Search results for: in vitro toxicity
1176 Genetic Polymorphisms of the Human Organic Cation Transporter 2 gene, SLC22A2, in the Zulu population
Authors: N. Hoosain, S. Nene, B. Pearce, C. Jacobs, M. Du Plessis, M. Benjeddou
Abstract:
Organic Cation Transporters play a vital role in the absorption, tissue distribution and elimination of various substrates. Numerous studies have suggested that variations in non-synonymous single nucleotide polymorphisms (SNPs) of SLC22A2 could influence an individual’s response to various treatments, including clinically important drugs. This study is the first to determine the baseline frequency distribution for twenty SNPs of SLC22A2in the Zulu population. DNA was collected from 101 unrelated “healthy” Zulu participants. Genotypes of all samples were determined using a multiplex PCR and SNaPshot assay followed by the generation of the haplotype structure. This is the first time that the baseline frequency distribution of SNPs is reported for the Zulu population. Data from this study could be used in in vitro and in vivo pharmacogenetic and pharmacokinetic studies to evaluate the potential role the studied SNPs play in the therapeutic efficacy of clinically important drugs.Keywords: SLC22A2 gene, SNaPshot assay, PCR, Zulu population
Procedia PDF Downloads 2931175 Effect Mechanisms of Aromatic Plants: Effects on Intestinal Health and Broiler Feeding
Authors: Ozlem Durna Aydin, Gultekin Yildiz
Abstract:
Antibiotics are microbial metabolites with low molecular weight produced by fungi and algae, inhibiting the development of other microorganisms even in low growth. Antibiotics have been used as growth factors in animal feeds for many years. They prohibited; because of increased residue problem and increased resistance to antibiotics in bacteria due to prolonged use. Aromatic plants and extracts have attracted the attention of scientists nowadays due to positive reasons such as confidence of the community to the products those are coming from nature, desire to consume, and no residue problems. Plant extracts are obtained from aromatic plants, and they come forward with antifungal, antibacterial, antiviral, antioxidant and antilipidemic properties. It has been stated that intestinal histomorphology and microbiosis are positively affected by the use of plant extract in feeds. In the present day, aromatic plants and extracts are a remarkable research field with intriguing unknowns in the field of animal nutrition, and they continue to exist in the journal in vitro and in vivo studies.Keywords: aromatic plant, broilers, extract mechanism of action, intestinal health
Procedia PDF Downloads 1681174 Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Zero Order Release of Vildagliptin
Authors: Hend Ben Tkhayat , Khaled Al Zahabi, Husam Younes
Abstract:
Introduction: Vildagliptin (VG), a dipeptidyl peptidase-4 inhibitor (DPP-4), was proven to be an active agent for the treatment of type 2 diabetes. VG works by enhancing and prolonging the activity of incretins which improves insulin secretion and decreases glucagon release, therefore lowering blood glucose level. It is usually used with various classes, such as insulin sensitizers or metformin. VG is currently only marketed as an immediate-release tablet that is administered twice daily. In this project, we aim to formulate an extended-release with a zero-order profile tableted lipid microparticles of VG that could be administered once daily ensuring the patient’s convenience. Method: The spray-congealing technique was used to prepare VG microparticles. Compritol® was heated at 10 oC above its melting point and VG was dispersed in the molten carrier using a homogenizer (IKA T25- USA) set at 13000 rpm. VG dispersed in the molten Compritol® was added dropwise to the molten Gelucire® 50/13 and PEG® (400, 6000, and 35000) in different ratios under manual stirring. The molten mixture was homogenized and Carbomer® amount was added. The melt was pumped through the two-fluid nozzle of the Buchi® Spray-Congealer (Buchi B-290, Switzerland) using a Pump drive (Master flex, USA) connected to a silicone tubing wrapped with silicone heating tape heated at the same temperature of the pumped mix. The physicochemical properties of the produced VG-loaded microparticles were characterized using Mastersizer, Scanning Electron Microscope (SEM), Differential Scanning Calorimeter (DSC) and X‐Ray Diffractometer (XRD). VG microparticles were then pressed into tablets using a single punch tablet machine (YDP-12, Minhua pharmaceutical Co. China) and in vitro dissolution study was investigated using Agilent Dissolution Tester (Agilent, USA). The dissolution test was carried out at 37±0.5 °C for 24 hours in three different dissolution media and time phases. The quantitative analysis of VG in samples was realized using a validated High-Pressure Liquid Chromatography (HPLC-UV) method. Results: The microparticles were spherical in shape with narrow distribution and smooth surface. DSC and XRD analyses confirmed the crystallinity of VG that was lost after being incorporated into the amorphous polymers. The total yields of the different formulas were between 70% and 80%. The VG content in the microparticles was found to be between 99% and 106%. The in vitro dissolution study showed that VG was released from the tableted particles in a controlled fashion. The adjustment of the hydrophilic/hydrophobic ratio of excipients, their concentration and the molecular weight of the used carriers resulted in tablets with zero-order kinetics. The Gelucire 50/13®, a hydrophilic polymer was characterized by a time-dependent profile with an important burst effect that was decreased by adding Compritol® as a lipophilic carrier to retard the release of VG which is highly soluble in water. PEG® (400,6000 and 35 000) were used for their gelling effect that led to a constant rate delivery and achieving a zero-order profile. Conclusion: Tableted spray-congealed lipid microparticles for extended-release of VG were successfully prepared and a zero-order profile was achieved.Keywords: vildagliptin, spray congealing, microparticles, controlled release
Procedia PDF Downloads 1221173 Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol
Authors: Mariyah Poonawala, Selvan Ravindran, Anuradha Vaidya
Abstract:
Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes.Keywords: co-culture system, hematopoietic micro-environment, KG1a cell line, M210B4 cell line, trans-resveratrol
Procedia PDF Downloads 2601172 A Study on the Computation of Gourava Indices for Poly-L Lysine Dendrimer and Its Biomedical Applications
Authors: M. Helen
Abstract:
Chemical graph serves as a convenient model for any real or abstract chemical system. Dendrimers are novel three dimensional hyper branched globular nanopolymeric architectures. Drug delivery scientists are especially enthusiastic about possible utility of dendrimers as drug delivery tool. Dendrimers like poly L lysine (PLL), poly-propylene imine (PPI) and poly-amidoamine (PAMAM), etc., are used as gene carrier in drug delivery system because of their chemical characteristics. These characteristics of chemical compounds are analysed using topological indices (invariants under graph isomorphism) such as Wiener index, Zagreb index, etc., Prof. V. R. Kulli motivated by the application of Zagreb indices in finding the total π energy and derived Gourava indices which is an improved version over Zagreb indices. In this paper, we study the structure of PLL-Dendrimer that has the following applications: reduction in toxicity, colon delivery, and topical delivery. Also, we determine first and second Gourava indices, first and second hyper Gourava indices, product and sum connectivity Gourava indices for PLL-Dendrimer. Gourava Indices have found applications in Quantitative Structure-Property Relationship (QSPR)/ Quantitative Structure-Activity Relationship (QSAR) studies.Keywords: connectivity Gourava indices, dendrimer, Gourava indices, hyper GouravaG indices
Procedia PDF Downloads 1411171 Influence of Chemical Pollution on Thermal Habitats of the Ciliate Tetrahymena thermophila
Authors: Doufoungognon C. Kone
Abstract:
Global change, in particular pollution and global warming, threatens ecosystems and the biodiversity they harbor. Due to pollutants exposure, organisms might modify their thermal niches in order to track the thermal conditions limiting the negative impacts of chemical stressors depending on their mode of action. This study tests the influence of different pollutants, copper, salt, and chloramphenicol, on the thermal preferences of the ciliate Tetrahymena thermophila. Six genotypes were exposed to a gradient of concentrations ranging from 0 to 500mg/L for copper, 0 to 300 mg/l for chloramphenicol, and 0 to 12g/l for salt in synthetic media at eight temperatures ranging from 11 to 39° C. The measured fitness proxies are the maximum growth rate and the 50% growth inhibitory concentration (IC50). The results show that the majority of genotypes are more resistant to chloramphenicol in temperatures below their thermal optimum without pollutants, while they better tolerate other salt and copper in temperatures above their thermal optimum. In addition, generalists reduce their niche width while specialists widen it in chloramphenicol. Overall, results suggest that global warming would have a particularly deleterious effect in the case of chemical pollution. This pollution would induce the full disruption of the thermal habitats.Keywords: ciliate, thermal niche, growth rate, toxicity, multiple stressors
Procedia PDF Downloads 901170 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells
Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo
Abstract:
Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.Keywords: biosensors, polymer, skin irritation, degradation products, cell viability
Procedia PDF Downloads 1401169 Nutraceutical Potential of Mushroom Bioactive Metabolites and Their Food Functionality
Authors: Jackson Ishara, Ariel Buzera, Gustave N. Mushagalusa, Ahmed R. A. Hammam, Judith Munga, Paul Karanja, John Kinyuru
Abstract:
Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and affordable. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases.Keywords: bioactive metabolites, food functionality, health-threatening conditions, mushrooms, nutraceutical
Procedia PDF Downloads 1051168 Comparative DNA Binding of Iron and Manganese Complexes by Spectroscopic and ITC Techniques and Antibacterial Activity
Authors: Maryam Nejat Dehkordi, Per Lincoln, Hassan Momtaz
Abstract:
Interaction of Schiff base complexes of iron and manganese (iron [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) chloride, [Fe Salen]Cl, manganese [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) acetate) with DNA were investigated by spectroscopic and isothermal titration calorimetry techniques (ITC). The absorbance spectra of complexes have shown hyper and hypochromism in the presence of DNA that is indication of interaction of complexes with DNA. The linear dichroism (LD) measurements confirmed the bending of DNA in the presence of complexes. Furthermore, isothermal titration calorimetry experiments approved that complexes bound to DNA on the base of both electrostatic and hydrophobic interactions. Furthermore, ITC profile exhibits the existence of two binding phases for the complex. Antibacterial activity of ligand and complexes were tested in vitro to evaluate their activity against the gram positive and negative bacteria.Keywords: Schiff base complexes, ct-DNA, linear dichroism (LD), isothermal titration calorimetry (ITC), antibacterial activity
Procedia PDF Downloads 4711167 The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods
Authors: Yi-Jie Lin, Jyh-Cherng Chen
Abstract:
The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.Keywords: alkali fusion, hydrothermal, fly ash, zeolite
Procedia PDF Downloads 2421166 Formulation Assay Of An Aloe Vera-based Oral Gel And Its Effect On Probiotics
Authors: Serier Bouchenak NORA, Bouguerni ABDELMADJID
Abstract:
