Search results for: corporate credit rating prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3961

Search results for: corporate credit rating prediction

2881 Evaluating the Learning Outcomes of Physical Therapy Clinical Fieldwork Course

Authors: Hui-Yi Wang, Shu-Mei Chen, Mei-Fang Liu

Abstract:

Background and purpose: Providing clinical experience in medical education is an important discipline method where students can gradually apply their academic knowledge to clinical situations. The purpose of this study was to establish self-assessment questionnaires for students to assess their learning outcomes for two fields of physical therapy, orthopedic physical therapy, and pediatric physical therapy, in a clinical fieldwork course. Methods: The questionnaires were developed based on the core competence dimensions of the course. The content validity of the questionnaires was evaluated and established by expert meetings. Among the third-year undergraduate students who took the clinical fieldwork course, there were 49 students participated in this study. Teachers arranged for the students to study two professional fields, and each professional field conducted a three-week clinical lesson. The students filled out the self-assessment questionnaires before and after each three-week lesson. Results: The self-assessment questionnaires were established by expert meetings that there were six core competency dimensions in each of the two fields, with 20 and 21 item-questions, respectively. After each three-week clinical fieldwork, the self-rating scores in each core competency dimension were higher when compared to those before the course, indicating having better clinical abilities after the lessons. The best self-rating scores were the dimension of attitude and humanistic literacy, and the two lower scores were the dimensions of professional knowledge and skills and problem-solving critical thinking. Conclusions: This study developed questionnaires for clinical fieldwork courses to reflect students' learning outcomes, including the performance of professional knowledge, practice skills, and professional attitudes. The use of self-assessment of learning performance can help students build up their reflective competencies. Teachers can guide students to pay attention to the performance of abilities in each core dimension to enhance the effectiveness of learning through self-reflection and improvement.

Keywords: physical therapy, clinical fieldwork course, learning outcomes assessment, medical education, self-reflection ability

Procedia PDF Downloads 116
2880 Immediate Effect of Transcutaneous Electrical Nerves Stimulation on Flexibility and Health Status in Patients with Chronic Nonspecific Low Back Pain (A Pilot Study)

Authors: Narupon Kunbootsri, Patpiya Sirasaporn

Abstract:

Low back pain is the most common of chief complaints in chronic pain. Low back pain directly affect to activities daily living and also has high socioeconomic costs. The prevalence of low back pain is high in both genders in all populations. The symptoms of low back pain including, pain at low back area, muscle spasm, tenderness points and stiff back. Trancutanous Electrical Nerve Stimulation (TENS) is one of modalities mainly use for control pain. There was indicated that TENS is wildly use in low back pain, but no scientific data about the flexibility of muscle after TENS in low back pain. Thus the aim of this study was to investigate immediate effect of TENS on flexibility and health status in patients with chronic nonspecific low back pain. Eight chronic nonspecific low back pain patients 1 male and 7 female employed in this study. Participants were diagnosed by a doctor based on history and physical examination. Each participant received treatment at physiotherapy unit. Participants completed Roland Morris Disability Questionnaire (RMDQ), numeric rating scale (NRS) and trunk flexibility before treatment. Each participant received low frequency TENS set at asymmetrical, 10 Hz, 20 minutes per point. Immediately after treatment, participants completed RNS, RMDQ and trunk flexibility again. All participants were treated by only one physiotherapist. There was a statistically significant increased in flexibility immediately after low frequency TENS [mean difference -6.37 with 95%CI were (-8.35)-(-4.39)]. There was a statistically significant decreased in numeric rating scale [mean difference 2.13 with 95%CI were 1.08-3.16]. Roland Morris Disability Questionnaire showed improvement of health status average 44.8% immediately after treatment. In conclusion, the results of the present study indicate that immediately effect after low frequency TENS can decrease pain and improve flexibility of back muscle in chronic nonspecific low back pain patients.

