Search results for: fifth-generation district heating network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7117

Search results for: fifth-generation district heating network

6037 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 150
6036 The Contribution of Sanitation Practices to Marine Pollution and the Prevalence of Water-Borne Diseases in Prampram Coastal Area, Greater Accra-Ghana

Authors: Precious Roselyn Obuobi

Abstract:

Background: In Ghana, water-borne diseases remain a public health concern due to its impact. While marine pollution has been linked to outbreak of diseases especially in communities along the coast, associated risks such as oil spillage, marine debris, erosion, improper waste disposal and management practices persist. Objective: The study seeks to investigate sanitation practices that contribute to marine pollution in Prampram and the prevalence of selected water-borne diseases (diarrhea and typhoid fever). Method: This study used a descriptive cross-sectional design, employing the mix-method (qualitative and quantitative) approach. Twenty-two (22) participants were selected and semistructured questionnaire were administered to them. Additionally, interviews were conducted to collect more information. Further, an observation check-list was used to aid the data collection process. Secondary data comprising information on water-borne diseases in the district was acquired from the district health directorate to determine the prevalence of selected water-borne diseases in the community. Data Analysis: The qualitative data was analyzed using NVIVO® software by adapting the six steps thematic analysis by Braun and Clarke whiles STATA® version 16 was used to analyze the secondary data collected from the district health directorate. A descriptive statistic employed using mean, standard deviation, frequencies and proportions were used to summarize the results. Results: The results showed that open defecation and indiscriminate waste disposal were the main practices contributing to marine pollution in Prampram and its effect on public health. Conclusion: These findings have implications on public health and the environment, thus effort needs to be stepped up in educating the community on best sanitation practices.

Keywords: environment, sanitation, marine pollution, water-borne diseases

Procedia PDF Downloads 75
6035 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian

Abstract:

The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: life prediction, condenser tube, neural network, fuzzy logic

Procedia PDF Downloads 351
6034 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 385
6033 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain

Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik

Abstract:

The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.

Keywords: distribution strategy, mathematical model, network design, supply chain management

Procedia PDF Downloads 297
6032 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity

Procedia PDF Downloads 226
6031 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling

Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa

Abstract:

The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.

Keywords: flank wear, cutting forces, high speed milling, signal processing, neural network

Procedia PDF Downloads 393
6030 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.

Keywords: artificial neural network, cement, circular economy, concrete, by products

Procedia PDF Downloads 114
6029 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink

Authors: Mohammad Arif Khan

Abstract:

This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.

Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network

Procedia PDF Downloads 452
6028 Critical Appraisal of Different Drought Indices of Drought Predection and Their Application in KBK Districts of Odisha

Authors: Bibhuti Bhusan Sahoo, Ramakar Jha

Abstract:

Mapping of the extreme events (droughts) is one of the adaptation strategies to consequences of increasing climatic inconsistency and climate alterations. There is no operational practice to forecast the drought. One of the suggestions is to update mapping of drought prone areas for developmental planning. Drought indices play a significant role in drought mitigation. Many scientists have worked on different statistical analysis in drought and other climatological hazards. Many researchers have studied droughts individually for different sub-divisions or for India. Very few workers have studied district wise probabilities over large scale. In the present study, district wise drought probabilities over KBK (Kalahandi-Balangir-Koraput) districts of Odisha, India, Which are seriously prone to droughts, has been established using Hydrological drought index and Meteorological drought index along with the remote sensing drought indices to develop a multidirectional approach in the field of drought mitigation. Mapping for moderate and severe drought probabilities for KBK districts has been done and regions belonging different class intervals of probabilities of drought have been demarcated. Such type of information would be a good tool for planning purposes, for input in modelling and better promising results can be achieved.

Keywords: drought indices, KBK districts, proposed drought severity index, SPI

Procedia PDF Downloads 451
6027 An Efficient Proxy Signature Scheme Over a Secure Communications Network

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Proxy signature scheme permits an original signer to delegate his/her signing capability to a proxy signer, and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on the discrete logarithm problem.