Algeria is a Mediterranean country which provides an ideal habitat for a wide range of species of medicinal plants. The objective of this current work is to extract the gel contained in the leaves of Aloe vera in order to formulate an oral gel as a prebiotic and see its effects on probiotics (lactic and pseudo lactic bacteria and bifido bacterium). Aloe vera polysaccharid extract is a matrix mainly composed of non-digestible oligosaccharids or slow-fermentation polysaccharids, as this produces a lower pH. The behavior of Aloe vera during in vitro fermentation of the colon was similar to that of lactulose, indicating the possibility of using Aloe vera and its polysaccharids extracts as a prebiotic. The microbiological control of the two kinds of bacteria (bifidobacteria and staphylococci) has demonstrated the gel capacity to stimulate them by these bioactive compounds. The generation time of Bifidobacteria in fermented milk with added prebiotic Aloe vera gel is 80.408 min with a µ growth rate equal to 0.012 min -1. The doubling time is 61.459 min with a growth rate µ equal to 0.016 min -1 for the Streptococcus sp. species.Keywords: aloe vera, probiotics, prebiotics, growth rate, bifidobacteria
Procedia PDF Downloads 711165 Nano-Hydroxyapatite/Dextrin/Chitin Nanocomposite System for Bone Tissue Engineering
Authors: Mohammad Shakir, Reshma Jolly, Mohammad Shoeb Khan, Noor-E-Iram
Abstract:
A nanocomposite system incorporating dextrin into nano-hydroxyapatite/chitin matrix (n-HA/DX/CT) has been successfully synthesized via co-precipitation route at room temperature for the application in bone tissue engineering by investigating biocompatibility, cytotoxicity and mechanical properties. The FTIR spectra of n-HA/DX/CT nanocomposite indicated a considerable intermolecular interaction between the various components of the system. The results of XRD, TEM and TGA/DTA revealed that the crystallinity, size and thermal stability of the n-HA/DX/CT scaffold has decreased and increased respectively. The result of SEM image of the n-HA/DX/CT scaffold indicated that the incorporation of dextrin affected the surface morphology while considerable in-vitro bioactivity has been observed in n-HA/DX/CT based on SBF study, referring a step towards possibility of making direct bond to living bone if implanted. Moreover, MTT assay suggested the non-toxic nature of n-HA/DX/CT to murine fibroblast L929 cells. The swelling study of n-HA/DX/CT scaffold indicated the low swelling rate for n-HADX/CT. All these results have paved the way for n-HA/DX/CT to be used as a competent material for bone tissue engineering.Keywords: autograft, chitin, dextrin, nanocomposite
Procedia PDF Downloads 5361164 Mycophenolate Mofetil Increases Mucin Expression in Primary Cultures of Oral Mucosal Epithelial Cells for Application in Limbal Stem Cell Deficiency
Authors: Sandeep Kumar Agrawal, Aditi Bhattacharya, Janvie Manhas, Krushna Bhatt, Yatin Kholakiya, Nupur Khera, Ajoy Roychoudhury, Sudip Sen
Abstract:
Autologous cultured explants of human oral mucosal epithelial cells (OMEC) are a potential therapeutic modality for limbal stem cell deficiency (LSCD). Injury or inflammation of the ocular surface in the form of burns, chemicals, Stevens Johnson syndrome, ocular cicatricial pemphigoid etc. can lead to destruction and deficiency of limbal stem cells. LSCD manifests in the form of severe ocular surface diseases (OSD) characterized by persistent and recurrent epithelial defects, conjuntivalisation and neovascularisation of the corneal surface, scarring and ultimately opacity and blindness. Most of the cases of OSD are associated with severe dry eye pertaining to diminished mucin and aqueous secretion. Mycophenolate mofetil (MMF) has been shown to upregulate the mucin expression in conjunctival goblet cells in vitro. The aim of this study was to evaluate the effects of MMF on mucin expression in primary cultures of oral mucosal epithelial cells. With institutional ethics committee approval and written informed consent, thirty oral mucosal epithelial tissue samples were obtained from patients undergoing oral surgery for non-malignant conditions. OMEC were grown on human amniotic membrane (HAM, obtained from expecting mothers undergoing elective caesarean section) scaffold for 2 weeks in growth media containing DMEM & Ham’s F12 (1:1) with 10% FBS and growth factors. In vitro dosage of MMF was standardised by MTT assay. Analysis of stem cell markers was done using RT-PCR while mucin mRNA expression was quantified using RT-PCR and q-PCR before and after treating cultured OMEC with graded concentrations of MMF for 24 hours. Protein expression was validated using immunocytochemistry. Morphological studies revealed a confluent sheet of proliferating, stratified oral mucosal epithelial cells growing over the surface of HAM scaffold. The presence of progenitor stem cell markers (p63, p75, β1-Integrin and ABCG2) and cell surface associated mucins (MUC1, MUC15 and MUC16) were elucidated by RT-PCR. The mucin mRNA expression was found to be upregulated in MMF treated primary cultures of OMEC, compared to untreated controls as quantified by q-PCR with β-actin as internal reference gene. Increased MUC1 protein expression was validated by immunocytochemistry on representative samples. Our findings conclude that OMEC have the ability to form a multi-layered confluent sheet on the surface of HAM similar to a cornea, which is important for the reconstruction of the damaged ocular surface. Cultured OMEC has stem cell properties as demonstrated by stem cell markers. MMF can be a novel enhancer of mucin production in OMEC. It has the potential to improve dry eye in patients undergoing OMEC transplantation for bilateral OSD. Further clinical trials are required to establish the role of MMF in patients undergoing OMEC transplantation.Keywords: limbal stem cell deficiency, mycophenolate mofetil, mucin, ocular surface disease
Procedia PDF Downloads 3321163 Chemical Composition and Antimicrobial Activity of the Essential Oil of Mentha piperita Endemic in Khorasan-Iran
Authors: V. Hakimzadeh, M. Noori, M. maleki
Abstract:
The aim of this study was to determine the composition and antimicrobial effect of Mentha piperita essential oil in "in-vitro" condition. The chemical composition of the essential oil obtained by hydro-distillation was examined by GC/MS and the antimicrobial effect was studied on the growth of seven microbial species including Bacillus cereus, Pseudomonas aeruginosa and Proteus vulgaris using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. Chemical composition analysis identified a total of 28 compounds in which the main components were menthol (32%), mentone (13.4), menthyl acetate (12%), 1,8-cineole (8.2%) and neomenthol (4%) representing 69.6 % of the total oil. Other separated components accounted for less than 30.4% of the oil. Results of antimicrobial analysis showed that the MIC values for Bacillus cereus, Pseudomonas aeruginosa and Proteus vulgaris was respectively 50, 200 and 100 µg/ml and the MBC was determined at 200, 400 and 200 µg/ml respectively. The results of the present study indicated that Mentha piperita essential oil had significant antimicrobial activity.Keywords: antimicrobial activity, essential oil composition, Mentha piperita