Keywords: low back pain, flexibility, TENS, chronic

Procedia PDF Downloads 556
2879 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 105
2878 Intellectual Property Rights on Plant Materials in Colombia: Legal Harmonization for Food Sovereignty

Authors: Medina Muñoz Lina Rocio

Abstract:

The purpose of this paper is to examine the debates related to the harmonization of intellectual property rights on plant material, the corporate governance of the seed market in Colombia and the political economy of seeds defended by indigenous communities. In recent years, the commodification of seeds through genetic engineering and political intellectual property, codified as a result of the implementation of the Free Trade Agreement with the United States, has come into conflict with the traditional production of seeds carried out by small farmers and indigenous populations. Agricultural and food practices. In order to understand the ontological dimension of conflicts over seeds, it is necessary to analyze the conceptions that indigenous communities have about good, which they consider a common element of their social organization and define them as sentient beings. Therefore, through a multiple approach, in which the intellectual property policy, the ecological aspects of seed production and the political ontology of indigenous communities are interwoven, I intend to present the discussions held by the actors involved and present the strategies of small producers to protect their interests. It demonstrates that communities have begun to organize social movements to protect such interests and have questioned the philosophy of GM corporate agriculture as a pro-life movement. Finally, it is argued that the conservation of 'traditional' seeds of the communities is an effective strategy to support their struggles for territory, identity, food sovereignty and self-determination.

Keywords: intellectual property rights, intellectual property, traditional knowledge, food safety

Procedia PDF Downloads 76
2877 Dual Challenges in Host State Regulation on Transnational Corporate Damages: China's Dilemma and Breakthrough

Authors: Xinchao Liu

Abstract:

Regulating environmental and human rights damages caused by transnational corporations in host States is a core issue in the business and human rights discourse. In current regulatory practices, host States, which are territorially based and should bear primary regulation responsibility, face dual challenges at both domestic and international levels, leading to their continued marginalization. Specifically, host States as TNC damage regulators are constrained domestically by territorial jurisdiction limitations and internationally by the neoliberal international economic order exemplified by investment protection mechanisms. Taking China as a sample, it currently lacks a comprehensive regulation system to address TNC damages; while domestic constraints manifest as the marginalization of judicial regulation, the absence of corporate duty of care, and inadequate extraterritorial regulation effectiveness, international constraints are reflected in the absence of foreign investor obligations in investment agreements and the asymmetry of dispute resolution clauses, challenging regulatory sovereignty. As China continues to advance its policy of high-quality opening up, the risks of negative externalities from transnational capital will continue to increase, necessitating a focus on building and perfecting a regulation mechanism for TNC damages within the framework of international law. To address domestic constraints, it is essential to clarify the division of regulation responsibilities between judicial and administrative bodies, promote the normalization of judicial regulation, and enhance judicial oversight of governmental settlements. Improving the choice of law rules for cross-border torts and the standards for parent company liability for omissions, and enhancing extraterritorial judicial effectiveness through transnational judicial dialogue and cooperation mechanisms are also crucial. To counteract international constraints, specifying investor obligations in investment treaties and designing symmetrical dispute resolution clauses are indispensable to eliminate regulatory chill. Additionally, actively advancing the implementation of TNC obligations in business and human rights treaty negotiations will lay an international legal foundation for the regulation sovereignty of host States.

Keywords: transnational corporate damages, home state litigation, optimization limit, investor-state dispute settlement

Procedia PDF Downloads 8
2876 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression

Authors: Abdulla D. Alblooshi

Abstract:

The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².

Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE

Procedia PDF Downloads 171
2875 Psychometric Properties of the Social Skills Rating System: Teacher Version

Authors: Amani Kappi, Ana Maria Linares, Gia Mudd-Martin

Abstract:

Children with Attention Deficit Hyperactivity Disorder (ADHD) are more likely to develop social skills deficits that can lead to academic underachievement, peer rejection, and maladjustment. Surveying teachers about children's social skills with ADHD will become a significant factor in identifying whether the children will be diagnosed with social skills deficits. The teacher-specific version of the Social Skills Rating System scale (SSRS-T) has been used as a screening tool for children's social behaviors. The psychometric properties of the SSRS-T have been evaluated in various populations and settings, such as when used by teachers to assess social skills for children with learning disabilities. However, few studies have been conducted to examine the psychometric properties of the SSRS-T when used to assess children with ADHD. The purpose of this study was to examine the psychometric properties of the SSRS-T and two SSRS-T subscales, Social Skills and Problem Behaviors. This was a secondary analysis of longitudinal data from the Fragile Families and Child Well-Being Study. This study included a sample of 194 teachers who used the SSRS-T to assess the social skills of children aged 8 to 10 years with ADHD. Exploratory principal components factor analysis was used to assess the construct validity of the SSRS-T scale. Cronbach’s alpha value was used to assess the internal consistency reliability of the total SSRS-T scale and the subscales. Item analyses included item-item intercorrelations, item-to-subscale correlations, and Cronbach’s alpha value changes with item deletion. The results of internal consistency reliability for both the total scale and subscales were acceptable. The results of the exploratory factor analysis supported the five factors of SSRS-T (Cooperation, Self-control, Assertion, Internalize behaviors, and Externalize behaviors) reported in the original version. Findings indicated that SSRS-T is a reliable and valid tool for assessing the social behaviors of children with ADHD.

Keywords: ADHD, children, social skills, SSRS-T, psychometric properties

Procedia PDF Downloads 131
2874 Migrants and Non Migrants: Class Level Distinctions from a Village Level Analysis of Mahabubnagar District

Authors: T. P. Muhammed Jamsheer

Abstract:

This paper tries to explains some of differences between migrants and non-migrants households by taking ten indicators like land ownership, land distribution, lease in land, lease out land, demand of labour, supply of labour, land operational potential, holding of agriculture implements and livestock’s, irrigation potential of households and credit holding by the households of highly dry, drought affected, poverty stricken, multi caste and pluralistic sub castes village in very backward Mahabubnagar district of Andhra Pradesh. The paper is purely field work based research and conducted census survey of field work among the 298 households in highly dry village called Keppatta from Bhoothpur mandel. One of the main objectives of the paper is that, to find out the factors which differentiate migrants and non-migrants households and what are distress elements which forced the poor peasants migrants to outside the village. It concludes that among the migrants and non-migrants households and among the differences between the categories wise of both types of households, there are differences, except two indicators like lease in and lease out, all other indicators like land holding pattern, demand and supply of labour, land operation, irrigation potential, implements and livestock and credit facilities of migrants and non-migrants households shows that non-migrants have high share than the migrants households. This paper also showing the landed households are more migrants, means among the BC and FC households landed households are migrants while SC landless are more migrants which is contradictory to general/existing literatures conclusion that, landless are more migrant than landed households, here also showing that when the number of land in acres increases the share of SC is declining while the share of FC is increasing among the both migrants and non-migrants households. In the class wise SC households are more in distress situation than any other class and that might be leading to the highest share of migrants from the respective village. In the logistic econometric model to find out the relation between migration and other ten variables, the result shows that supply of labour, lease in of the land and size of the family are statically significantly related with migration and all other variables not significant relation with migration although the theoretical explanation shows the different results.

Keywords: class, migrants, non migrants, economic indicators, distress factors

Procedia PDF Downloads 333
2873 Leadership Styles and Adoption of Risk Governance in Insurance and Energy Industry: A Comparative Case Study

Authors: Ruchi Agarwal

Abstract:

In today’s world, companies are operating in dynamic, uncertain and ambiguous business environments. Globally, more companies are failing due to Environmental, Social and Governance (ESG) factors than ever. Corporate governance and risk management are intertwined in nature. For decades, corporate governance and risk management have been influenced by internal and external factors. Three schools of thought have influenced risk governance for decades: Agency theory, Contingency theory, and Institutional theory. Agency theory argues that agents have interests conflicting with principal interests and the information problem. Contingency theory suggests that risk management adoption is influenced by internal and external factors, while Institutional theory suggests that organizations legitimize risk management with regulators, competitors, and professional bodies. The conflicting objectives of theories have created problems for executives in organizations in the adoption of Risk Governance. So far, there are many studies that discussed risk culture and the role of actors in risk governance, but there are rare studies discussing the role of risk culture in the adoption of risk governance from a leadership style perspective. This study explores the adoption of risk governance in two contrasting industries, such as the Insurance and energy business, to understand whether risk governance is influenced by internal/external factors or whether risk culture is influenced by leaders. We draw empirical evidence by comparing the cases of an Indian insurance company and a renewable energy-based firm in India. We interviewed more than 20 senior executives of companies and collected annual reports, risk management policies, and more than 10 PPTs and other reports from 2017 to 2024. We visited the company for follow-up questions several times. The findings of my research revealed that both companies have used risk governance for strategic renewal of the company. Insurance companies use a transactional leadership style based on performance and reward for improving risk, while energy companies use rather symbolic management to make debt restructuring meaningful for stakeholders. Overall, both companies turned from loss-making to profitable ones in a few years. This comparative study highlights the role of different leadership styles in the adoption of risk governance. The study is also distinct as previous research rarely studied risk governance in two contrasting industries in reference to leadership styles.

Keywords: leadership style, corporate governance, risk management, risk culture, strategic renewal

Procedia PDF Downloads 48
2872 Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations

Authors: Jossitt Williams Vargas Cruz, Aura Jazmín Pérez Ríos

Abstract:

The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation.

Keywords: correlations, cosmic rays, sun, sunspots and variations.

Procedia PDF Downloads 74
2871 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments

Authors: Shari S. C. Shang, Lynn S. L. Chiu

Abstract:

In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.

Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions

Procedia PDF Downloads 160
2870 A Wall Law for Two-Phase Turbulent Boundary Layers

Authors: Dhahri Maher, Aouinet Hana

Abstract:

The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.

Keywords: bubbly flows, log law, boundary layer, CFD

Procedia PDF Downloads 278
2869 Learning Dynamic Representations of Nodes in Temporally Variant Graphs

Authors: Sandra Mitrovic, Gaurav Singh

Abstract:

In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.

Keywords: churn prediction, dynamic networks, node2vec, auto-encoders

Procedia PDF Downloads 314
2868 Review and Comparison of Iran`s Sixteenth Topic of the Building with the Ranking System of the Water Sector Lead to Improve the Criteria of the Sixteenth Topic

Authors: O. Fatemi

Abstract:

Considering growing building construction industry in developing countries and sustainable development concept, as well as the importance of taking care of the future generations, codifying buildings scoring system based on environmental criteria, has always been a subject for discussion. The existing systems cannot be used for all the regions due to several reasons, including but not limited to variety in regional variables. In this article, the most important common LEED (Leadership in Energy and Environmental Design) and BREEAM (Building Research Establishment Environmental Assessment Method) common and Global environmental scoring systems, used in UK, USA, and Japan, respectively, have been discussed and compared with a special focus on CASBEE (Comprehensive Assessment System for Built Environment Efficiency), to credit assigning field (weighing and scores systems) as well as sustainable development criteria in each system. Then, converging and distinct fields of the foregoing systems are examined considering National Iranian Building Code. Furthermore, the common credits in the said systems not mentioned in National Iranian Building Code have been identified. These credits, which are generally included in well-known fundamental principles in sustainable development, may be considered as offered options for the Iranian building environmental scoring system. It is suggested that one of the globally and commonly accepted systems is chosen considering national priorities in order to offer an effective method for buildings environmental scoring, and then, a part of credits is added and/or removed, or a certain credit score is changed, and eventually, a new scoring system with a new title is developed for the country. Evidently, building construction industry highly affects the environment, economy, efficiency, and health of the relevant occupants. Considering the growing trend of cities and construction, achieving building scoring systems based on environmental criteria has always been a matter of discussion. The existing systems cannot be used for all the regions due to several reasons, including but not limited to variety in regional variables.

