Search results for: carbon nanotubes network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7776

Search results for: carbon nanotubes network

6696 A Statistical Analysis on Relationship between Temperature Variations with Latitude and Altitude regarding Total Amount of Atmospheric Carbon Dioxide in Iran

Authors: Masoumeh Moghbel

Abstract:

Nowadays, carbon dioxide which is produced by human activities is considered as the main effective factor in the global warming occurrence. Regarding to the role of CO2 and its ability in trapping the heat, the main objective of this research is study the effect of atmospheric CO2 (which is recorded in Manaloa) on variations of temperature parameters (daily mean temperature, minimum temperature and maximum temperature) in 5 meteorological stations in Iran which were selected according to the latitude and altitude in 40 years statistical period. Firstly, the trend of temperature parameters was studied by Regression and none-graphical Man-Kendal methods. Then, relation between temperature variations and CO2 were studied by Correlation technique. Also, the impact of CO2 amount on temperature in different atmospheric levels (850 and 500 hpa) was analyzed. The results illustrated that correlation coefficient between temperature variations and CO2 in low latitudes and high altitudes is more significant rather than other regions. it is important to note that altitude as the one of the main geographic factor has limitation in affecting the temperature variations, so that correlation coefficient between these two parameters in 850 hpa (r=0.86) is more significant than 500 hpa (r = 0.62).

Keywords: altitude, atmospheric carbon dioxide, latitude, temperature variations

Procedia PDF Downloads 408
6695 Effect of Carbon-Free Fly Ash and Ground Granulated Blast-Furnace Slag on Compressive Strength of Mortar under Different Curing Conditions

Authors: Abdul Khaliq Amiri, Shigeyuki Date

Abstract:

This study investigates the effect of using carbon-free fly ash (CfFA) and ground granulated blast-furnace slag (GGBFS) on the compressive strength of mortar. The CfFA used in this investigation is high-quality fly ash and the carbon content is 1.0% or less. In this study, three types of blends with a 30% water-binder ratio (w/b) were prepared: control, binary and ternary blends. The Control blend contained only Ordinary Portland Cement (OPC), in binary and ternary blends OPC was partially replaced with CfFA and GGBFS at different substitution rates. Mortar specimens were cured for 1 day, 7 days and 28 days under two curing conditions: steam curing and water curing. The steam cured specimens were exposed to two different pre-curing times (1.5 h and 2.5 h) and one steam curing duration (6 h) at 45 °C. The test results showed that water cured specimens revealed higher compressive strength than steam cured specimens at later ages. An increase in CfFA and GGBFS contents caused a decrease in the compressive strength of mortar. Ternary mixes exhibited better compressive strength than binary mixes containing CfFA with the same replacement ratio of mineral admixtures.

Keywords: carbon-free fly ash, compressive strength, ground granulated blast-furnace slag, steam curing, water curing

Procedia PDF Downloads 139
6694 Indoor and Outdoor Forest Farming for Year-Round Food and Medicine Production, Carbon Sequestration, Soil-Building, and Climate Change Mitigation

Authors: Jerome Osentowski

Abstract:

The objective at Central Rocky Mountain Permaculture Institute has been to put in practice a sustainable way of life while growing food, medicine, and providing education. This has been done by applying methods of farming such as agroforestry, forest farming, and perennial polycultures. These methods have been found to be regenerative to the environment through carbon sequestration, soil-building, climate change mitigation, and the provision of food security. After 30 years of implementing carbon farming methods, the results are agro-diversity, self-sustaining systems, and a consistent provision of food and medicine. These results are exhibited through polyculture plantings in an outdoor forest garden spanning roughly an acre containing about 200 varieties of fruits, nuts, nitrogen-fixing trees, and medicinal herbs, and two indoor forest garden greenhouses (one Mediterranean and one Tropical) containing about 50 varieties of tropical fruits, beans, herbaceous plants and more. While the climate zone outside the greenhouse is 6, the tropical forest garden greenhouse retains an indoor climate zone of 11 with near-net-zero energy consumption through the use of a climate battery, allowing the greenhouse to serve as a year-round food producer. The effort to source food from the forest gardens is minimal compared to annual crop production. The findings at Central Rocky Mountain Permaculture Institute conclude that agroecological methods are not only beneficial but necessary in order to revive and regenerate the environment and food security.

