE schools and universities by equipping them with highly developed technology. The agenda also advises educational institutions to prepare students with applicable and transferrable Information and Communication Technology (ICT) skills. Despite the emphasis on ICT and computer literacy skills, there exists limited empirical data on the use of M-Learning in the literature. This qualitative study explores the motivation of higher primary Arabic teachers in private schools toward implementing and integrating M-Learning apps in their classrooms. This research employs a phenomenological approach through the use of semistructured interviews with nine purposefully selected Arabic teachers. The data were analyzed using a content analysis via multiple stages of coding: open, axial, and thematic. Findings reveal three primary themes: (1) Arabic teachers with high levels of procedural knowledge in ICT are more motivated to implement M-Learning; (2) Arabic teachers' perceptions of self-efficacy influence their motivation toward implementation of M-Learning; (3) Arabic teachers implement M-Learning when they possess high utility and/or intrinsic value in these applications. These findings indicate a strong need for further training, equipping, and creating buy-in among Arabic teachers to enhance their ICT skills in implementing M-Learning. Further, given the limited availability of M-Learning apps designed for use in the Arabic language on the market, it is imperative that developers consider designing M-Learning tools that Arabic teachers, and Arabic-speaking students, can use and access more readily. This study contributes to closing the knowledge gap on teacher-motivation for implementing M-Learning in their classrooms in the UAE.

Keywords: ICT skills, m-learning, self-efficacy, teacher-motivation

Procedia PDF Downloads 105
2340 Foundation Phase Teachers' Experiences of School Based Support Teams: A Case of Selected Schools in Johannesburg

Authors: Ambeck Celyne Tebid, Harry S. Rampa

Abstract:

The South African Education system recognises the need for all learners including those experiencing learning difficulties, to have access to a single unified system of education. For teachers to be pedagogically responsive to an increasingly diverse learner population without appropriate support has been proven to be unrealistic. As such, this has considerably hampered interest amongst teachers, especially those at the foundation phase to work within an Inclusive Education (IE) and training system. This qualitative study aimed at investigating foundation phase teachers’ experiences of school-based support teams (SBSTs) in two Full-Service (inclusive schools) and one Mainstream public primary school in the Gauteng province of South Africa; with particular emphasis on finding ways to supporting them, since teachers claimed they were not empowered in their initial training to teach learners experiencing learning difficulties. Hence, SBSTs were created at school levels to fill this gap thereby, supporting teaching and learning by identifying and addressing learners’, teachers’ and schools’ needs. With the notion that IE may be failing because of systemic reasons, this study uses Bronfenbrenner’s (1979) ecosystemic as well as Piaget’s (1980) maturational theory to examine the nature of support and experiences amongst teachers taking individual and systemic factors into consideration. Data was collected using in-depth, face-to-face interviews, document analysis and observation with 6 foundation phase teachers drawn from 3 different schools, 3 SBST coordinators, and 3 school principals. Data was analysed using the phenomenological data analysis method. Amongst the findings of the study is that South African full- service and mainstream schools have functional SBSTs which render formal and informal support to the teachers; this support varies in quality depending on the socio-economic status of the relevant community where the schools are situated. This paper, however, argues that what foundation phase teachers settled for as ‘support’ is flawed; as well as how they perceive the SBST and its role is problematic. The paper conclude by recommending that, the SBST should consider other approaches at foundation phase teacher support such as, empowering teachers with continuous practical experiences on how to deal with real classroom scenarios, as well as ensuring that all support, be it on academic or non-academic issues should be provided within a learning community framework where the teacher, family, SBST and where necessary, community organisations should harness their skills towards a common goal.