Keywords: scoring system, sustainability assessment, water efficiency, national Iranian building code

Procedia PDF Downloads 181
2867 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding

Authors: Emad A. Mohammed

Abstract:

Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.

Keywords: MMP, gas flooding, artificial intelligence, correlation

Procedia PDF Downloads 144
2866 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.

Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method

Procedia PDF Downloads 341
2865 Financial Innovations for Companies Offered by Banks: Polish Experience

Authors: Joanna Błach, Anna Doś, Maria Gorczyńska, Monika Wieczorek-Kosmala

Abstract:

Financial innovations can be regarded as the cause and the effect of the evolution of the financial system. Most of financial innovations are created by various financial institutions for their own purposes and needs. However, due to their diversity, financial innovations can be also applied by various business entities (other than financial institutions). This paper focuses on the potential application of financial innovations by non-financial companies. It is assumed that financial innovations may be effectively applied in all fields of corporate financial decisions integrating financial management with the risk management process. Appropriate application of financial innovations may enhance the development of the company and increase its value by improving its financial situation and reducing the level of risk. On the other hand, misused financial innovations may become the source of extra risk for the company threatening its further operation. The main objective of the paper is to identify the major types of financial innovations offered to non-financial companies by the banking system in Poland. It also aims at identifying the main factors determining the creation of financial innovations in the banking system in Poland and indicating future directions of their development. This paper consists of conceptual and empirical part. Conceptual part based on theoretical study is focused on the determinants of the process of financial innovations and their application by the non-financial companies. Theoretical study is followed by the empirical research based on the analysis of the actual offer of the 20 biggest banks operating in Poland with regard to financial innovations offered to SMEs and large corporations. These innovations are classified according to the main functions of the integrated financial management, such as: Financing, investment, working capital management and risk management. Empirical study has proved that the biggest banks operating in the Polish market offer to their business customers many types and classes of financial innovations. This offer appears vast and adequate to the needs and purposes of the Polish non-financial companies. It was observed that financial innovations pertained to financing decisions dominate in the banks’ offer. However, due to high diversification of the offered financial innovations, business customers may effectively apply them in all fields and areas of integrated financial management. It should be underlined, that the banks’ offer is highly dispersed, which may limit the implementation of financial innovations in the corporate finance. It would be also recommended for the banks operating in the Polish market to intensify the education campaign aiming at increasing knowledge about financial innovations among business customers.

Keywords: banking products and services, banking sector in Poland, corporate financial management, financial innovations, theory of innovation

Procedia PDF Downloads 302
2864 Ensemble-Based SVM Classification Approach for miRNA Prediction

Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam

Abstract:

In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.

Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data

Procedia PDF Downloads 349
2863 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 237
2862 CD133 and CD44 - Stem Cell Markers for Prediction of Clinically Aggressive Form of Colorectal Cancer

Authors: Ognen Kostovski, Svetozar Antovic, Rubens Jovanovic, Irena Kostovska, Nikola Jankulovski

Abstract:

Introduction:Colorectal carcinoma (CRC) is one of the most common malignancies in the world. The cancer stem cell (CSC) markers are associated with aggressive cancer types and poor prognosis. The aim of study was to determine whether the expression of colorectal cancer stem cell markers CD133 and CD44 could be significant in prediction of clinically aggressive form of CRC. Materials and methods: Our study included ninety patients (n=90) with CRC. Patients were divided into two subgroups: with metatstatic CRC and non-metastatic CRC. Tumor samples were analyzed with standard histopathological methods, than was performed immunohistochemical analysis with monoclonal antibodies against CD133 and CD44 stem cell markers. Results: High coexpression of CD133 and CD44 was observed in 71.4% of patients with metastatic disease, compared to 37.9% in patients without metastases. Discordant expression of both markers was found in 8% of the subgroup with metastatic CRC, and in 13.4% of the subgroup without metastatic CRC. Statistical analyses showed a significant association of increased expression of CD133 and CD44 with the disease stage, T - category and N - nodal status. With multiple regression analysis the stage of disease was designate as a factor with the greatest statistically significant influence on expression of CD133 (p <0.0001) and CD44 (p <0.0001). Conclusion: Our results suggest that the coexpression of CD133 and CD44 have an important role in prediction of clinically aggressive form of CRC. Both stem cell markers can be routinely implemented in standard pathohistological diagnostics and can be useful markers for pre-therapeutic oncology screening.