Keywords: agroecology, agroforestry, carbon farming, carbon sequestration, climate battery, food security, forest farming, forest garden, greenhouse, near-net-zero, perennial polycultures

Procedia PDF Downloads 444
6693 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 154
6692 Development of Value Based Planning Methodology Incorporating Risk Assessment for Power Distribution Network

Authors: Asnawi Mohd Busrah, Au Mau Teng, Tan Chin Hooi, Lau Chee Chong

Abstract:

This paper describes value based planning (VBP) methodology incorporating risk assessment as an enhanced and more practical approach to evaluate distribution network projects in Peninsular Malaysia. Assessment indicators associated with economics, performance and risks are formulated to evaluate distribution projects to quantify their benefits against investment. The developed methodology is implemented in a web-based software customized to capture investment and network data, compute assessment indicators and rank the proposed projects according to their benefits. Value based planning approach addresses economic factors in the power distribution planning assessment, so as to minimize cost solution to the power utility while at the same time provide maximum benefits to customers.

Keywords: value based planning, distribution network, value of loss load (VoLL), energy not served (ENS)

Procedia PDF Downloads 481
6691 Formation of the Water Assisted Supramolecular Assembly in the Transition Structure of Organocatalytic Asymmetric Aldol Reaction: A DFT Study

Authors: Kuheli Chakrabarty, Animesh Ghosh, Atanu Roy, Gourab Kanti Das

Abstract:

Aldol reaction is an important class of carbon-carbon bond forming reactions. One of the popular ways to impose asymmetry in aldol reaction is the introduction of chiral auxiliary that binds the approaching reactants and create dissymmetry in the reaction environment, which finally evolves to enantiomeric excess in the aldol products. The last decade witnesses the usage of natural amino acids as chiral auxiliary to control the stereoselectivity in various carbon-carbon bond forming processes. In this context, L-proline was found to be an effective organocatalyst in asymmetric aldol additions. In last few decades the use of water as solvent or co-solvent in asymmetric organocatalytic reaction is increased sharply. Simple amino acids like L-proline does not catalyze asymmetric aldol reaction in aqueous medium not only that, In organic solvent medium high catalytic loading (~30 mol%) is required to achieve moderate to high asymmetric induction. In this context, huge efforts have been made to modify L-proline and 4-hydroxy-L-proline to prepare organocatalyst for aqueous medium asymmetric aldol reaction. Here, we report the result of our DFT calculations on asymmetric aldol reaction of benzaldehyde, p-NO2 benzaldehyde and t-butyraldehyde with a number of ketones using L-proline hydrazide as organocatalyst in wet solvent free condition. Gaussian 09 program package and Gauss View program were used for the present work. Geometry optimizations were performed using B3LYP hybrid functional and 6-31G(d,p) basis set. Transition structures were confirmed by hessian calculation and IRC calculation. As the reactions were carried out in solvent free condition, No solvent effect were studied theoretically. Present study has revealed for the first time, the direct involvement of two water molecules in the aldol transition structures. In the TS, the enamine and the aldehyde is connected through hydrogen bonding by the assistance of two intervening water molecules forming a supramolecular network. Formation of this type of supramolecular assembly is possible due to the presence of protonated -NH2 group in the L-proline hydrazide moiety, which is responsible for the favorable entropy contribution to the aldol reaction. It is also revealed from the present study that, water assisted TS is energetically more favorable than the TS without involving any water molecule. It can be concluded from this study that, insertion of polar group capable of hydrogen bond formation in the L-proline skeleton can lead to a favorable aldol reaction with significantly high enantiomeric excess in wet solvent free condition by reducing the activation barrier of this reaction.

Keywords: aldol reaction, DFT, organocatalysis, transition structure

Procedia PDF Downloads 435
6690 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification

Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo

Abstract:

The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.

Keywords: the bluff body wakes, low-order modeling, neural network, system identification

Procedia PDF Downloads 184
6689 An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal

Authors: M. Feliciano, F. Maia, A. Gonçalves

Abstract:

Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.

Keywords: carbon footprint, environmental indicators, farming subsystem, industrial subsystem, olive oil

Procedia PDF Downloads 287
6688 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques

Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh

Abstract:

In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.

Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network

Procedia PDF Downloads 73
6687 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.

Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)

Procedia PDF Downloads 87
6686 Suitable Models and Methods for the Steady-State Analysis of Multi-Energy Networks

Authors: Juan José Mesas, Luis Sainz

Abstract:

The motivation for the development of this paper lies in the need for energy networks to reduce losses, improve performance, optimize their operation and try to benefit from the interconnection capacity with other networks enabled for other energy carriers. These interconnections generate interdependencies between some energy networks and others, which requires suitable models and methods for their analysis. Traditionally, the modeling and study of energy networks have been carried out independently for each energy carrier. Thus, there are well-established models and methods for the steady-state analysis of electrical networks, gas networks, and thermal networks separately. What is intended is to extend and combine them adequately to be able to face in an integrated way the steady-state analysis of networks with multiple energy carriers. Firstly, the added value of multi-energy networks, their operation, and the basic principles that characterize them are explained. In addition, two current aspects of great relevance are exposed: the storage technologies and the coupling elements used to interconnect one energy network with another. Secondly, the characteristic equations of the different energy networks necessary to carry out the steady-state analysis are detailed. The electrical network, the natural gas network, and the thermal network of heat and cold are considered in this paper. After the presentation of the equations, a particular case of the steady-state analysis of a specific multi-energy network is studied. This network is represented graphically, the interconnections between the different energy carriers are described, their technical data are exposed and the equations that have previously been presented theoretically are formulated and developed. Finally, the two iterative numerical resolution methods considered in this paper are presented, as well as the resolution procedure and the results obtained. The pros and cons of the application of both methods are explained. It is verified that the results obtained for the electrical network (voltages in modulus and angle), the natural gas network (pressures), and the thermal network (mass flows and temperatures) are correct since they comply with the distribution, operation, consumption and technical characteristics of the multi-energy network under study.

Keywords: coupling elements, energy carriers, multi-energy networks, steady-state analysis

Procedia PDF Downloads 81
6685 Execution Time Optimization of Workflow Network with Activity Lead-Time

Authors: Xiaoping Qiu, Binci You, Yue Hu

Abstract:

The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics.

Keywords: electronic business, execution time, lead time, optimization model, petri net, time workflow network

Procedia PDF Downloads 176
6684 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.

Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium

Procedia PDF Downloads 425
6683 Study of Chemical Compounds of Garlic

Authors: A. B. Bazaralieva, A. A. Turgumbayeva

Abstract:

The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn.

Keywords: Allium sativum, bioactive compounds of garlic, carbon dioxide extraction of garlic, GS-MS method

Procedia PDF Downloads 112
6682 Invistigation of Surface Properties of Nanostructured Carbon Films

Authors: Narek Margaryan, Zhozef Panosyan

Abstract:

Due to their unique properties, carbon nanofilms have become the object of general attention and intensive research. In this case it plays a very important role to study surface properties of these films. It is also important to study processes of forming of this films, which is accompanied by a process of self-organization at the nano and micro levels. For more detailed investigation, we examined diamond-like carbon (DLC) layers deposited by chemical vapor deposition (CVD) method on Ge substrate and hydro-generated grapheme layers obtained on surface of colloidal solution using grouping method. In this report surface transformation of these CVD nanolayers is studied by atomic force microscopy (AFM) upon deposition time. Also, it can be successfully used to study surface properties of self-assembled grapheme layers. In turn, it is possible to sketch out their boundary line, which enables one to draw an idea of peculiarities of formation of these layers. Images obtained by AFM are investigated as a mathematical set of numbers and fractal and roughness analysis were done. Fractal dimension, Regne’s fractal coefficient, histogram, Fast Fourier transformation, etc. were obtained. The dependence of fractal parameters on the deposition duration for CVD films and on temperature of solution tribolayers was revealed. As an important surface parameter for our carbon films, surface energy was calculated as function of Regne’s fractal coefficient. Surface potential was also measured with Kelvin probe method using semi-contacting AFM. The dependence of surface potential on the deposition duration for CVD films and on temperature of solution for hydro-generated graphene was found as well. Results obtained by fractal analysis method was related with purly esperimental results for number of samples.