Keywords: foundation phase, full- service schools, inclusive education, learning difficulties, school-based support teams, teacher support

Procedia PDF Downloads 234
2339 A Guide to User-Friendly Bash Prompt: Adding Natural Language Processing Plus Bash Explanation to the Command Interface

Authors: Teh Kean Kheng, Low Soon Yee, Burra Venkata Durga Kumar

Abstract:

In 2022, as the future world becomes increasingly computer-related, more individuals are attempting to study coding for themselves or in school. This is because they have discovered the value of learning code and the benefits it will provide them. But learning coding is difficult for most people. Even senior programmers that have experience for a decade year still need help from the online source while coding. The reason causing this is that coding is not like talking to other people; it has the specific syntax to make the computer understand what we want it to do, so coding will be hard for normal people if they don’t have contact in this field before. Coding is hard. If a user wants to learn bash code with bash prompt, it will be harder because if we look at the bash prompt, we will find that it is just an empty box and waiting for a user to tell the computer what we want to do, if we don’t refer to the internet, we will not know what we can do with the prompt. From here, we can conclude that the bash prompt is not user-friendly for new users who are learning bash code. Our goal in writing this paper is to give an idea to implement a user-friendly Bash prompt in Ubuntu OS using Artificial Intelligent (AI) to lower the threshold of learning in Bash code, to make the user use their own words and concept to write and learn Bash code.

Keywords: user-friendly, bash code, artificial intelligence, threshold, semantic similarity, lexical similarity

Procedia PDF Downloads 141
2338 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 340
2337 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 243
2336 The Mediating Role of Artificial Intelligence (AI) Driven Customer Experience in the Relationship Between AI Voice Assistants and Brand Usage Continuance

Authors: George Cudjoe Agbemabiese, John Paul Kosiba, Michael Boadi Nyamekye, Vanessa Narkie Tetteh, Caleb Nunoo, Mohammed Muniru Husseini

Abstract:

The smartphone industry continues to experience massive growth, evidenced by expanding markets and an increasing number of brands, models and manufacturers. As technology advances rapidly, manufacturers of smartphones are consistently introducing new innovations to keep up with the latest evolving industry trends and customer demand for more modern devices. This study aimed to assess the influence of artificial intelligence (AI) voice assistant (VA) on improving customer experience, resulting in the continuous use of mobile brands. Specifically, this article assesses the role of hedonic, utilitarian, and social benefits provided by AIVA on customer experience and the continuance intention to use mobile phone brands. Using a primary data collection instrument, the quantitative approach was adopted to examine the study's variables. Data from 348 valid responses were used for the analysis based on structural equation modeling (SEM) with AMOS version 23. Three main factors were identified to influence customer experience, which results in continuous usage of mobile phone brands. These factors are social benefits, hedonic benefits, and utilitarian benefits. In conclusion, a significant and positive relationship exists between the factors influencing customer experience for continuous usage of mobile phone brands. The study concludes that mobile brands that invest in delivering positive user experiences are in a better position to improve usage and increase preference for their brands. The study recommends that mobile brands consider and research their prospects' and customers' social, hedonic, and utilitarian needs to provide them with desired products and experiences.

Keywords: artificial intelligence, continuance usage, customer experience, smartphone industry

Procedia PDF Downloads 79
2335 Integrating AI into Breast Cancer Diagnosis: Aligning Perspectives for Effective Clinical Practice

Authors: Mehrnaz Mostafavi, Mahtab Shabani, Alireza Azani, Fatemeh Ghafari

Abstract:

Artificial intelligence (AI) can transform breast cancer diagnosis and therapy by providing sophisticated solutions for screening, imaging interpretation, histopathological analysis, and treatment planning. This literature review digs into the many uses of AI in breast cancer treatment, highlighting the need for collaboration between AI scientists and healthcare practitioners. It emphasizes advances in AI-driven breast imaging interpretation, such as computer-aided detection and diagnosis (CADe/CADx) systems and deep learning algorithms. These have shown significant potential for improving diagnostic accuracy and lowering radiologists' workloads. Furthermore, AI approaches such as deep learning have been used in histopathological research to accurately predict hormone receptor status and categorize tumor-associated stroma from regular H&E stains. These AI-powered approaches simplify diagnostic procedures while providing insights into tumor biology and prognosis. As AI becomes more embedded in breast cancer care, it is crucial to ensure its ethical, efficient, and patient-focused implementation to improve outcomes for breast cancer patients ultimately.