Procedia PDF Downloads 5281162 Immunoliposome-Mediated Drug Delivery to Plasmodium-Infected and Non-Infected Red Blood Cells as a Dual Therapeutic/Prophylactic Antimalarial Strategy
Authors: Ernest Moles, Patricia Urbán, María Belén Jiménez-Díaz, Sara Viera-Morilla, Iñigo Angulo-Barturen, Maria Antònia Busquets, Xavier Fernàndez-Busquets
Abstract:
Bearing in mind the absence of an effective vaccine against malaria and its severe clinical manifestations causing nearly half a million deaths every year, this disease represents nowadays a major threat to life. Besides, the basic rationale followed by currently marketed antimalarial approaches is based on the administration of drugs on their own, promoting the emergence of drug-resistant parasites owing to the limitation in delivering drug payloads into the parasitized erythrocyte high enough to kill the intracellular pathogen while minimizing the risk of causing toxic side effects to the patient. Such dichotomy has been successfully addressed through the specific delivery of immunoliposome (iLP)-encapsulated antimalarials to Plasmodium falciparum-infected red blood cells (pRBCs). Unfortunately, this strategy has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here, we show that encapsulation efficiencies reaching >96% can be achieved for the weakly basic drugs chloroquine (CQ) and primaquine using the pH gradient active loading method in liposomes composed of neutrally charged, saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the intracellular delivery of drugs not affecting the erythrocytic metabolism. Using this strategy, we have obtained unprecedented nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Polyethylene glycol-coated liposomes conjugated with monoclonal antibodies specific for the erythrocyte surface protein glycophorin A (anti-GPA iLP) were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added iLPs retained into the cells. When exposed for only 15 min to P. falciparum in vitro cultures synchronized at early stages, free CQ had no significant effect over parasite viability up to 200 nM drug, whereas iLP-encapsulated 50 nM CQ completely arrested its growth. Furthermore, when assayed in vivo in P. falciparum-infected humanized mice, anti-GPA iLPs cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg. In comparison, free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement in drug antimalarial efficacy is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.Keywords: immunoliposomal nanoparticles, malaria, prophylactic-therapeutic polyvalent activity, targeted drug delivery
Procedia PDF Downloads 3771161 Enhanced Degradation of Endosulfan in Soil Using Lycopersicon esculentum L. (Tomato) and Endosulfan Tolerant Bacterium Strains
Authors: Rupa Rani, Vipin Kumar
Abstract:
Endosulfan, an organochlorine pesticide is of environmental concern due to its apparent persistence and toxicity. It has been reported as contaminants in soil, air, and water and is bioaccumulated and magnified in ecosystems. The combined use of microorganisms and plants has great potential for remediating soil contaminated with organic compounds such as pesticides. The objective of this study was to evaluate whether the bacterial inoculation influences plant growth promotion, endosulfan degradation in soil and endosulfan accumulation in different plant parts. Lycopersicon esculentum L. (Tomato) was grown in endosulfan spiked soil and inoculated with endosulfan tolerant bacterial strains. Endosulfan residues from different parts of plants and soil were extracted and estimated by using gas chromatograph equipped with 63Ni electron capture detector (GC-ECD). The inoculation of bacterial strains into the soil with plants showed a beneficial effect on endosulfan degradation and plant biomass production. Maximum endosulfan (90%) degradation was observed after 120 days of bacterial inoculation in the soil. Furthermore, there was significantly less endosulfan accumulation in roots and shoots of bacterial strains inoculated plants as compared to uninoculated plants. The results show the effectiveness of inoculated endosulfan tolerant bacterial strains to increase the remediation of endosulfan contaminated soil.Keywords: organochlorine pesticides, endosulfan, degradation, plant-bacteria partnerships
Procedia PDF Downloads 1521160 A Review on Thermal Conductivity of Bio-Based Carbon Nanotubes
Authors: Gloria A. Adewumi, Andrew C. Eloka-Eboka, Freddie L. Inambao
Abstract:
Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have been identified as being responsible for thermal conductivities in carbon nanotubes. Therefore, understanding the mechanism of heat conduction in CNTs involves investigating the difference between the varieties of phonon modes and knowing the kinds of phonon modes that play the dominant role. In this review, a reference to a different number of studies is made and in addition, the role of phonon relaxation rate mainly controlled by boundary scattering and three-phonon Umklapp scattering process was investigated. Results show that the phonon modes are sensitive to a number of nanotube conditions such as: diameter, length, temperature, defects and axial strain. At a low temperature (<100K) the thermal conductivity increases with increasing temperature. A small nanotube size causes phonon quantization which is evident in the thermal conductivity at low temperatures.Keywords: carbon nanotubes, phonons, thermal conductivity, Umklapp process
Procedia PDF Downloads 3601159 Environmental Fate and Toxicity of Aged Titanium Dioxide Nano-Composites Used in Sunscreen
Authors: Danielle Slomberg, Jerome Labille, Riccardo Catalano, Jean-Claude Hubaud, Alexandra Lopes, Alice Tagliati, Teresa Fernandes
Abstract:
In the assessment and management of cosmetics and personal care products, sunscreens are of emerging concern regarding both human and environmental health. Organic UV blockers in many sunscreens have been evidenced to undergo rapid photodegradation, induce dermal allergic reactions due to skin penetration, and to cause adverse effects on marine systems. While mineral UV-blockers may offer a safer alternative, their fate and impact and resulting regulation are still under consideration, largely related to the potential influence of nanotechnology-based products on both consumers and the environment. Nanometric titanium dioxide (TiO₂) UV-blockers have many advantages in terms of sun protection and asthetics (i.e., transparency). These UV-blockers typically consist of rutile nanoparticles coated with a primary mineral layer (silica or alumina) aimed at blocking the nanomaterial photoactivity and can include a secondary organic coating (e.g., stearic acid, methicone) aimed at favouring dispersion of the nanomaterial in the sunscreen formulation. The nanomaterials contained in the sunscreen can leave the skin either through a bathing of everyday usage, with subsequent release into rivers, lakes, seashores, and/or sewage treatment plants. The nanomaterial behaviour, fate and impact in these different systems is largely determined by its surface properties, (e.g. the nanomaterial coating type) and lifetime. The present work aims to develop the eco-design of sunscreens through the minimisation of risks associated with nanomaterials incorporated into the formulation. All stages of the sunscreen’s life cycle must be considered in this aspect, from its manufacture to its end-of-life, through its use by the consumer to its impact on the exposed environment. Reducing the potential release and/or toxicity of the nanomaterial from the sunscreen is a decisive criterion for its eco-design. TiO₂ UV-blockers of varied size and surface coating (e.g., stearic acid and silica) have been selected for this study. Hydrophobic TiO₂ UV-blockers (i.e., stearic acid-coated) were incorporated into a typical water-in-oil (w/o) formulation while hydrophilic, silica-coated TiO₂ UV-blockers were dispersed into an oil-in-water (o/w) formulation. The resulting sunscreens were characterised in terms of nanomaterial localisation, sun protection factor, and photo-passivation. The risk to the direct aquatic environment was assessed by evaluating the release of nanomaterials from the sunscreen through a simulated laboratory aging procedure. The size distribution, surface charge, and degradation state of the nano-composite by-products, as well as their nanomaterial concentration and colloidal behaviour were determined in a variety of aqueous environments (e.g., seawater and freshwater). Release of the hydrophobic nanocomposites into the aqueous environment was driven by oil droplet formation while hydrophilic nano-composites were readily dispersed. Ecotoxicity of the sunscreen by-products (from both w/o and o/w formulations) and their risk to marine organisms were assessed using coral symbiotes and tropical corals, evaluating both lethal and sublethal toxicities. The data dissemination and provided risk knowledge from the present work will help guide regulation related to nanomaterials in sunscreen, provide better information for consumers, and allow for easier decision-making for manufacturers.Keywords: alteration, environmental fate, sunscreens, titanium dioxide nanoparticles
Procedia PDF Downloads 2631158 Stroma-Providing Activity of Adipose Derived Mesenchymal Stromal Cells in Tissue-Related O2 Microenvironment
Authors: P. I. Bobyleva, E. R. Andreeva, I. V. Andrianova, E. V. Maslova, L. B. Buravkova
Abstract:
This work studied the ability of adipose tissue-derived mesenchymal stromal cells (MSCs) to form stroma for expansion of cord blood hematopoietic cells. We showed that 72-hour interaction of MSCs with cord blood mononuclear cells (MNCs) in vitro at atmospheric (20%) and low (5%) O2 conditions increased the expression of ICAM-1, HCAM (at the beginning of interaction) on MSCs. Viability of MSCs and MNCs were maintained at high level. Adhesion of MNCs to MSCs was faster at 20% O2. MSCs promoted the proliferation of adhered MNCs to form the suspension containing great number of hematopoietic colony-forming units, and this effect was more pronounced at 5% O2. Thus, adipose-derived MSCs supplied sufficient stromal support to cord blood MNCs both at 20% and 5% О2, providing their adhesion with further expansion of new generation of different hematopoietic lineages.Keywords: hematopoietic stem and progenitor cells, mesenchymal stromal cells, tissue-related oxygen, adipose tissue
Procedia PDF Downloads 4201157 Biodegradation of Chlorpyrifos in Real Wastewater by Acromobacter xylosoxidans SRK5 Immobilized in Calcium Alginate
Authors: Saira Khalid, Imran Hashmi
Abstract:
Agrochemical industries produce huge amount of wastewater containing pesticides and other harmful residues. Environmental regulations make it compulsory to bring pesticides to a minimum level before releasing wastewater from industrial units.The present study was designed with the objective to investigate biodegradation of CP in real wastewater using bacterial cells immobilized in calcium alginate. Bacterial strain identified as Acromobacter xylosoxidans SRK5 (KT013092) using 16S rRNA nucleotide sequence analysis was used. SRK5 was immobilized in calcium alginate to make calcium alginate microspheres (CAMs). Real wastewater from industry having 50 mg L⁻¹ of CP was inoculated with free cells or CAMs and incubated for 96 h at 37˚C. CP removal efficiency with CAMs was 98% after 72 h of incubation, and no lag phase was observed. With free cells, 12h of lag phase was observed. After 96 h of incubation 87% of CP removal was observed when inoculated with free cells. No adsorption was observed on vacant CAMs. Phytotoxicity assay demonstrated considerable loss in toxicity. Almost complete COD removal was achieved at 96 h with CAMs. Study suggests the use of immobilized cells of SRK5 for bioaugmentation of industrial wastewater for CP degradation instead of free cells.Keywords: biodegradation, chlorpyrifos, immobilization, wastewater
Procedia PDF Downloads 1791156 Synthesis and Anti-Inflammatory Activity of Pyrazol-3-yl Thiazole 4-Carboxylic Acid Derivatives Targeting Enzyme in the Leukotriene Pathway
Authors: Shweta Sinha, Mukesh Doble, Manju S. L.