Keywords: proxy signature, warrant partial delegation, key agreement, discrete logarithm

Procedia PDF Downloads 345
6026 The Analysis of Space Syntax Used in the Development Explore of Hangzhou city’s Centratity

Authors: Liu Junzhu

Abstract:

In contemporary China,city is expanding with an amazing speed. And because of the unexpected events’ interference, spatial structure could change itself in a short time, That will lead to the new urban district livingness and unfortunately, this phenomenon is very common.On the one hand,it fail to achieve the goal of city planning, On the other hand,it is unfavourable to the sustainable development of city. Bill Hillier’stheory Space Syntax shows organzation pattern of each space,it explains the characteristics of urban spatial patterns and its transformation regulation from the point of self-organization in system and also, it gives confirmatory and predictive ways to the building and city. This paper used axial model to summarize Hangzhou City’s special structure and enhanced comprehensive understanding of macroscopic space and environment, space structure,developing trend, ect, by computer analysis of Space Syntax. From that, it helps us to know the operation law in the urban system and to understand Hangzhou City’s spatial pattern and indirect social effect it has mad more clearly, Thus, it could comply with the tendency of cities development in process and planning of policy and plan our cities’ future sustainably.

Keywords: sustainable urban design, space syntax, spatial network, segment angular analysis, social inclusion

Procedia PDF Downloads 462
6025 Production of Hydrogen and Carbon Monoxide Fuel Gas From Pine Needles

Authors: Despina Vamvuka, Despina Pentari

Abstract:

Forestry wastes are readily available in large quantities around the world. Based on European Green Deal for the deployment of renewable and decarbonized energy by 2050, as well as global energy crisis, energy recovery from such wastes reducing greenhouse gas emissions is very attractive. Gasification has superior environmental performance to combustion, producing a clean fuel gas utilized in internal combustion engines, gas turbines, solid oxide fuel cells, or for synthesis of liquid bio-fuels and value-added chemicals. In this work, pine needles, which are abundantly found in Mediterranean countries, were gasified by either steam or carbon dioxide via a two-step process to improve reactivity and eliminate tar, employing a fixed bed unit and a thermal analysis system. Solid, liquid and gaseous products from the whole process were characterized and their energy potential was determined. Thermal behaviour, reactivity, conversion and energy recovery were examined. The gasification process took place above 650°C. At 950°C conversion and energy recovery were 77% dry and 2 under a flow of steam and 85% dry and 2.9 under a flow of carbon dioxide, respectively. Organic matter was almost completely converted to syngas, the yield of which varied between 89% and 99%. The higher heating values of biochar, bio-oil and pyrolysis gas were 27.8 MJ/kg, 33.5 MJ/kg and 13.6 MJ/m3. Upon steam or carbon dioxide gasification, the higher heating value of syngas produced was 11.5 MJ/m3 and 12.7 MJ/m3, respectively.

Keywords: gasification, biomass, steam, carbon dioxide

Procedia PDF Downloads 98
6024 Simulation of Forest Fire Using Wireless Sensor Network

Authors: Mohammad F. Fauzi, Nurul H. Shahba M. Shahrun, Nurul W. Hamzah, Mohd Noah A. Rahman, Afzaal H. Seyal

Abstract:

In this paper, we proposed a simulation system using Wireless Sensor Network (WSN) that will be distributed around the forest for early forest fire detection and to locate the areas affected. In Brunei Darussalam, approximately 78% of the nation is covered by forest. Since the forest is Brunei’s most precious natural assets, it is very important to protect and conserve our forest. The hot climate in Brunei Darussalam can lead to forest fires which can be a fatal threat to the preservation of our forest. The process consists of getting data from the sensors, analyzing the data and producing an alert. The key factors that we are going to analyze are the surrounding temperature, wind speed and wind direction, humidity of the air and soil.

Keywords: forest fire monitor, humidity, wind direction, wireless sensor network

Procedia PDF Downloads 454
6023 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis

Authors: Gon Park

Abstract:

Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.