Keywords: breast cancer, artificial intelligence, cancer diagnosis, clinical practice

Procedia PDF Downloads 66
2334 Investigation of the Level of Physical and Mental Health of Patients Undergoing in Chronic or Transient Hemodialysis at Artificial Kidney Unit

Authors: Styliani Kotrotsiou, Evagelia Kotrotsiou, Fani Mokia, Theodosis Paralikas, Konstantinos Tsaras

Abstract:

Objective: The objective of this study was the investigation of the mental health of patients undergoing chronic or transient hemodialysis at Artificial Kidney Unit, as well as its relationship to the demographic characteristic of patients. Material and Method: The study took place in Larisa during the month of December in 2016 and the sample was composed of 60 patients undergoing in chronic or transient hemodialysis at Artificial Kidney Unit of the University General Hospital of Larisa. For the investigation of the physical and mental health of patients who participated in the study, the tool measurement << General Health Questionnaire- 28 >> (GHQ-28) was used. The questionnaires were administered with the interview method during the hemodialysis. This survey is designed for the existence or not of a mental disorder. It examines four factors (physical symptoms, anxiety, social dysfunction and depression). Results: The hemodialysis patients gave the following scores: -to the physical symptoms, women showed a higher average value than men (1,16 ± 1,26 against 0,49 ± 0,93), -at the anxiety scale, it seems that women are superior to men (1,68 ± 1,20 against 0,90 ± 1,22), -at the social dysfunction scale, the elderly patients ( > 65 years old) were presented a with higher average (2,59), and -at the depression scale, patients with a higher average value were those who lived in non-urban areas. The appearance of mental disorder, in relation to patient characteristics, did not show significant statistical correlation. The sex, the age and the place of residence affect more the assessment of mental health, while education did not seem to have any significant effect on the other. Conclusions: The hemodialysis process can significantly affect the patient’s Quality of Life and it can bring adverse changes in lifestyle, affecting the physical, social and psychological state of the individual. For that reason, hemodialysis should be aimed not only at extending life but in upgrading the Quality of Life.

Keywords: hemodialysis, chronic kidney disease, depression, social dysfunction, physical condition

Procedia PDF Downloads 162
2333 A Platform for Managing Residents' Carbon Trajectories Based on the City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xuerui, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

Climate change is a global problem facing humanity and this is now the consensus of the mainstream scientific community. In accordance with the carbon peak and carbon neutral targets and visions set out in the United Nations Framework Convention on Climate Change, the Kyoto Protocol and the Paris Agreement, this project uses the City Intelligent Model (CIM) and Artificial Intelligence Machine Vision (ICR) as the core technologies to accurately quantify low carbon behaviour into green corn, which is a means of guiding ecologically sustainable living patterns. Using individual communities as management units and blockchain as a guarantee of fairness in the whole cycle of green currency circulation, the project will form a modern resident carbon track management system based on the principle of enhancing the ecological resilience of communities and the cohesiveness of community residents, ultimately forming an ecologically sustainable smart village that can be self-organised and managed.

Keywords: urban planning, urban governance, CIM, artificial Intelligence, sustainable development

Procedia PDF Downloads 83
2332 Stimulating Young Children Social Interaction Behaviour through Computer Play Activities: The Role of Teachers and Parents Support

Authors: Mahani Razali, Nordin Mamat

Abstract:

The purpose of the study is to explore how computer technology is integrated into pre-school activities and its relationship with children’s social interaction behaviour in pre-school classroom. The major question of interest in the present study is to investigate the social interaction behaviour of children when using computers in the Malaysian pre-school classroom. This research is based on three main objectives which are to identify children`s social interaction during computer play activities, teacher’s role and parent’s participation to develop children`s social interaction. This qualitative study was carried out among 25 pre-school children, three teachers and three parents as the research sample. On the other hand, parent’s support was obtained from their discussions, supervisions and communication at home. The data collection procedures involved structured observation which was to identify social interaction behaviour among pre-school children through computer play activities; as for semi-structured interviews, it was done to study the perception of the teachers and parents on the acquired social interaction behaviour among the children. Besides, documentation analysis method was used as to triangulate acquired information with observations and interviews. In this study, the qualitative data analysis was tabulated in descriptive manner with frequency and percentage format. This study primarily focused on social interaction behaviour elements among the pre-school children. Findings revealed that the children showed positive outcomes on the social interaction behaviour during their computer play. This research summarizes that teacher’s role and parent’s support can improve children`s social interaction behaviour through computer play activities. As a whole, this research highlighted the significance of computer play activities as to stimulate social interaction behavior among the pre-school children.