Keywords: nanostructured films, self-assembled grapheme, diamond-like carbon, surface potential, Kelvin probe method, fractal analysis

Procedia PDF Downloads 268
6681 Seagrass Biomass Distribution in Mangrove Fringed Creeks of Gazi Bay, Kenya

Authors: Gabriel A. Juma, Adiel M. Magana, Githaiga N. Michael, James G. Kairo

Abstract:

Seagrass meadows are important carbon sinks, thus understanding this role and their conservation provides opportunities for their applications in climate change mitigation and adaptation. This study aimed at understanding seagrass contribution to ecosystem carbon at Gazi Bay; by comparing carbon stocks in seagrass beds of two mangroves fringed creeks of the bay. Specifically, the objectives included assessing the distribution and abundance of seagrass in the fringed creeks, and estimating above and below-ground biomass. Results obtained would be added to the mangrove and open bay carbon in estimating total ecosystem carbon of Gazi bay. The stratified random sampling strategy was applied in this study. Transects were laid perpendicular to the waterline at intervals of 50 meters from the upper region near the mangroves to the deeper end of the creek across seagrass meadows. Along these transects, 0.25m2 square quadrats were laid at 10 m to assess distribution and composition of seagrasses in the creeks. A total of 80 plots were sampled. Above-ground biomass was sampled by harvesting all the seagrass materials within the quadrat while four sediment cores were obtained from each quarter of the quadrat and then sorted into necromass, rhizomes and roots to determine below ground biomass. Samples were cleaned and dried in the oven for 72 hours at 60˚C in the laboratory. Total biomass was determined by multiplying biomass with carbon conversion factor of 0.34. In all the statistical tests, a significant level was set at α = 0.05. Eight species of seagrass were encountered in Western creek (WC) while seven in the Eastern creek (EC). Based on importance value, the dominant species in WC were Cymodocea rotundata and Halodule uninervis while Thalassodendron ciliatum and Enhalus acoroides dominated the eastern creek. The cover of seagrass in EC was 67.97% compared to 56.45% in WC. There was a significance difference in abundance of seagrass species between the two creeks (t = 1.97, D.F = 35, p < 0.05). Similarly, there was significance differences between total seagrass biomass (t= -8.44, D.F. = 53, p < 0.05) and species composition (F(7,79) = 14.6, p < 0.05) in the two creeks. Mean seagrass in the creeks was 7.25 ± 4.2 Mg C ha-1, (range: 4.1 - 12.9 Mg C ha-1). The findings of the current study reveal variations in biomass stocks of the two creeks of Gazi bay that have varying biophysical features. It is established that habitat heterogeneity between the creeks contributes to the variation in seagrass abundance and biomass stocking. This enhances understanding of these ecosystems hence the establishment of carbon offset project in seagrass for livelihood improvement and increased conservation.

Keywords: seagrass, above-ground, below-ground, creeks, Gazi bay

Procedia PDF Downloads 132
6680 Influence of Nitrogen Doping on the Catalytic Activity of Ni-Incorporated Carbon Nanofibers for Alkaline Direct Methanol Fuel Cells

Authors: Mohamed H. El-Newehy, Badr M. Thamer, Nasser A. M. Barakat, Mohammad A.Abdelkareem, Salem S. Al-Deyab, Hak Y. Kim

Abstract:

In this study, the influence of nitrogen doping on the electrocatalytic activity of carbon nanofibers with nickel nanoparticles toward methanol oxidation is introduced. The modified carbon nanofibers have been synthesized from calcination of electrospun nanofiber mats composed of nickel acetate tetrahydrate, poly(vinyl alcohol) and urea in argon atmosphere at 750oC. The utilized physicochemical characterizations indicated that the proposed strategy leads to form carbon nanofibers having nickel nanoparticles and doped by nitrogen. Moreover, due to the high-applied voltage during the electrospinning process, the utilized urea chemically bonds with the polymer matrix, which leads to form nitrogen-doped CNFs after the calcination process. Investigation of the electrocatalytic activity indicated that nitrogen doping NiCNFs strongly enhances the oxidation process of methanol as the current density increases from 52.5 to 198.5 mA/cm2 when the urea content in the original electrospun solution was 4 wt% urea. Moreover, the nanofibrous morphology exhibits distinct impact on the electrocatalytic activity. Also, nitrogen-doping enhanced the stability of the introduced Ni-based electrocatalyst. Overall, the present study introduces effective and simple strategy to modify the electrocatalytic activity of the nickel-based materials.

