Search results for: Sustainable Energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11658

Search results for: Sustainable Energy

10548 Screens Design and Application for Sustainable Buildings

Authors: Fida Isam Abdulhafiz

Abstract:

Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.

Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education

Procedia PDF Downloads 279
10547 Rotational Energy Recovery System

Authors: Vijayendra Anil Menon, Ashwath Narayan Murali

Abstract:

The present day vehicles do not reuse the energy expelled in running the vehicle. The energy used to run the vehicle is expelled immediately.This has remained a constant for many decades. With all the vehicles running on non-renewable resources like fossil fuels, there is an urgent need to improve efficiency of the vehicles until a reliable replacement for fossil fuels is found.Our design is based on the concept of Kinetic energy recovery systems. Though our design lies in principle with the KERS, our design can be used in day-to-day driving. With our design, efficiency of vehicles increases and fuel conservation is possible thereby reducing the carbon footprint.

Keywords: KERS, Battery, Wheels, Efficiency.

Procedia PDF Downloads 376
10546 Assessment of Drinking Water Quality in Relation to Arsenic Contamination in Drinking Water in Liberia: Achieving the Sustainable Development Goal of Ensuring Clean Water and Sanitation

Authors: Victor Emery David Jr., Jiang Wenchao, Daniel Mmereki, Yasinta John

Abstract:

The fundamentals of public health are access to safe and clean drinking water. The presence of arsenic and other contaminants in drinking water leads to the potential risk to public health and the environment particularly in most developing countries where there’s inadequate access to safe and clean water and adequate sanitation. Liberia has taken steps to improve its drinking water status so as to achieve the Sustainable Development Goals (SDGs) target of ensuring clean water and effective sanitation but there is still a lot to be done. The Sustainable Development Goals are a United Nation initiative also known as transforming our world: The 2030 agenda for sustainable development. It contains seventeen goals with 169 targets to be met by respective countries. Liberia is situated within in the gold belt region where there exist the presence of arsenic and other contaminants in the underground water due to mining and other related activities. While there are limited or no epidemiological studies conducted in Liberia to confirm illness or death as a result of arsenic contamination in Liberia, it remains a public health concern. This paper assesses the drinking water quality, the presence of arsenic in groundwater/drinking water in Liberia, and proposes strategies for mitigating contaminants in drinking water and suggests options for improvement with regards to achieving the Sustainable Development Goals of ensuring clean water and effective sanitation in Liberia by 2030.

Keywords: arsenic, action plan, contaminants, environment, groundwater, sustainable development goals (SDGs), Monrovia, Liberia, public health, drinking water

Procedia PDF Downloads 245
10545 Analysis of Energy Flows as An Approach for The Formation of Monitoring System in the Sustainable Regional Development

Authors: Inese Trusina, Elita Jermolajeva

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the developmenton the way to social well-being in the frame of the ecological economics paradigm. The article presentsbasic definitions for the development of formalized description of sustainabledevelopment monitoring. It provides examples of calculating the parameters of monitoring for the Baltic Sea region countries and their primary interpretation.

Keywords: sustainability, development, power, ecological economics, regional economic, monitoring

Procedia PDF Downloads 105
10544 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: electric vehicles, fuel cell, battery, regenerative braking, energy management

Procedia PDF Downloads 699
10543 Comparative Life Cycle Assessment of an Extensive Green Roof with a Traditional Gravel-Asphalted Roof: An Application for the Lebanese Context

Authors: Makram El Bachawati, Rima Manneh, Thomas Dandres, Carla Nassab, Henri El Zakhem, Rafik Belarbi

Abstract:

A vegetative roof, also called a garden roof, is a "roofing system that endorses the growth of plants on a rooftop". Garden roofs serve several purposes for a building, such as embellishing the roofing system, enhancing the water management, and reducing the energy consumption and heat island effects. Lebanon is a Middle East country that lacks the use of a sustainable energy system. It imports 98% of its non-renewable energy from neighboring countries and suffers flooding during heavy rains. The objective of this paper is to determine if the implementation of vegetative roofs is effectively better than the traditional roofs for the Lebanese context. A Life Cycle Assessment (LCA) is performed in order to compare an existing extensive green roof to a traditional gravel-asphalted roof. The life cycle inventory (LCI) was established and modeled using the SimaPro 8.0 software, while the environmental impacts were classified using the IMPACT 2002+ methodology. Results indicated that, for the existing extensive green roof, the waterproofing membrane and the growing medium were the highest contributors to the potential environmental impacts. When comparing the vegetative to the traditional roof, results showed that, for all impact categories, the extensive green roof had the less environmental impacts.

Keywords: life cycle assessment, green roofs, vegatative roof, environmental impact

Procedia PDF Downloads 448
10542 Sustainable Balanced Scorecard for Kaizen Evaluation: Comparative Study between Egypt and Japan

Authors: Ola I. S. El Dardery, Ismail Gomaa, Adel R.M. Rayan, Ghada El Khayat, Sara H. Sabry

Abstract:

Continuous improvement activities are becoming a key factor of the success of any organization, those improvement activities include but not limited to kaizen, six sigma, lean projects, and continuous improvement projects. Kaizen is a Japanese philosophy of continuous improvement by making small incremental changes to improve an organization’s performance, reduce costs, reduce delay time, reduce waste in production, etc. This study aims at proposing a new measuring technique for kaizen activities using a Sustainable balanced scorecard structure. A survey questionnaire was developed and introduced to kaizen participants in both Egypt and Japan with the purpose of allocating key performance indicators for both kaizen process (critical success factors) and result (kaizen benefits) into the five perspectives of sustainable balanced scorecard. The study contributes to the literature by presenting a new kaizen measurement of both kaizen process and results, that will illuminate the benefits of using kaizen. Also, the presented measurement can help in the sustainability of kaizen implementation. Determining the combination of the proper kaizen measures could be used by any industry whether service or manufacturing to better measure kaizen activates. The comparison between Japanese measures, as the leaders of kaizen philosophy, and Egyptian measures will help recommending better practices of kaizen in Egypt, and contributing to the 2030 sustainable development goals.

Keywords: continuous improvements, kaizen, performance, sustainable balanced scorecard

Procedia PDF Downloads 134
10541 Nighttime Power Generation Using Thermoelectric Devices

Authors: Abdulrahman Alajlan

Abstract:

While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.

Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management

Procedia PDF Downloads 44
10540 Architecture Performance-Related Design Based on Graphic Parameterization

Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding

Abstract:

Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.

Keywords: graphic parameterization, green building design, mathematical model, plane form

Procedia PDF Downloads 139
10539 Towards Sustainable Consumption: A Framework for Assessing Supplier's Commitment

Authors: O. O. Oguntoye

Abstract:

Product consumption constitutes an important consideration for sustainable development. Seeing how product consumption could be highly unsustainable, coupled with how existing policies on corporate responsibility do not particularly address the consumption aspect of product lifecycle, conducting this research became necessary. The research makes an attempt to provide a framework by which to gauge corporate responsibility of product suppliers in terms of their commitment towards the sustainable consumption of their products. Through an exploration of relevant literature, independently established ideas with which to assess a given product supplier were galvanised into a four-criterion framework. The criteria are: (1) Embeddedness of consumption as a factor in corporate sustainability policy, (2) Level of understanding of consumption behaviour, (3) Breadth of behaviour-influencing strategies adopted, and (4) Inclusiveness for all main dimensions of sustainability. This resulting framework was then applied in a case study involving a UK-based furniture supplier where interviews and content analysis of corporate documents were used as the mode for primary data collection. From the case study, it was found that the supplier had performed to different levels across the four themes of the assessment. Two major areas for improvement were however identified – one is for the furniture supplier to focus more proactively on understanding consumption behaviour and, two is for it to widen the scope of its current strategies for enhancing sustainable consumption of supplied furniture. As a generalisation, the framework presented here makes it possible for companies to reflect with a sense of guidance, how they have demonstrated commitment towards sustainable consumption through their values, culture, and operations. It also provides a foundation for developing standardized assessment which the current widely used frameworks such as the GRI, the Global Compact, and others do not cover. While these popularly used frameworks mainly focus on sustainability of companies within the production and supply chain management contexts (i.e. mostly ‘upstream’), the framework here provides an extension by bringing the ‘downstream’ or consumer bit into light.