Keywords: early childhood, emotional development, parent support, play

Procedia PDF Downloads 364
2331 Measuring Principal and Teacher Cultural Competency: A Need Assessment of Three Proximate PreK-5 Schools

Authors: Teresa Caswell

Abstract:

Throughout the United States and within a myriad of demographic contexts, students of color experience the results of systemic inequities as an academic outcome. These disparities continue despite the increased resources provided to students and ongoing instruction-focused professional learning received by teachers. The researcher postulated that lower levels of educator cultural competency are an underlying factor of why resource and instructional interventions are less effective than desired. Before implementing any type of intervention, however, cultural competency needed to be confirmed as a factor in schools demonstrating academic disparities between racial subgroups. A needs assessment was designed to measure levels of individual beliefs, including cultural competency, in both principals and teachers at three neighboring schools verified to have academic disparities. The resulting mixed method study utilized the Optimal Theory Applied to Identity Development (OTAID) model to measure cultural competency quantitatively, through self-identity inventory survey items, with teachers and qualitatively, through one-on-one interviews, with each school’s principal. A joint display was utilized to see combined data within and across school contexts. Each school was confirmed to have misalignments between principal and teacher levels of cultural competency beliefs while also indicating that a number of participants in the self-identity inventory survey may have intentionally skipped items referencing the term oppression. Additional use of the OTAID model and self-identity inventory in future research and across contexts is needed to determine transferability and dependability as cultural competency measures.

Keywords: cultural competency, identity development, mixed-method analysis, needs assessment

Procedia PDF Downloads 150
2330 The Actuation of Semicrystalline Poly(Vinylidene Fluoride) Tie Molecules: A Computational and Experimental Study

Authors: Abas Mohsenzadeh, Tariq Bashir, Waseen Tahir, Ulf Stigh, Mikael Skrifvars, Kim Bolton

Abstract:

The area of artificial muscles has received significant attention from many research domains including soft robotics, biomechanics and smart textiles in recent years. Poly(vinylidene fluoride) (PVDF) has been used to form artificial muscles since it contracts upon heating when under load. In this study, PVDF fibers were produced by melt spinning technique at different solid state draw ratios and then actuation mechanism for PVDF tie molecules within the semicrystalline region of PVDF polymer has been investigated using molecular dynamics simulations. Tie molecules are polymer chains that link two (or more) crystalline regions in semicrystalline polymers. The changes in fiber length upon heating have been investigated using a novel simulation technique. The results show that conformational changes of the tie molecules from the longer all-trans conformation at low temperature (β structure) to the shorter conformation (α structure) at higher temperature accrue by increasing the temperature. These results may be applied to understand the actuation observed for PVDF upon heating.

Keywords: poly(vinylidene fluoride), molecular dynamics, simulation, actuators, tie molecules, semicrystalline

Procedia PDF Downloads 307
2329 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence

Authors: Sogand Barghi

Abstract:

The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.

Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting

Procedia PDF Downloads 69
2328 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 319
2327 Genesis and Survival Chance of Autotriploid in Natural Diploid Population of Lilium lancifolium Thunb

Authors: Ji-Won Park, Jong-Wha Kim

Abstract:

Triploid L. lancifolium have a wide geographic distribution. By contrast, diploid L. lancifolium have limited distributions in the islands and coastal regions of the South and West Korean Peninsula and northern Tsushima Island, Japan. L. lancifolium diploids and triploids are not sympatrically distributed with other lily species or ploidy lines in West Sea and South Sea Islands of the Korean Peninsula. This observation raises the following questions: 'Why have autotriploid L. lancifolium never been observed in those isolated islands?', 'What mechanism excludes the occurrence of autotriploids, if they arise?'. To determine the occurrence and survival of triploid plants in natural diploid populations of tiger lily (Lilium lancifolium), ploidy analysis was conducted on natural open-pollinated seeds produced from plants grown on isolated islands, and on hybrid seeds produced by artificial crossing between plant populations originating on different Korean islands. Normal seeds were classified into five grades depending on the ratio of embryo/endosperm lengths, including 5/5, 4/5, 3/5, 2/5, and 1/5. Triploids were not observed among seedlings produced from natural open pollinations on isolated islands. Triploids were detected only in seedlings of underdeveloped seed grades(3/5 and 2/5) from artificial crosses between populations from different isolated islands. The triploid occurrence frequency was calculated as 0.0 for natural open-pollinated seedlings and 0.000582 for artificial crosses(6 triploids from 10,303 seedlings). Triploids were produced from crosses between isolated populations located at least 70 km apart; no triploids were detected in inter-population crosses of plants originating on the same islands. Triploid seedlings have very low viability in soil. We analyzed factors affecting triploid occurrence and survival in natural diploid populations of L. lancifolium. The results suggest that triploids originate from fertilization between plants that are genetically isolated due to geographical isolation and/or genotypic differences.

Keywords: Lilium lancifolium, autotriploid, natural population, genetic distance, 2n female gamete

Procedia PDF Downloads 519
2326 Instructional Game in Teaching Algebra for High School Students: Basis for Instructional Intervention

Authors: Jhemson C. Elis, Alvin S. Magadia

Abstract:

Our world is full of numbers, shapes, and figures that illustrate the wholeness of a thing. Indeed, this statement signifies that mathematics is everywhere. Mathematics in its broadest sense helps people in their everyday life that is why in education it is a must to be taken by the students as a subject. The study aims to determine the profile of the respondents in terms of gender and age, performance of the control and experimental groups in the pretest and posttest, impact of the instructional game used as instructional intervention in teaching algebra for high school students, significant difference between the level of performance of the two groups of respondents in their pre–test and post–test results, and the instructional intervention can be proposed. The descriptive method was also utilized in this study. The use of the certain approach was to that it corresponds to the main objective of this research that is to determine the effectiveness of the instructional game used as an instructional intervention in teaching algebra for high school students. There were 30 students served as respondents, having an equal size of the sample of 15 each while a greater number of female teacher respondents which totaled 7 or 70 percent and male were 3 or 30 percent. The study recommended that mathematics teacher should conceptualize instructional games for the students to learn mathematics with fun and enjoyment while learning. Mathematics education program supervisor should give training for teachers on how to conceptualize mathematics intervention for the students learning. Meaningful activities must be provided to sustain the student’s interest in learning. Students must be given time to have fun at the classroom through playing while learning since mathematics for them was considered as difficult. Future researcher must continue conceptualizing some mathematics intervention to suffice the needs of the students, and teachers should inculcate more educational games so that the discussion will be successful and joyful.

Keywords: instructional game in algebra, mathematical intervention, joyful, successful

Procedia PDF Downloads 595
2325 A Neural Network System for Predicting the Hardness of Titanium Aluminum Nitrite (TiAlN) Coatings

Authors: Omar M. Elmabrouk

Abstract:

The cutting tool, in the high-speed machining process, is consistently dealing with high localized stress at the tool tip, tip temperature exceeds 800°C and the chip slides along the rake face. These conditions are affecting the tool wear, the cutting tool performances, the quality of the produced parts and the tool life. Therefore, a thin film coating on the cutting tool should be considered to improve the tool surface properties while maintaining its bulks properties. One of the general coating processes in applying thin film for hard coating purpose is PVD magnetron sputtering. In this paper, the prediction of the effects of PVD magnetron sputtering coating process parameters, sputter power in the range of (4.81-7.19 kW), bias voltage in the range of (50.00-300.00 Volts) and substrate temperature in the range of (281.08-600.00 °C), were studied using artificial neural network (ANN). The results were compared with previously published results using RSM model. It was found that the ANN is more accurate in prediction of tool hardness, and hence, it will not only improve the tool life of the tool but also significantly enhances the efficiency of the machining processes.