Keywords: colorectal carcinoma, stem cells, CD133+, CD44+

Procedia PDF Downloads 150
2861 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model

Authors: Li Chen, Alex Skvortsov, Chris Norwood

Abstract:

Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.

Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model

Procedia PDF Downloads 287
2860 Intelligent Prediction of Breast Cancer Severity

Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman

Abstract:

Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.

Keywords: breast cancer, intelligent classification, neural networks, mammography

Procedia PDF Downloads 487
2859 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

Authors: Karuna Tuchinda, Sasithon Bland

Abstract:

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction

Procedia PDF Downloads 373
2858 Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus

Authors: Muhammad Shahzad Iqbal, Zobia Sarwar, Salah-ud-Din

Abstract:

Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future.

Keywords: tomato spotted wild virus (TSWV), Solanum lycopersicum, plant virus, miRNAs, microRNA target prediction, mRNA

Procedia PDF Downloads 155
2857 Mapping the State of the Art of European Companies Doing Social Business at the Base of the Economic Pyramid as an Advanced Form of Strategic Corporate Social Responsibility

Authors: Claudio Di Benedetto, Irene Bengo

Abstract:

The objective of the paper is to study how large European companies develop social business (SB) at the base of the economic pyramid (BoP). BoP markets are defined as the four billions people living with an annual income below $3,260 in local purchasing power. Despite they are heterogeneous in terms of geographic range they present some common characteristics: the presence of significant unmet (social) needs, high level of informal economy and the so-called ‘poverty penalty’. As a result, most people living at BoP are excluded from the value created by the global market economy. But it is worth noting, that BoP population with an aggregate purchasing power of around $5 trillion a year, represent a huge opportunity for companies that want to enhance their long-term profitability perspective. We suggest that in this context, the development of SB is, for companies, an innovative and promising way to satisfy unmet social needs and to experience new forms of value creation. Indeed, SB can be considered a strategic model to develop CSR programs that fully integrate the social dimension into the business to create economic and social value simultaneously. Despite in literature many studies have been conducted on social business, only few have explicitly analyzed such phenomenon from a company perspective and their role in the development of such initiatives remains understudied with fragmented results. To fill this gap the paper analyzes the key characteristics of the social business initiatives developed by European companies at BoP. The study was performed analyzing 1475 European companies participating in the United Nation Global Compact, the world’s leading corporate social responsibility program. Through the analysis of the corporate websites the study identifies companies that actually do SB at BoP. For SB initiatives identified, information were collected according to a framework adapted from the SB model developed by preliminary results show that more than one hundred European companies have already implemented social businesses at BoP accounting for the 6,5% of the total. This percentage increases to 15% if the focus is on companies with more than 10.440 employees. In terms of geographic distribution 80% of companies doing SB at BoP are located in western and southern Europe. The companies more active in promoting SB belong to financial sector (20%), energy sector (17%) and food and beverage sector (12%). In terms of social needs addressed almost 30% of the companies develop SB to provide access to energy and WASH, 25% of companies develop SB to reduce local unemployment or to promote local entrepreneurship and 21% of companies develop SB to promote financial inclusion of poor. In developing SB companies implement different social business configurations ranging from forms of outsourcing to internal development models. The study identifies seven main configurations through which company develops social business and each configuration present distinguishing characteristics respect to the involvement of the company in the management, the resources provided and the benefits achieved. By performing different analysis on data collected the paper provides detailed insights on how European companies develop SB at BoP.