Keywords: corporate sustainability, design for sustainable consumption, extended producer responsibility, sustainable consumer behaviour

Procedia PDF Downloads 407
10538 Material Mechanical Property for Improving the Energy Density of Lithium-Ion Battery

Authors: Collins Chike Kwasi-Effah, Timon Rabczuk, Osarobo O. Ighodaro

Abstract:

The energy density of various battery technologies used in the electric vehicle industry still ranges between 250 Wh/kg to 650 Wh/kg, thus limiting their distance range compared to the conventional internal combustion engine vehicle. In order to overcome this limitation, a new material technology is necessary to overcome this limitation. The proposed sole lithium-air battery seems to be far behind in terms of practical implementation. In this paper, experimental analysis using COMSOL multiphysics has been conducted to predict the performance of lithium ion battery with variation in the elastic property of five different cathode materials including; LiMn2O4, LiFePO4, LiCoO2, LiV6O13, and LiTiS2. Combining LiCoO2, and aqueous lithium showed great improvement in the energy density. Thus, the material combination of LiCoO2/aqueous lithium-air could give a practical solution in achieving high energy density for application in the electric vehicle industry.

Keywords: battery energy, energy density, lithium-ion, mechanical property

Procedia PDF Downloads 145
10537 An Exploratory Study: Mobile Learning as a Means of Promoting Sustainable Learning in the Saudi General Educational Schools via an Activity Theory Lens

Authors: Aiydh Aljeddani

Abstract:

Sustainable learning is an emerging concept that aims at enhancing sustainability literacy and competency in educational contexts. Mobile learning is one of the means increasingly used in sustainable development education nowadays. Studies which have explored this issue in the Saudi educational context so far are rare. Therefore, the current study attempted to explore the current situation of the usage of mobile learning in the Saudi elementary and secondary schools as a means of promoting sustainable learning. It also focused on how mobile learning has been implemented in those schools to promote sustainable learning and what factors have contributed to the success/failure of the implementation of mobile learning and possible ways to improve the current practice. An interpretive approach was followed in this study to gain a thorough understanding of the explored issue in the Saudi educational context using the activity theory as a lens to do so. A qualitative case study methodology in which semi-structured interviews, documents analysis and nominal group were used to gather the data for this study. Two hundred and twenty-nine participants representing several main stakeholders in the educational system took part in this study. Those included six general education schools, head teachers, teachers, students’ parents, educational supervisors, one curriculum designer and academic curriculum specialists. Through the lens of activity theory, the results of the study showed that there were contradictions in the current practice between the elements of the activity system and within each of its elements. Furthermore, several sociocultural factors have influenced both the division of labour and the community's members. These have acted as obstacles which have impeded the usage of mobile learning to promote sustainable learning in this context. It was found that shifting from the current practice to sustainable learning via the usage of mobile learning requires appropriate interrelationship between the different elements of the activity system. The study finally offers a number of recommendations to improve on the current practices and suggests areas for further studies.