Keywords: artificial neural network, hardness, prediction, titanium aluminium nitrate coating

Procedia PDF Downloads 553
2324 Revolutionizing Project Management: A Comprehensive Review of Artificial Intelligence and Machine Learning Applications for Smarter Project Execution

Authors: Wenzheng Fu, Yue Fu, Zhijiang Dong, Yujian Fu

Abstract:

The integration of artificial intelligence (AI) and machine learning (ML) into project management is transforming how engineering projects are executed, monitored, and controlled. This paper provides a comprehensive survey of AI and ML applications in project management, systematically categorizing their use in key areas such as project data analytics, monitoring, tracking, scheduling, and reporting. As project management becomes increasingly data-driven, AI and ML offer powerful tools for improving decision-making, optimizing resource allocation, and predicting risks, leading to enhanced project outcomes. The review highlights recent research that demonstrates the ability of AI and ML to automate routine tasks, provide predictive insights, and support dynamic decision-making, which in turn increases project efficiency and reduces the likelihood of costly delays. This paper also examines the emerging trends and future opportunities in AI-driven project management, such as the growing emphasis on transparency, ethical governance, and data privacy concerns. The research suggests that AI and ML will continue to shape the future of project management by driving further automation and offering intelligent solutions for real-time project control. Additionally, the review underscores the need for ongoing innovation and the development of governance frameworks to ensure responsible AI deployment in project management. The significance of this review lies in its comprehensive analysis of AI and ML’s current contributions to project management, providing valuable insights for both researchers and practitioners. By offering a structured overview of AI applications across various project phases, this paper serves as a guide for the adoption of intelligent systems, helping organizations achieve greater efficiency, adaptability, and resilience in an increasingly complex project management landscape.

Keywords: artificial intelligence, decision support systems, machine learning, project management, resource optimization, risk prediction

Procedia PDF Downloads 19
2323 Two Coordination Polymers Synthesized from Various N-Donor Clusters Spaced by Terephtalic Acid for Efficient Photocatalytic Degradation of Ibuprofen in Water under Solar and Artificial Irradiation

Authors: Amina Adala, Nadra Debbache, Tahar Sehili

Abstract:

Coordination polymers and uniformly {[Zn(II)(BIPY)(Pht)]n} (1), {[Zn (HYD)(Pht)]n} (2) (BIPY = 4,4’ bipyridine, Pht = terephtalic acid, HYD = 8-hydroxyquinoline) have been successfully synthesized by a hydrothermal process using aqueous zinc solution. The as-prepared compounds phases were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy, UV-visible spectroscopy, thermogravimetric analysis (TGA), and the electrochemistry study by the voltammetry cyclic. The results showed a crystalline phase for CP1 however, CP2 requires recrystallization; the FTIR showed the presence of characteristic bands of all ligands; besides that, TGA shows thermal stability up to 300°C. The electrochemistry study showed a good charge transfer between the ligands and Zn metal for the two components. UV-Vis measurement showed strong absorption in a wide range from UV to visible light with a band gap of 2.69 eV for CP1 and 2.56 eV for CP2, smaller than that of ZnO. This represents an alternative to using ZnO. The Ibuprofen IBP decomposition kinetics of 5.10⁻⁵ mol.L⁻¹ under solar and artificial light were studied for different irradiation conditions. Good photocatalytic properties were observed due to their high surface area.