Abstract:
Pyrazole scaffold is an important group of compound in heterocyclic chemistry and is found to possess numerous uses in chemistry. Pyrazole derivatives are also known to possess important biological activities including antitumor, antimicrobial, antiviral, antifungal, anticancer and anti-inflammatory. Inflammation is associated with pain, allergy and asthma. Leukotrienes are mediators of various inflammatory and allergic disorders. 5-Lipoxygenase (5-LOX) is an important enzyme involved in the biosynthesis of leukotrienes and metabolism of arachidonic acid (AA) and thus targeted for anti-inflammation. In vitro inhibitory activity of pyrazol-3-yl thiazole 4-carboxylic acid derivatives is tested against enzyme 5-LOX. Most of these compounds exhibit good inhibitory activity against this enzyme. Binding mode study of these compounds is determined by computational tool. Further experiments are being done to understand the mechanism of action of these compounds in inhibiting this enzyme. To conclude, these compounds appear to be a promising target in drug design against 5-LOX.Keywords: inflammation, inhibition, 5-lipoxygenase, pyrazole
Procedia PDF Downloads 2451155 The Potential of Ursolic Acid Acetate as an Agent for Malarial Chemotherapy
Authors: Mthokozisi B. C. Simelane
Abstract:
Despite the various efforts by governmental and non-governmental organizations aimed at eradicating the disease, malaria is said to kill a child every 30 seconds. Traditional healers use different concoctions prepared from medicinal plants to treat malaria. In the quest to bio-prospect plant-derived triterpenes for anti-malaria activity, we report here the in vivo antiplasmodial activity of ursolic acid acetate (ursolic acid isolated from dichloromethane extract of Mimusops caffra was chemically modified to its acetate derivative). The transdermal administration of ursolic acid acetate (UAA) dose dependently showed complete inhibition of the parasites’ growth at the highest concentration of 400 mg/kg after 15 days of Plasmodium berghei infection. UAA prevented the in vitro aggregation of MDH but did not prevent the expression of PfHsp 70 in E. coli XL1 blue cells. It, however, enhanced PfHsp70 ATPase activity with the specific activity of 65 units (amount of phosphate released 73.83 nmolPi/min.mg). Ursolic acid acetate prevented the formation of hemozoin (60 ± 0.02% at 6 mg/ml). The results suggest that Ursolic acid acetate possesses potential anti-malaria properties.Keywords: Mimusops caffra, ursolic acid acetate, hemozoin, Malaria
Procedia PDF Downloads 4261154 Comparison of Classical and Ultrasound-Assisted Extractions of Hyphaene thebaica Fruit and Evaluation of Its Extract as Antibacterial Activity in Reducing Severity of Erwinia carotovora
Authors: Hanan Moawad, Naglaa M. Abd EL-Rahman
Abstract:
Erwinia carotovora var. carotovora is the main cause of soft rot in potatoes. Hyphaene thebaica was studied for biocontrol of E. carotovora which inhibited growth of E. carotovora on solid medium, a comparative study of classical and ultrasound-assisted extractions of Hyphaene thebaica fruit. The use of ultrasound decreased significant the total time of treatment and increase the total amount of crude extract. The crude extract was subjected to determine the in vitro, by a bioassay technique revealed that the treatment of paper disks with ultrasound extraction of Hyphaene thebaica reduced the growth of pathogen and produced inhibition zones up to 38mm in diameter. The antioxidant activity of ultrasound-ethanolic extract of Doum fruits (Hyphaene thebaica) was determined. Data obtained showed that the extract contains the secondary metabolites such as Tannins, Saponin, Flavonoids, Phenols, Steroids, Terpenoids, Glycosides and Alkaloids.Keywords: ultrasound, classical extract, biological control, Erwinia carotovora, Hyphaene thebaica
Procedia PDF Downloads 5201153 A Study on the Synthesis and Antioxidant Activity of Hybrid Pyrazoline Integrated with Pyrazole and Thiazole Nuclei
Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya
Abstract:
Pyrazole is an aromatic five-membered heterocycle with two nitrogen and three carbon atoms in its ring structure. According to the literature, pyrazoline, pyrazole, and thiazole-containing moieties are found in various drug structures and are responsible for nearly all pharmacological effects. The pyrazoline linked to pyrazole moiety carbothioamides was synthesized via the reaction of pyrazole-bearing chalcones (3-(5-chloro-3-methyl-¹-phenyl-1H-pyrazol-4-yl)-¹-(substituted aryl) prop-2-ene-¹-one derivatives) with a nucleophile thiosemicarbohyrazide by heating in ethanol using fused sodium acetate as a catalyst. Then the carbothioamide derivatives were converted into the pyrazoline hybrid to pyrazole and thiazole derivatives by condensing with substituted phenacyl bromide in alcohol in a basic medium. Next, the chemical structure of the newly synthesized molecules was confirmed by IR, 1H-NMR, and mass spectral data. Further, they were screened for their in vitro antioxidant activity. Compared to butylated hydroxy anisole (BHA)., the antioxidant data showed that the synthesized compounds had good to moderate activity.Keywords: pyrazoline-pyrazole carbothioamide derivatives, pyrazoline-pyrazole-thiazole derivatives, spectral studies, antioxidant activity