Keywords: activity theory, mobile learning, sustainability competency, sustainability literacy, sustainable learning

Procedia PDF Downloads 232
10536 Lean: A Sustainable Approach to Design and Construction for Environmental Sustainability

Authors: Evelyn Lami Ashelo Allu, Fidelis A. Emuze

Abstract:

This study aims to contribute to the pursuit of environmental sustainability through the built environment practices of design and construction. Activities within the built environment and particularly within the construction industry have a significant role in ensuring environmental sustainability. The adoption of Lean principles and approaches would ensure that project deliverables are sustainable. This is because the processes that integrate lean principles reduce waste, add value to productivity, ensures customer satisfaction and are mindful of future productivity. Additionally, the lean principles for development are sustainable in themselves and thus promotes environmental sustainability. The study encourages further research with other methodologies and recommends the development of monitoring and evaluation mechanisms in order to promote the global concern for environmental sustainability.

Keywords: built environment, construction, design, lean, sustainability

Procedia PDF Downloads 249
10535 Sustainable Perspectives and Local Development Potential through Tourism

Authors: Pedro H. S. Messetti, Mary L. G. S. Senna, Afonso R. Aquino

Abstract:

Sustainability is a very important and heavily discussed subject, expanding through tourism as well. The study proposition was to collect data and present it to the competent bodies so they can mold their public politics to improve the conditions of the site. It was hypothesized that the lack of data is currently affecting the quality of life and the sustainable development of the site and the tourism. The research was held in Mateiros, a city in the state of Tocantins (TO)/Brasil, 275km far from the capital city Palmas, being one of the 8 cities that comprises the Jalapão region, an ecotourism and adventure tourism site as well as an environmental protection area (Jalapão State Park). Because of the concentration of tourists during the high season and several tourist attractions being around, the research took place in Mateiros. The methodological procedure had a script of theoretical construction and investigation of the deductive scientific method parameters through a case study in the Jalapão/TO/Brazil region, using it as a tool for a questionnaire given to the competent bodies in an interview system with the UN sustainability indexes as a base. In the three sustainable development scope: environmental, social and economic, the results indicated that the data presented by the interviewed were scarce or nonexistent. It shows that more research is necessary, providing the tools for the ones responsible to propose action plans to improve the site, strengthening the tourism and making it even more sustainable.

Keywords: Jalapão/Brazil state park, sustainable tourism, UN sustainability indexes

Procedia PDF Downloads 369
10534 FESA: Fuzzy-Controlled Energy-Efficient Selective Allocation and Reallocation of Tasks Among Mobile Robots

Authors: Anuradha Banerjee

Abstract:

Energy aware operation is one of the visionary goals in the area of robotics because operability of robots is greatly dependent upon their residual energy. Practically, the tasks allocated to robots carry different priority and often an upper limit of time stamp is imposed within which the task needs to be completed. If a robot is unable to complete one particular task given to it the task is reallocated to some other robot. The collection of robots is controlled by a Central Monitoring Unit (CMU). Selection of the new robot is performed by a fuzzy controller called Task Reallocator (TRAC). It accepts the parameters like residual energy of robots, possibility that the task will be successfully completed by the new robot within stipulated time, distance of the new robot (where the task is reallocated) from distance of the old one (where the task was going on) etc. The proposed methodology increases the probability of completing globally assigned tasks and saves huge amount of energy as far as the collection of robots is concerned.

Keywords: energy-efficiency, fuzzy-controller, priority, reallocation, task

Procedia PDF Downloads 300
10533 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization

Authors: Hebberly Ahatlan

Abstract:

The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, IT/OT convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.