Keywords: metal-organic frameworks, photocatalysis, photodegradation, organic pollutant, ibuprofen

Procedia PDF Downloads 81
2322 Developing Pedagogy for Argumentation and Teacher Agency: An Educational Design Study in the UK

Authors: Zeynep Guler

Abstract:

Argumentation and the production of scientific arguments are essential components that are necessary for helping students become scientifically literate through engaging them in constructing and critiquing ideas. Incorporating argumentation into science classrooms is challenging and can be a long-term process for both students and teachers. Students have difficulty in engaging tasks that require them to craft arguments, evaluate them to seek weaknesses, and revise them. Teachers also struggle with facilitating argumentation when they have underdeveloped science practices, underdeveloped pedagogical knowledge for argumentation science teaching, or underdeveloped teaching practice with argumentation (or a combination of all three). Thus, there is a need to support teachers in developing pedagogy for science teaching as argumentation, planning and implementing teaching practice for facilitating argumentation and also in becoming more agentic in this regards. Looking specifically at the experience of agency within education, it is arguable that agency is necessary for teachers’ renegotiation of professional purposes and practices in the light of changing educational practices. This study investigated how science teachers develop pedagogy for argumentation both individually and with their colleagues and also how teachers become more agentic (or not) through the active engagement of their contexts-for-action that refer to this as an ecological understanding of agency in order to positively influence or change their practice and their students' engagement with argumentation over two academic years. Through educational design study, this study conducted with three secondary science teachers (key stage 3-year 7 students aged 11-12) in the UK to find out if similar or different patterns of developing pedagogy for argumentation and of becoming more agentic emerge as they engage in planning and implementing a cycle of activities during the practice of teaching science with argumentation. Data from video and audio-recording of classroom practice and open-ended interviews with the science teachers were analysed using content analysis. The findings indicated that all the science teachers perceived strong agency in their opportunities to develop and apply pedagogical practices within the classroom. The teachers were pro-actively shaping their practices and classroom contexts in ways that were over and above the amendments to their pedagogy. They demonstrated some outcomes in developing pedagogy for argumentation and becoming more agentic in their teaching in this regards as a result of the collaboration with their colleagues and researcher; some appeared more agentic than others. The role of the collaboration between their colleagues was seen crucial for the teachers’ practice in the schools: close collaboration and support from other teachers in planning and implementing new educational innovations were seen as crucial for the development of pedagogy and becoming more agentic in practice. They needed to understand the importance of scientific argumentation but also understand how it can be planned and integrated into classroom practice. They also perceived constraint emerged from their lack of competence and knowledge in posing appropriate questions to help the students engage in argumentation, providing support for the students' construction of oral and written arguments.

Keywords: argumentation, teacher professional development, teacher agency, students' construction of argument

Procedia PDF Downloads 131
2321 Students and Teachers Perceptions about Interactive Learning in Teaching Health Promotion Course: Implication for Nursing Education and Practice

Authors: Ahlam Alnatour

Abstract:

Background: To our knowledge, there is lack of studies that describe the experience of studying health promotion courses using an interactive approach, and compare students’ and teachers perceptions about this method of teaching. The purpose of this study is to provide a comparison between student and teacher experiences and perspectives in learning health promotion course using interactive learning. Design: A descriptive qualitative design was used to provide an in-depth description and understanding of students’ and teachers experiences and perceptions of learning health promotion courses using an interactive learning. Study Participants: About 14 fourteen students (seven male, seven female) and eight teachers at governmental university in northern Jordan participated in this study. Data Analysis: Conventional content analysis approach was used for participants’ scripts to gain an in-depth description for both students' and teacher’s experiences. Results: The main themes emerged from the data analysis describing the students’ and teachers perceptions of the interactive health promotion class: teachers’ and students positive experience in adopting interactive learning, advantages and benefits of interactive teaching, barriers to interactive teaching, and suggestions for improvement. Conclusion: Both teachers and students reflected positive attitudes toward interactive learning. Interactive learning helped to engage in learning process physically and cognitively. Interactive learning enhanced learning process, promote student attention, enhanced final performance, and satisfied teachers and students accordingly. Interactive learning approach should be adopted in teaching graduate and undergraduate courses using updated and contemporary strategies. Nursing scholars and educators should be motivated to integrate interactive learning in teaching different nursing courses.