Keywords: base of the economic pyramid, corporate social responsibility, social business, social enterprise

Procedia PDF Downloads 226
2856 Post-harvest Handling Practices and Technologies Harnessed by Smallholder Fruit Crop Farmers in Vhembe District, Limpopo Province, South Africa

Authors: Vhahangwele Belemu, Isaac Busayo Oluwatayo

Abstract:

Post-harvest losses pose a serious challenge to smallholder fruit crop farmers, especially in the rural communities of South Africa, affecting their economic livelihoods and food security. This study investigated the post-harvest handling practices and technologies harnessed by smallholder fruit crop farmers in the Vhembe district of Limpopo province, South Africa. Data were collected on a random sample of 224 smallholder fruit crop farmers selected from the four municipalities of the district using a multistage sampling technique. Analytical tools employed include descriptive statistics and the tobit regression model. A descriptive analysis of farmers’ socioeconomic characteristics showed that a sizeable number of these farmers are still in their active working age (mean = 52 years) with more males (63.8%) than their female (36.2%) counterparts. Respondents’ distribution by educational status revealed that only a few of these had no formal education (2.2%), with the majority having secondary education (48.7%). Results of data analysis further revealed that the prominent post-harvest technologies and handling practices harnessed by these farmers include using appropriate harvesting techniques (20.5%), selling at a reduced price (19.6%), transportation consideration (18.3%), cleaning and disinfecting (17.9%), sorting and grading (16.5%), manual cleaning (15.6%) and packaging technique (11.6%) among others. The result of the Tobit regression analysis conducted to examine the determinants of post-harvest technologies and handling practices harnessed showed that age, educational status of respondents, awareness of technology/handling practices, farm size, access to credit, extension contact, and membership of association were the significant factors. The study suggests enhanced awareness creation, access to credit facility and improved access to market as important factors to consider by relevant stakeholders to assist smallholder fruit crop farmers in the study area.

Keywords: fruit crop farmers, handling practices, post harvest losses, smallholder, Vhembe District, South Africa

Procedia PDF Downloads 56
2855 Impact of Audit Committee on Real Earnings Management: Cases of Netherlands

Authors: Sana Masmoudi Mardassi, Yosra Makni Fourati

Abstract:

Regulators highlight the importance of the Audit Committee (AC) as a key internal corporate governance mechanism. One of the most important roles of this committee is to oversee the financial reporting process. The purpose of this paper is to examine the link between the characteristics of an audit committee and the financial reporting quality by investigating whether the characteristics of audit committees are associated with improved financial reporting quality, especially the Real Earnings Management. In the current study, a panel data from 80 nonfinancial companies listed on the Amsterdam Stock Exchange during the period between 2010 and 2017 were used. To measure audit committee characteristics, four proxies have been used, specifically, audit committee independence, financial expertise, gender diversity and AC meetings. For this research, a linear regression model was used to identify the influence of a set of board characteristics of the audit committee on real earnings management after controlling for firm audit committee size, leverage, size, loss, growth and board size. This research provides empirical evidence of the association between audit committee independence, financial expertise, gender diversity and meetings and Real Earnings Management (REM) as a proxy of financial reporting quality. The study finds that independence and AC Gender diversity are strongly related to financial reporting quality. In fact, these two characteristics constrain REM. The results also suggest that AC- financial expertise reduces to some extent, the likelihood of engaging in REM. These conclusions provide support then to the audit committee requirement under the Dutch Corporate Governance Code rules regarding gender diversity and AC meetings.

Keywords: audit committee, financial expertise, independence, real earnings management

Procedia PDF Downloads 166
2854 Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes

Authors: Shreemoyee Sarkar, Vikhyat Chadha

Abstract:

In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided.

Keywords: local hurst exponent, lyapunov exponent, market crash prediction, time series chaos, time series local fractal properties

Procedia PDF Downloads 152
2853 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 316
2852 Crime Prevention with Artificial Intelligence

Authors: Mehrnoosh Abouzari, Shahrokh Sahraei

Abstract:

Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.

Keywords: artificial intelligence, criminology, crime, prevention, prediction

Procedia PDF Downloads 75