Keywords: cadastral data, green Infrastructure, network analysis, parcel data

Procedia PDF Downloads 206
6022 Influence of Thermal Treatments on Ovomucoid as Allergenic Protein

Authors: Nasser A. Al-Shabib

Abstract:

Food allergens are most common non-native form when exposed to the immune system. Most food proteins undergo various treatments (e.g. thermal or proteolytic processing) during food manufacturing. Such treatments have the potential to impact the chemical structure of food allergens so as to convert them to more denatured or unfolded forms. The conformational changes in the proteins may affect the allergenicity of treated-allergens. However, most allergenic proteins possess high resistance against thermal modification or digestive enzymes. In the present study, ovomucoid (a major allergenic protein of egg white) was heated in phosphate-buffered saline (pH 7.4) at different temperatures, aqueous solutions and on different surfaces for various times. The results indicated that different antibody-based methods had different sensitivities in detecting the heated ovomucoid. When using one particular immunoassay‚ the immunoreactivity of ovomucoid increased rapidly after heating in water whereas immunoreactivity declined after heating in alkaline buffer (pH 10). Ovomucoid appeared more immunoreactive when dissolved in PBS (pH 7.4) and heated on a stainless steel surface. To the best of our knowledge‚ this is the first time that antibody-based methods have been applied for the detection of ovomucoid adsorbed onto different surfaces under various conditions. The results obtained suggest that use of antibodies to detect ovomucoid after food processing may be problematic. False assurance will be given with the use of inappropriate‚ non-validated immunoassays such as those available commercially as ‘Swab’ tests. A greater understanding of antibody-protein interaction after processing of a protein is required.

Keywords: ovomucoid, thermal treatment, solutions, surfaces

Procedia PDF Downloads 448
6021 PWM Harmonic Injection and Frequency-Modulated Triangular Carrier to Improve the Lives of the Transformers

Authors: Mario J. Meco-Gutierrez, Francisco Perez-Hidalgo, Juan R. Heredia-Larrubia, Antonio Ruiz-Gonzalez, Francisco Vargas-Merino

Abstract:

More and more applications power inverters connected to transformers, for example, the connection facilities to the power grid renewable generation. It is well known that the quality of signal power inverters it is not a pure sine. The harmonic content produced negative effects, one of which is the heating of electrical machines and therefore, affects the life of the machines. The decrease of life of transformers can be calculated by Arrhenius or Montsinger equation. Analyzing this expression any (long-term) decrease of a transformer temperature for 6º C - 7º C means doubles its life-expectancy. Methodologies: This work presents the technique of pulse width modulation (PWM) with an injection of harmonic and triangular frequency carrier modulated in frequency. This technique is used to improve the quality of the output voltage signal of the power inverters controlled PWM. The proposed technique increases in the fundamental term and a significant reduction in low order harmonics with the same commutations per time that control sine PWM. To achieve this, the modulating wave is compared to a triangular carrier with variable frequency over the period of the modulator. Therefore, it is, advantageous for the modulating signal to have a large amount of sinusoidal “information” in the areas of greater sampling. A triangular signal with a frequency that varies over the modulator’s period is used as a carrier, for obtaining more samples in the area with the greatest slope. A power inverter controlled by PWM proposed technique is connected to a transformer. Results: In order to verify the derived thermal parameters under different operation conditions, another ambient and loading scenario is involved for a further verification, which was sampled from the same power transformer. Temperatures of different parts of the transformer will be exposed for each PWM control technique analyzed. An assessment of the temperature be done with different techniques PWM control and hence the life of the transformer is calculated for each technique. Conclusion: This paper analyzes such as transformer heating produced by this technique and compared with other forms of PWM control. In it can be seen as a reduction the harmonic content produces less heat transformer and therefore, an increase in the life of the transformer.

Keywords: heating, power-inverter, PWM, transformer

Procedia PDF Downloads 412
6020 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 148
6019 Analyzing Transit Network Design versus Urban Dispersion

Authors: Hugo Badia

Abstract:

This research answers which is the most suitable transit network structure to serve specific demand requirements in an increasing urban dispersion process. Two main approaches of network design are found in the literature. On the one hand, a traditional answer, widespread in our cities, that develops a high number of lines to connect most of origin-destination pairs by direct trips; an approach based on the idea that users averse to transfers. On the other hand, some authors advocate an alternative design characterized by simple networks where transfer is essential to complete most of trips. To answer which of them is the best option, we use a two-step methodology. First, by means of an analytical model, three basic network structures are compared: a radial scheme, starting point for the other two structures, a direct trip-based network, and a transfer-based one, which represent the two alternative transit network designs. The model optimizes the network configuration with regard to the total cost for each structure. For a scenario of dispersion, the best alternative is the structure with the minimum cost. This dispersion degree is defined in a simple way considering that only a central area attracts all trips. If this area is small, we have a high concentrated mobility pattern; if this area is too large, the city is highly decentralized. In this first step, we can determine the area of applicability for each structure in function to that urban dispersion degree. The analytical results show that a radial structure is suitable when the demand is so centralized, however, when this demand starts to scatter, new transit lines should be implemented to avoid transfers. If the urban dispersion advances, the introduction of more lines is no longer a good alternative, in this case, the best solution is a change of structure, from direct trips to a network based on transfers. The area of applicability of each network strategy is not constant, it depends on the characteristics of demand, city and transport technology. In the second step, we translate analytical results to a real case study by the relationship between the parameters of dispersion of the model and direct measures of dispersion in a real city. Two dimensions of the urban sprawl process are considered: concentration, defined by Gini coefficient, and centralization by area based centralization index. Once it is estimated the real dispersion degree, we are able to identify in which area of applicability the city is located. In summary, from a strategic point of view, we can obtain with this methodology which is the best network design approach for a city, comparing the theoretical results with the real dispersion degree.

Keywords: analytical network design model, network structure, public transport, urban dispersion

Procedia PDF Downloads 230
6018 A Global Organizational Theory for the 21st Century

Authors: Troy A. Tyre

Abstract:

Organizational behavior and organizational change are elements of the ever-changing global business environment. Leadership and organizational behavior are 21st century disciplines. Network marketing organizations need to understand the ever-changing nature of global business and be ready and willing to adapt to the environment. Network marketing organizations have a challenge keeping up with a rapid escalation in global growth. Network marketing growth has been steady and global. Network marketing organizations have been slow to develop a 21st century global strategy to manage the rapid escalation of growth degrading organizational behavior, job satisfaction, increasing attrition, and degrading customer service. Development of an organizational behavior and leadership theory for the 21st century to help network marketing develops a global business strategy to manage the rapid escalation in growth that affects organizational behavior. Managing growth means organizational leadership must develop and adapt to the organizational environment. Growth comes with an open mind and one’s departure from the comfort zone. Leadership growth operates in the tacit dimension. Systems thinking and adaptation of mental models can help shift organizational behavior. Shifting the organizational behavior requires organizational learning. Organizational learning occurs through single-loop, double-loop, and triple-loop learning. Triple-loop learning is the most difficult, but the most rewarding. Tools such as theory U can aid in developing a landscape for organizational behavioral development. Additionally, awareness to espoused and portrayed actions is imperatives. Theories of motivation, cross-cultural diversity, and communications are instrumental in founding an organizational behavior suited for the 21st century.

Keywords: global, leadership, network marketing, organizational behavior

Procedia PDF Downloads 553
6017 Recovery the Regeneration Gas from Liquefied Petroleum Gas Dryer to Off Gas Compressors

Authors: Hassan Hussin Zwida

Abstract:

The liquified LPG (Liquefied Petroleum Gas) drying system at the Complex is designed to remove water and mercaptans from the LPG stream. Upon saturation of the desiccant beds, a regeneration cycle becomes necessary. The original design routed the regeneration gas, produced during the LPG dryer heating cycle, to the sulfur recovery unit to the incineration. However, concerns regarding high temperatures and potential unit disruptions led to a modification where the gas is currently vented to the acid flare for the initial hour before being diverted to the LP network fuel gas system. While this addresses the temperature concerns, it generates significant smoke due to the presence of liquid hydrocarbons. This paper proposes an approach to recover the regeneration gas and redirect it back to the gas plant's (off-gas compressors) instead of sending it to the AC (Acid Flare), by utilizing the existing pipe 6” and connected to off gas compressor KO (Knock-Out ) Drums . This option is simple to operate, flexible, environment-friendly solution as long-term solution, lower in capital expenditure and increase the company's profitability. The feasibility of this proposal is supported by dynamic simulations. The simulations suggest the possibility of operating two out of the three off-gas compressors and LPG (Liquefied petroleum gas) as a liquid phase, is foreseen to be carried over and gathered at the bottom level of the KO (Knock-Out) Drum.