Procedia PDF Downloads 741152 Preparation of Gramine Nanosuspension and Protective Effect of Gramine on Human Oral Cell Lines by Induction of Apoptosis
Authors: K. Suresh, R. Arunkumar
Abstract:
The objective of this study is to investigate the preparation of gramine nano suspension and protective effect of Gramine on the apoptosis of laryngeal cancer cells cell line (HEp-2 and KB). The growth inhibition rate of Hep-2 and KB cells in vitro were measured by MTT assay and apoptosis by, levels of reactive oxygen species, mitochondrial membrane potential, morphological changes and flowcytometry. Based on the results, we determined the effective doses of gramine as 127.23µm/ml for 24 hr and 119.81 µm/ml for 48hr in hep-2 cell line and 147.58 µm ml for 24 hr and 123.74µm µm/ml for 48hr in KB cell line. cytotoxicity effects of gramine were confirmed by treatment of HEp-2 cell and KB cell with IC50 concentration of gramine resulted in sequences of events marked by the enhance the apoptosis accompanied by loss of cell viability, modulation of reactive oxygen species and cell cycle arrest through the induction of G0/G1 phase arrest on HEp-2 cells. Our study suggests that the nanosuspension of gramine possesses the more cytotoxic effect of cancer cells and a novel candidate for cancer chemoprevention.Keywords: apoptosis, HEp-2 cell line, KB cell line mitochondria, gramine, nanosuspension
Procedia PDF Downloads 4551151 Speciation and Bioavailability of Heavy Metals in Greenhouse Soils
Authors: Bulent Topcuoglu
Abstract:
Repeated amendments of organic matter and intensive use of fertilizers, metal-enriched chemicals and biocides may cause soil and environmental pollution in greenhouses. Specially, the impact of heavy metal pollution of soils on food metal content and underground water quality has become a public concern. Due to potential toxicity of heavy metals to human life and environment, determining the chemical form of heavy metals in greenhouse soils is an important approach of chemical characterization and can provide useful information on its mobility and bioavailability. A sequential extraction procedure was used to estimate the availability of heavy metals (Zn, Cd, Ni, Pb and Cr) in greenhouse soils of Antalya Aksu. Zn was predominantly associated with Fe-Mn oxide fraction, major portion of Cd associated with carbonate and organic matter fraction, a major portion of (>65 %) Ni and Cr were largely associated with Fe-Mn oxide and residual fractions and Pb was largely associated with organic matter and Fe-Mn oxide fractions. Results of the present study suggest that the mobility and bioavailability of metals probably increase in the following order: Cr < Pb < Ni < Cd < Zn. Among the elements studied, Zn and Cd appeared to be the most readily soluble and potentially bioavailable metals and these metals may carry a potential risk for metal transfer in food chain and contamination to ground water.Keywords: metal speciation, metal mobility, greenhouse soils, biosystems engineering
Procedia PDF Downloads 4181150 The Role Of Diallyl Trisulfide As A Suppressor In Activated-Platelets Induced Human Breast Cancer MDA-MB-435s Cells Hematogenous Metastasis
Authors: Yuping Liu, Li Tao, Yin Lu
Abstract:
Accumulating evidence has been shown that diallyl trisulfide (DATS) from garlic may reduce the risk of developing several types of cancer. In view of the dynamic crosstalk interplayed by tumor cells and platelets in hematogenous metastasis, we demonstrate the effectiveness of DATS on the metastatic behaviors of MDA-MB-435s human breast cancer cell line co-incubated with activated platelets. Indeed, our data identified that DATS significantly blocked platelets fouction induced by PAF, followed by the decreased production of TXB2. DATS was found to dose-dependently suppressed MDA-MB-435s cell migration and invasion in presence of activated platelets by PAF in vitro. Furthermore, the expression, secretion and enzymatic activity of matrix metalloproteinase (MMP)-2/9, as well as the luciferase activity of upstream regulator NF-κB in MDA-MB-435s, were obviously diminished by DATS. In parallel, DATS blocked upstream NF-κB activation signaling complexes composed of extracellular signal-related kinase (ERK) as assessed by measuring the levels of the phosphorylated forms.Keywords: DATS, ERK, metastasis, MMPs, NF-κB, platelet
Procedia PDF Downloads 3871149 Antioxidant Potency of Ethanolic Extracts from Selected Aromatic Plants by in vitro Spectrophotometric Analysis
Authors: Tatjana Kadifkova Panovska, Svetlana Kulevanova, Blagica Jovanova
Abstract:
Biological systems possess the ability to neutralize the excess of reactive oxygen species (ROS) and to protect cells from destructive alterations. However, many pathological conditions (cardiovascular diseases, autoimmune disorders, cancer) are associated with inflammatory processes that generate an excessive amount of reactive oxygen species (ROS) that shift the balance between endogenous antioxidant systems and free oxygen radicals in favor of the latter, leading to oxidative stress. Therefore, an additional source of natural compounds with antioxidant properties that will reduce the amount of ROS in cells is much needed despite their broad utilization; many plant species remain largely unexplored. Therefore, the purpose of the present study is to investigate the antioxidant activity of twenty-five selected medicinal and aromatic plant species. The antioxidant activity of the ethanol extracts was evaluated with in vitro assays: 2,2’-diphenyl-1-pycryl-hydrazyl (DPPH), ferric reducing antioxidant power (FRAP), non-site-specific- (NSSOH) and site-specific hydroxyl radical-2-deoxy-D-ribose degradation (SSOH) assays. The Folin-Ciocalteu method and AlCl3 method were performed to determine total phenolic content (TPC) and total flavonoid content (TFC). All examined plant extracts manifested antioxidant activity to a different extent. Cinnamomum verum J.Presl bark and Ocimum basilicum L. Herba demonstrated strong radical scavenging activity and reducing power with the DPPH and FRAP assay, respectively. Additionally, significant hydroxyl scavenging potential and metal chelating properties were observed using the NSSOH and SSOH assays. Furthermore, significant variations were determined in the total polyphenolic content (TPC) and total flavonoid content (TFC), with Cinnamomum verum and Ocimum basilicum showing the highest amount of total polyphenols. The considerably strong radical scavenging activity, hydroxyl scavenging potential and reducing power for the species mentioned above suggest of a presence of highly bioactive phytochemical compounds, predominantly polyphenols. Since flavonoids are the most abundant group of polyphenols that possess a large number of available reactive OH groups in their structure, it is considered that they are the main contributors to the radical scavenging properties of the examined plant extracts. This observation is supported by the positive correlation between the radical scavenging activity and the total polyphenolic and flavonoid content obtained in the current research. The observations from the current research nominate Cinnamomum verum bark and Ocimum basilicum herba as potential sources of bioactive compounds that could be utilized as antioxidative additives in the food and pharmaceutical industries. Moreover, the present study will help the researchers as basic data for future research in exploiting the hidden potential of these important plants that have not been explored so far.Keywords: ethanol extracts, radical scavenging activity, reducing power, total polyphenols.
Procedia PDF Downloads 2001148 Effects of Li2O Doping on Mechanical and Electrical Properties of Bovine Hydroxyapatite Composites (BHA)
Authors: Sibel Daglilar, Isil Kerti, Murat Karagoz, Fatih Dumludag, Oguzhan Gunduz, Faik Nuzhet Oktar
Abstract:
Hydroxyapatite (HA) materials have common use in bone repairing due to its ability to accelerate the bone growth around the implant. In spite of being a biocompatible and bioactive material, HA has a limited usage as an implant material because of its weak mechanical properties. HA based composites are required to improve the strength and toughness properties of the implant materials without compromising of biocompatibility. The excellent mechanical properties and higher biocompatibilities are expected from each of biomedical composites. In this study, HA composites were synthesized by using bovine bone reinforced doped with different amount of (wt.%) Li2O. The pressed pellets were sintered at various sintering temperatures between 1000ºC and 1300°C, and mechanical, electrical properties of the obtained products were characterized. In addition to that, in vitro stimulated body fluid (SBF) tests for these samples were conducted. The most suitable composite composition for biomedical applications was discussed among the composites studied.Keywords: biocomposites, sintering temperature, biocompatibility, electrical property, conductivity, mechanical property
Procedia PDF Downloads 4011147 The Correlation of Total Phenol Content with Free Radicals Scavenging Activity and Effect of Ethanol Concentration in Extraction Process of Mangosteen Rind (Garcinia mangostana)
Authors: Ririn Lestari Sri Rahayu, Mustofa Ahda
Abstract:
The use of synthetic antioxidants often causes a negative effect on health and increases the incidence of carcinogenesis. Development of the natural antioxidants should be investigated. However, natural antioxidants have a low toxicity and are safe for human consumption. Ethanol extract of mangosteen rind (Garcinia mangostana) contains natural antioxidant compounds that have various pharmacological activities. Antioxidants from the ethanol extract of mangosteen rind have free radicals scavenging activities. The scavenging activity of ethanol extract of mangosteen rind was determined by DPPH method. The phenolic compound from the ethanol extract of mangosteen rind is determined with Folin-Ciocalteu method. The results showed that the absolute ethanol extract of mangosteen rind has IC50 of 40.072 ug/mL. The correlation of total phenols content with free radical scavenging activity has an equation y: 5.207x + 205.51 and determination value (R2) of 0.9329. Total phenols content from the ethanol extract of mangosteen rind has a good correlation with free radicals scavenging activity of DPPH.Keywords: Antioxidant, Garcinia mangostana, Inhibition concentration 50%, Phenolic.
Procedia PDF Downloads 361