Keywords: interactive learning, nursing, health promotion, qualitative study

Procedia PDF Downloads 248
2320 Effects of Artificial Intelligence and Machine Learning on Social Media for Health Organizations

Authors: Ricky Leung

Abstract:

Artificial intelligence (AI) and machine learning (ML) have revolutionized the way health organizations approach social media. The sheer volume of data generated through social media can be overwhelming, but AI and ML can help organizations effectively manage this information to improve the health and well-being of individuals and communities. One way AI can be used to enhance social media in health organizations is through sentiment analysis. This involves analyzing the emotions expressed in social media posts to better understand public opinion and respond accordingly. This can help organizations gauge the impact of their campaigns, track the spread of misinformation, and improve communication with the public. While social media is a useful tool, researchers and practitioners have expressed fear that it will be used for the spread of misinformation, which can have serious consequences for public health. Health organizations must work to ensure that AI systems are transparent, trustworthy, and unbiased so they can help minimize the spread of misinformation. In conclusion, AI and ML have the potential to greatly enhance the use of social media in health organizations. These technologies can help organizations effectively manage large amounts of data and understand stakeholders' sentiments. However, it is important to carefully consider the potential consequences and ensure that these systems are carefully designed to minimize the spread of misinformation.

Keywords: AI, ML, social media, health organizations

Procedia PDF Downloads 87
2319 Studying Second Language Learners' Language Behavior from Conversation Analysis Perspective

Authors: Yanyan Wang

Abstract:

This paper on second language teaching and learning uses conversation analysis (CA) approach and focuses on how second language learners of Chinese do repair when making clarification requests. In order to demonstrate their behavior in interaction, a comparison was made to study the differences between native speakers of Chinese with non-native speakers of Chinese. The significance of the research is to make second language teachers and learners aware of repair and how to seek clarification. Utilizing the methodology of CA, the research involved two sets of naturally occurring recordings, one of native speaker students and the other of non-native speaker students. Both sets of recording were telephone talks between students and teachers. There were 50 native speaker students and 50 non-native speaker students. From multiple listening to the recordings, the parts with repairs for clarification were selected for analysis which included the moments in the talk when students had problems in understanding or hearing the speaker and had to seek clarification. For example, ‘Sorry, I do not understand ‘and ‘Can you repeat the question? ‘were the parts as repair to make clarification requests. In the data, there were 43 such cases from native speaker students and 88 cases from non-native speaker students. The non-native speaker students were more likely to use repair to seek clarification. Analysis on how the students make clarification requests during their conversation was carried out by investigating how the students initiated problems and how the teachers repaired the problems. In CA term, it is called other-initiated self-repair (OISR), which refers to student-initiated teacher-repair in this research. The findings show that, in initiating repair, native speaker students pay more attention to mutual understanding (inter-subjectivity) while non-native speaker students, due to their lack of language proficiency, pay more attention to their status of knowledge (epistemic) switch. There are three major differences: 1, native Chinese students more often initiate closed-class OISR (seeking specific information in the request) such as repeating a word or phrases from the previous turn while non-native students more frequently initiate open-class OISR (not specifying clarification) such as ‘sorry, I don’t understand ‘. 2, native speakers’ clarification requests are treated by the teacher as understanding of the content while non-native learners’ clarification requests are treated by teacher as language proficiency problem. 3, native speakers don’t see repair as knowledge issue and there is no third position in the repair sequences to close repair while non-native learners take repair sequence as a time to adjust their knowledge. There is clear closing third position token such as ‘oh ‘ to close repair sequence so that the topic can go back. In conclusion, this paper uses conversation analysis approach to compare differences between native Chinese speakers and non-native Chinese learners in their ways of conducting repair when making clarification requests. The findings are useful in future Chinese language teaching and learning, especially in teaching pragmatics such as requests.

Keywords: conversation analysis (CA), clarification request, second language (L2), teaching implication

Procedia PDF Downloads 254
2318 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform

Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos

Abstract:

Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.

Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform

Procedia PDF Downloads 7