Keywords: thermal incinerator, off-gas compressors, environment, knock-out drums, acid flare

Procedia PDF Downloads 50
6016 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network

Authors: Hossain A., Chowdhury S. I.

Abstract:

Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.

Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera

Procedia PDF Downloads 103
6015 Contribution of the Cogeneration Systems to Environment and Sustainability

Authors: Kemal Çomakli, Uğur Çakir, Ayşegül Çokgez Kuş, Erol Şahin

Abstract:

Kind of energy that buildings need changes in various types, like heating energy, cooling energy, electrical energy and thermal energy for hot top water. Usually the processes or systems produce thermal energy causes emitting pollutant emissions while they produce heat because of fossil fuels they use. A lower consumption of thermal energy will contribute not only to a reduction in the running costs, but also in the reduction of pollutant emissions that contribute to the greenhouse effect and a lesser dependence of the hospital on the external power supply. Cogeneration or CHP (Combined heat and Power) is the system that produces power and usable heat simultaneously. Combined production of mechanical or electrical and thermal energy using a simple energy source, such as oil, coal, natural or liquefied gas, biomass or the sun; affords remarkable energy savings and frequently makes it possible to operate with greater efficiency when compared to a system producing heat and power separately. Because of the life standard of humanity in new age, energy sources must be continually and best qualified. For this reason the installation of a system for the simultaneous generation of electrical, heating and cooling energy would be one of the best solutions if we want to have qualified energy and reduce investment and operating costs and meet ecological requirements. This study aims to bring out the contributions of cogeneration systems to the environment and sustainability by saving the energy and reducing the emissions.

Keywords: sustainability, cogeneration systems, energy economy, energy saving

Procedia PDF Downloads 517
6014 Data Quality on Regular Childhood Immunization Programme at Degehabur District: Somali Region, Ethiopia

Authors: Eyob Seife

Abstract:

Immunization is a life-saving intervention which prevents needless suffering through sickness, disability, and death. Emphasis on data quality and use will become even stronger with the development of the immunization agenda 2030 (IA2030). Quality of data is a key factor in generating reliable health information that enables monitoring progress, financial planning, vaccine forecasting capacities, and making decisions for continuous improvement of the national immunization program. However, ensuring data of sufficient quality and promoting an information-use culture at the point of the collection remains critical and challenging, especially in hard-to-reach and pastoralist areas where Degehabur district is selected based on a hypothesis of ‘there is no difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical, and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Degehabur district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers, and reporting documents were reviewed at 5 health facilities (2 health centers and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and the district health office. A quality index (QI) was assessed, and the accuracy ratio formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed both over-reporting and under-reporting were observed at health posts when computing the accuracy ratio of the tally sheet to health post reports found at health centers for almost all antigens verified where pentavalent 1 was 88.3%, 60.4%, and 125.6% for Health posts A, B, and C respectively. For first-dose measles-containing vaccines (MCV), similarly, the accuracy ratio was found to be 126.6%, 42.6%, and 140.9% for Health posts A, B, and C, respectively. The accuracy ratio for fully immunized children also showed 0% for health posts A and B and 100% for health post-C. A relatively better accuracy ratio was seen at health centers where the first pentavalent dose was 97.4% and 103.3% for health centers A and B, while a first dose of measles-containing vaccines (MCV) was 89.2% and 100.9% for health centers A and B, respectively. A quality index (QI) of all facilities also showed results between the maximum of 33.33% and a minimum of 0%. Most of the verified immunization data accuracy ratios were found to be relatively better at the health center level. However, the quality of the monitoring system is poor at all levels, besides poor data accuracy at all health posts. So attention should be given to improving the capacity of staff and quality of monitoring system components, namely recording, reporting, archiving, data analysis, and using information for decision at all levels, especially in pastoralist areas where such kinds of study findings need to be improved beside to improving the data quality at root and health posts level.