Keywords: digitalization, IT/OT convergence, semantic interoperability, VPP, energy blockchain

Procedia PDF Downloads 155
10532 Bioelectrochemical System: An Alternative Technology for Metal Removal from Industrial Wastewater and Factors Affecting Its Efficiency

Authors: A. G. More

Abstract:

Bioelectrochemical system (BES) is an alternative technology for chromium Cr (VI) removal from industrial wastewater to overcome the existing drawbacks of high chemical and energy consumption by conventional metal removal technologies. A well developed anaerobic sludge was developed in laboratory and used in the batch study of BES at different Cr (VI) concentrations (10, 20, 50, and 50 mg/L) with different COD concentrations (500, 1000, 1500 and 2000 mg/L). Sodium acetate was used as carbon source, whereas Cr (VI) contaminated synthetic wastewater was prepared and added to the cathode chamber. Initially, operating conditions for the BES experiments were optimized. During the study, optimum cathode pH of 2, whereas optimum HRT of 72 hr was obtained. During the study, cathode pH 2 ± 0.1 showed maximum chromium removal efficicency (CRE) of 88.36 ± 8.16% as compared to other pH (1-7) in the cathode chamber. Maximum CRE obtained was 85.93 ± 9.62% at 40°C within the temperature range of 25°C to 45°C. Conducting the BES experiments at optimized operating conditions, CRE of 90.2 %, 93.7 %, 83.75 % and 74.6 % were obtained at cathodic Cr concentration of 10, 20, 50, and 50 mg/L, respectively. BES is a sustainable, energy efficient technology which can be suitably used for metal removal from industrial wastewater.

Keywords: bioelectrochemical system, metal removal, microorganisms, pH and temperature, substrate

Procedia PDF Downloads 115
10531 Household Energy Usage and Practices in the Rural Areas of Northern Part of Mindanao Island, Philippines

Authors: Odinah Cuartero-Enteria, Aive Pecasales, Jhadly Philip Buniel, Christian Joy Vega, Shiela Estubo

Abstract:

In the Philippines, Mindanao Island has the cheapest electricity because of the hydroelectric plants. Due to the rapid increase of the electricity consumption which the sources of electricity cannot support, it causes rotating brownout during summer season. This study investigated the household energy usage and practices in the rural areas of northern part of the Mindanao Island, Philippines. The questionnaire that includes the respondents’ profile and their common practices in energy consumptions was used as a tool in gathering the data. Several households were subjected to the survey. Results show energy consumption is not dependent on the profile of the respondents. It was observed that most of the families prefer to use energy saving methods of reducing electricity consumption. The main energy saving methods are unplugging unused home appliances, using of compact fluorescent bulb and energy-efficient gadgets, and using high electricity consumption appliances by schedule. Based on the results, the households in the rural areas know the practices of reducing electricity consumption. However, it is highly recommended that concern agencies should initiate information dissemination and strict implementation of well-formulated energy conservation practices all over the areas in Mindanao.

Keywords: Philippines, Mindanao island, rural areas, households, energy usages, practices

Procedia PDF Downloads 368
10530 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities

Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny

Abstract:

From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.

Keywords: sustainability, electric, bus, noise, greencharge

Procedia PDF Downloads 329
10529 Tall Building Transit-Oriented Development (TB-TOD) and Energy Efficiency in Suburbia: Case Studies, Sydney, Toronto, and Washington D.C.

Authors: Narjes Abbasabadi

Abstract:

As the world continues to urbanize and suburbanize, where suburbanization associated with mass sprawl has been the dominant form of this expansion, sustainable development challenges will be more concerned. Sprawling, characterized by low density and automobile dependency, presents significant environmental issues regarding energy consumption and Co2 emissions. This paper examines the vertical expansion of suburbs integrated into mass transit nodes as a planning strategy for boosting density, intensification of land use, conversion of single family homes to multifamily dwellings or mixed use buildings and development of viable alternative transportation choices. It analyzes the spatial patterns of tall building transit-oriented development (TB-TOD) of suburban regions in Sydney (Australia), Toronto (Canada), and Washington D.C. (United States). The main objectives of this research seek to understand the effect of the new morphology of suburban tall, the physical dimensions of individual buildings and their arrangement at a larger scale with energy efficiency. This study aims to answer these questions: 1) why and how can the potential phenomenon of vertical expansion or high-rise development be integrated into suburb settings? 2) How can this phenomenon contribute to an overall denser development of suburbs? 3) Which spatial pattern or typologies/ sub-typologies of the TB-TOD model do have the greatest energy efficiency? It addresses these questions by focusing on 1) energy, heat energy demand (excluding cooling and lighting) related to design issues at two levels: macro, urban scale and micro, individual buildings—physical dimension, height, morphology, spatial pattern of tall buildings and their relationship with each other and transport infrastructure; 2) Examining TB-TOD to provide more evidence of how the model works regarding ridership. The findings of the research show that the TB-TOD model can be identified as the most appropriate spatial patterns of tall buildings in suburban settings. And among the TB-TOD typologies/ sub-typologies, compact tall building blocks can be the most energy efficient one. This model is associated with much lower energy demands in buildings at the neighborhood level as well as lower transport needs in an urban scale while detached suburban high rise or low rise suburban housing will have the lowest energy efficiency. The research methodology is based on quantitative study through applying the available literature and static data as well as mapping and visual documentations of urban regions such as Google Earth, Microsoft Bing Bird View and Streetview. It will examine each suburb within each city through the satellite imagery and explore the typologies/ sub-typologies which are morphologically distinct. The study quantifies heat energy efficiency of different spatial patterns through simulation via GIS software.

Keywords: energy efficiency, spatial pattern, suburb, tall building transit-oriented development (TB-TOD)

Procedia PDF Downloads 246
10528 Rooftop Rainwater Harvesting for Sustainable Organic Farming: Insights from Smart cities in India

Authors: Rajkumar Ghosh

Abstract:

India faces a critical task of water shortage, specifically during dry seasons, which adversely impacts agricultural productivity and food protection. Natural farming, specializing in sustainable practices, demands green water management in smart cities in India. This paper examines how rooftop rainwater harvesting (RRWH) can alleviate water scarcity and support sustainable organic farming practices in India. RRWH emerges as a promising way to increase water availability for the duration of dry intervals and decrease reliance on traditional water sources in smart cities. The look at explores the capacity of RRWH to enhance water use performance, help crop growth, enhance soil health, and promote ecological stability inside the farming ecosystem. The medical paper delves into the advantages, challenges, and implementation techniques of RRWH in organic farming. It addresses demanding situations, including seasonal variability of rainfall, limited rooftop vicinity, and monetary concerns. Moreover, it analyses broader environmental and socio-economic implications of RRWH for sustainable agriculture, emphasizing water conservation, biodiversity protection, and the social properly-being of farming communities. The belief underscores the importance of RRWH as a sustainable solution for reaching the aim of sustainable agriculture in natural farming in India. It emphasizes the want for further studies, policy advocacy, and capacity-building initiatives to promote RRWH adoption and assist the transformation in the direction of sustainable organic farming systems. The paper proposes adaptive strategies to triumph over demanding situations and optimize the advantages of RRWH in organic farming. By way of doing so, India can make vast development in addressing water scarcity issues and making sure a greater resilient and sustainable agricultural future in smart cities.

Keywords: rooftop rainwater harvesting, organic farming, green water management, food protection, ecological stabilty

Procedia PDF Downloads 83
10527 Rethinking the Smartness for Sustainable Development Through the Relationship between Public and Private Actors

Authors: Selin Tosun

Abstract:

The improvements in technology have started to transform the way we live, work, play, and commute in our cities. The emerging smart city understanding has been paving the way for more efficient, more useful, and more profitable cities. Smart sensors, smart lighting, smart waste, water and electricity management, smart transportation and communication systems are introduced to cities at a rapid pace. In today's world, innovation is often correlated with start-up companies and technological pioneers seeking broader economic objectives such as production and competitiveness. The government's position is primarily that of an enabler, with creativity mostly coming from the private sector. The paper argues that to achieve sustainable development, the ways in which smart and sustainable city approaches are being applied to cities need to be redefined. The research aims to address common discussions in the discourse of smart and sustainable cities criticizing the priority of lifestyle sterilization over human-centered sustainable interventions and social innovation strategies. The dichotomy between the fact that smart cities are mostly motivated by the competitive global market and the fact that the delocalization is, in fact, their biggest problem in the way of becoming authentic, sustainable cities is the main challenge that we face today. In other words, the key actors in smart cities have different and somewhat conflicting interests and demands. By reviewing the roles of the public and private actors in smart city making, the paper aspires to reconceptualize the understanding of “smartness” in achieving sustainable development in which the “smartness” is understood as a multi-layered complex phenomenon that can be channeled through different dynamics. The case cities around the world are explored and compared in terms of their technological innovations, governance and policy innovations, public-private stakeholder relationships, and the understanding of the public realm. The study aims to understand the current trends and general dynamics in the field, key issues that are being addressed, the scale that is preferred to reflect upon and the projects that are designed for the particular issues.

Keywords: smart city, sustainable development, technological innovation, social innovation

Procedia PDF Downloads 174
10526 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing

Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed

Abstract:

Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.

Keywords: cognitive radio, energy detector, periodogram, spectrum sensing

Procedia PDF Downloads 363
10525 A Study of New Window Typology for Palestinian Residential Building for More Sustainable Building

Authors: Nisreen Ardda

Abstract:

Fenestrations are one of the main building envelope elements that play an important role in home social-ecological l factors. They play a vital role in providing natural lighting and ventilation, visual, thermal, and acoustical comfort, and also provide weather-tightness, privacy, a feeling of openness. In most home buildings, fenestrations are controlled manually by the occupants, which significantly impacts occupants' comfort and energy use. Culture plays a central role in the Palestinians window operation behavior. Improved windows design that provides the desired privacy while maintaining the appropriate function of fenestration (natural lighting, thermal comfort, and visual openness) is becoming a necessity. Therefore, this paper proposes a window typology to achieve the social and environmental factors in residential buildings in the West Bank. The window typology and reference building were designed in Rivet 2021, and natural ventilation was carried out in Design Builder 4.3.0.039. The results showed that the proposed typology provides the desired privacy and the feeling of openness without compromising natural ventilation as the existing window did.

Keywords: window design, passive design, sustainable built environment, building material

Procedia PDF Downloads 172
10524 Influence of Coatings on Energy Conservation in Construction Industry

Authors: Nancy Sakr, Mohamed Abou-Zeid

Abstract:

World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.

Keywords: energy consumption, building envelope, thermal insulation, protective coatings

Procedia PDF Downloads 128
10523 Nanotechnology Innovations for the Sustainable Buildings of the Future

Authors: Ayşin Sev, Meltem Ezel

Abstract:

Sustainability, being the urgent issue of our time, is closely related with the innovations in technology. Nanotechnology (NT), although not a new science, can be regarded relatively a new science for buildings with brand new materials and applications. This paper tends to give a research review of current and near future applications of nanotechnology (NT) for achieving high-performance and healthy buildings for a sustainable future. In the introduction, the driving forces for the sustainability of construction industry are explained. Then, the term NT is defined, and significance of innovations in NT for a sustainable construction industry is revealed. After presenting the application areas of NT and nanomaterials for buildings with a number of cases, challenges in the adoption of this technology are put forward, and finally the impacts of nanoparticles and nanomaterials on human health and environment are discussed.