Keywords: accuracy ratio, Degehabur District, regular childhood immunization program, quality of monitoring system, Somali Region-Ethiopia

Procedia PDF Downloads 107
6013 Scientific Development as Diffusion on a Social Network: An Empirical Case Study

Authors: Anna Keuchenius

Abstract:

Broadly speaking, scientific development is studied in either a qualitative manner with a focus on the behavior and interpretations of academics, such as the sociology of science and science studies or in a quantitative manner with a focus on the analysis of publications, such as scientometrics and bibliometrics. Both come with a different set of methodologies and few cross-references. This paper contributes to the bridging of this divide, by on the on hand approaching the process of scientific progress from a qualitative sociological angle and using on the other hand quantitative and computational techniques. As a case study, we analyze the diffusion of Granovetter's hypothesis from his 1973 paper 'On The Strength of Weak Ties.' A network is constructed of all scientists that have referenced this particular paper, with directed edges to all other researchers that are concurrently referenced with Granovetter's 1973 paper. Studying the structure and growth of this network over time, it is found that Granovetter's hypothesis is used by distinct communities of scientists, each with their own key-narrative into which the hypothesis is fit. The diffusion within the communities shares similarities with the diffusion of an innovation in which innovators, early adopters, and an early-late majority can clearly be distinguished. Furthermore, the network structure shows that each community is clustered around one or few hub scientists that are disproportionately often referenced and seem largely responsible for carrying the hypothesis into their scientific subfield. The larger implication of this case study is that the diffusion of scientific hypotheses and ideas are not the spreading of well-defined objects over a network. Rather, the diffusion is a process in which the object itself dynamically changes in concurrence with its spread. Therefore it is argued that the methodology presented in this paper has potential beyond the scientific domain, in the study of diffusion of other not well-defined objects, such as opinions, behavior, and ideas.

Keywords: diffusion of innovations, network analysis, scientific development, sociology of science

Procedia PDF Downloads 306
6012 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach

Authors: Arbnor Pajaziti, Hasan Cana

Abstract:

In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.

Keywords: robotic arm, neural network, genetic algorithm, optimization

Procedia PDF Downloads 523
6011 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network

Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar

Abstract:

In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.

Keywords: DSEP, fuzzy logic, energy model, WSN

Procedia PDF Downloads 207
6010 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields

Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek

Abstract:

Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.

Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity

Procedia PDF Downloads 266
6009 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: building energy prediction, data mining, demand response, electricity market

Procedia PDF Downloads 316
6008 The Distribution, Productivity and Conservation of Camphor Tree, Dryobalanops Aromatica in West Coast of Sumatra, Indonesia

Authors: Aswandi Anas Husin, Cut Rizlani Kholibrina

Abstract:

Harvesting camphor resin has been carried out since the beginning of civilization on the west coast of Sumatra. Oil or crystals that containing borneol are harvested from the camphor tree (Dryobalanops aromatica). Non-timber forest products are utilized for the manufacture of fragrances, antiseptics, anti-inflammatory, analgesic as well as effective for the treatment of blocked arteries. Based on exploration on the west coast of Sumatra, these endemic tree species were found remaining growing in groups on small spots in the lowlands to the hills. Some populations are found at an altitude of 700 meters above sea level in Kadabuhan, Jongkong and Sultan Daulat in Subulussalam district, Singkohor and Lake Paris in Aceh Singkil district, and Sirandorung and Manduamas in the north of Barus, Central Tapanuli district. These multi-purpose tree species was also identified as being able to adapt to the Singkil Peat Swamp. The decline in tree population has a direct impact on reducing their productivity. Conventionally, the crystals are harvested by cutting and splitting the stem into wooden blocks. In this way about 1.5-2.5 kg of crystals are obtained with various qualities. Camphor retrieval can also be done by making a notch on a standing tree trunk and collecting liquid resin (ombil) that is removed from the injured resin channel. Twigs and leaves also contain borneol. The aromatic content in this section opens opportunities for the supply of borneol through the distillation process. Vegetative propagation technology is needed to overcome the limitations of available seeds. This breeding strategy for vulnerable species starts with gathering genetic material from various provenances which are then used to support the provision of basic populations, breeding populations, multiplication populations and production populations for extensive development of camphor tree plantations

Keywords: camphor, conservation, natural borneol, productivity, vulnerable species

Procedia PDF Downloads 125