Keywords: nanomaterial, self-healing concrete, self cleaning sensor, nanosensor, steel, wood, aerogel, flexible solar panel

Procedia PDF Downloads 441
10522 Energy Conservation Strategies of Buildings in Hot, Arid Region: Al-Khobar, Saudi Arabia

Authors: M. H. Shwehdi, S. Raja Mohammad

Abstract:

Recently energy savings have become more pronounced as a result of the world financial crises as well the unstable oil prices. Certainly all entities needs to adapt Energy Conservation and Management Strategies due to high monthly consumption of their spread locations and advancements of its telecom systems. These system improvements necessitate the establishment of more exchange centers as well provide energy savings. This paper investigates the impact of HVAC System Characteristics, Operational Strategies, the impact of Envelope Thermal Characteristics, and energy conservation measures. These are classified under three types of measures i.e. Zero-Investment; Low-Investment and High-Investment Energy Conservation Measures. The study shows that the Energy Conservation Measures (ECMs) pertaining to the HVAC system characteristics and operation represent the highest potential for energy reduction, attention should be given to window thermal and solar radiation characteristics when large window areas are used. The type of glazing system needs to be carefully considered in the early design phase of future buildings. Paper will present the thermal optimization of different size centers in the two hot-dry and hot-humid Saudi Arabian city of Al Khobar, East province.

Keywords: energy conservation, optimization, thermal design, intermittent operation, exchange centers, hot-humid climate, Saudi Arabia

Procedia PDF Downloads 434
10521 Effect of Defect Dipoles And Microstructure Engineering in Energy Storage Performance of Co-doped Barium Titanate Ceramics

Authors: Mahmoud Saleh Mohammed Alkathy

Abstract:

Electricity generated from renewable resources may help the transition to clean energy. A reliable energy storage system is required to use this energy properly. To do this, a high breakdown strength (Eb) and a significant difference between spontaneous polarization (Pmax) and remnant polarization (Pr) are required. To achieve this, the defect dipoles in lead free BaTiO3 ferroelectric ceramics are created using Mg2+ and Ni2+ ions as acceptor co-doping in the Ti site. According to the structural analyses, the co-dopant ions were effectively incorporated into the BTO unit cell. According to the ferroelectric study, the co-doped samples display a double hysteresis loop, stronger polarization, and high breakdown strength. The formation of oxygen vacancies and defect dipoles prevent domains' movement, resulting in hysteresis loop pinching. This results in increased energy storage density and efficiency. The defect dipoles mechanism effect can be considered a fascinating technology that can guide the researcher working on developing energy storage for next-generation applications.

Keywords: microstructure, defect, energy storage, effciency

Procedia PDF Downloads 75
10520 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones

Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu

Abstract:

In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.

Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV

Procedia PDF Downloads 149
10519 Understanding Solid Waste Management in Face of Political Instability: Actors, Roles, and Challenges to Sustainable Development in Kinshasa

Authors: Longondjo Etambakonga Clement

Abstract:

Local municipality responsible for solid waste management (SWM) in many developing countries is facing real challenge. This is even more critical in the country facing political instability. Few decades ago, it has emerged new urban governance including partnerships and involvement of formal and informal actors for an effective and sustainable solid waste management. This paper identifies SWM actors and analyzes their roles to sustainable development in Kinshasa. An attempt has been to examine the challenges facing the actors in managing effectively waste in the city. The study is based on the empirical data gathered in the years 2009 and 2014 in Kinshasa using expert interviews, observation and documentation. The findings indicate that solid waste in the city is poorly managed, activities not coordinated and fragmented, as consequence severe public health and environmental problems. Five group actors are involved in SWM in the city including government, private business, NGOs/CBOs/donors, household, scavengers, in which, scavengers are more visible in collection and recycling activities. The results suggest that recognition of informal collectors and recyclers (scavengers) and strengthening alliances among all SWM stakeholders can lead to greater effective SWM in the city. The key lessons learned include lack of city’s SWM culture over SWM, unwillingness to pay and lack of environmental consciences are the main obstructions to sustainable SWM, therefore there is a need for social capital approach to empower individual and group actors as to create capabilities for an sustainable SWM.

Keywords: challenges, institutions, political instability, scavengers, solid waste management, sustainable development

Procedia PDF Downloads 329