Keywords: electrospinning, methanol electrooxidation, fuel cells, nitrogen-doping, nickel

Procedia PDF Downloads 435
6679 Polypropylene Fibres Dyeable with Acid Dyes

Authors: H. M. Wang, C. J. Chang

Abstract:

As the threat of global climate change is more seriously, "net zero emissions by 2050" has become a common global goal. In order to reduce the consumption of petrochemical raw materials and reduce carbon emissions, low-carbon fiber materials have become key materials in the future global textile supply chain. This project uses polyolefin raw materials to modify through synthesis and amination to develop low-temperature dyeable polypropylene fibers, endow them with low-temperature dyeability and high color fastness that can be combined with acid dyes, and improve the problem of low coloring strength. The color fastness to washing can reach the requirement of commerce with 3.5 level or more. Therefore, we realize the entry of polypropylene fiber into the clothing textile supply chain, replace existing fiber raw materials, solve the problem of domestic chemical fiber, textile, and clothing industry's plight of no low-carbon alternative new material sources, and provide the textile industry with a solution to achieve the goal of net zero emissions in 2050.

Keywords: acid dyes, dyeing, low-temperature, polypropylene fiber

Procedia PDF Downloads 88
6678 A Deep Learning Based Method for Faster 3D Structural Topology Optimization

Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury

Abstract:

Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.

Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder

Procedia PDF Downloads 175
6677 Methods for Restricting Unwanted Access on the Networks Using Firewall

Authors: Bhagwant Singh, Sikander Singh Cheema

Abstract:

This paper examines firewall mechanisms routinely implemented for network security in depth. A firewall can't protect you against all the hazards of unauthorized networks. Consequently, many kinds of infrastructure are employed to establish a secure network. Firewall strategies have already been the subject of significant analysis. This study's primary purpose is to avoid unnecessary connections by combining the capability of the firewall with the use of additional firewall mechanisms, which include packet filtering and NAT, VPNs, and backdoor solutions. There are insufficient studies on firewall potential and combined approaches, but there aren't many. The research team's goal is to build a safe network by integrating firewall strength and firewall methods. The study's findings indicate that the recommended concept can form a reliable network. This study examines the characteristics of network security and the primary danger, synthesizes existing domestic and foreign firewall technologies, and discusses the theories, benefits, and disadvantages of different firewalls. Through synthesis and comparison of various techniques, as well as an in-depth examination of the primary factors that affect firewall effectiveness, this study investigated firewall technology's current application in computer network security, then introduced a new technique named "tight coupling firewall." Eventually, the article discusses the current state of firewall technology as well as the direction in which it is developing.

Keywords: firewall strategies, firewall potential, packet filtering, NAT, VPN, proxy services, firewall techniques

Procedia PDF Downloads 103
6676 Mesoporous Carbon Ceramic SiO2/C Prepared by Sol-Gel Method and Modified with Cobalt Phthalocyanine and Used as an Electrochemical Sensor for Nitrite

Authors: Abdur Rahim, Lauro Tatsuo Kubota, Yoshitaka Gushikem

Abstract:

Carbon ceramic mesoporous SiO2/50wt%C (SBET= 170 m2g-1), where C is graphite, was prepared by the sol gel method. Scanning electron microscopy images and the respective element mapping showed that, within the magnification used, no phase segregation was detectable. It presented the electric conductivities of 0.49 S cm-1. This material was used to support cobalt phthalocyanine, prepared in situ, to assure a homogeneous dispersion of the electro active complex in the pores of the matrix. The surface density of cobalt phthalocyanine, on the matrix surfaces was 0.015 mol cm-2. Pressed disk, made with SiO2/50wt%C/CoPc, was used to fabricate an electrode and tested as sensors for nitrite determination by electro chemical technique. A linear response range between 0.039 and 0.42 mmol l−1,and correlation coefficient r=0.9996 was obtained. The electrode was chemically very stable and presented very high sensitivity for this analyte, with a limit of detection, LOD = 1.087 x 10-6 mol L-1.

Keywords: SiO2/C/CoPc, sol-gel method, electrochemical sensor, nitrite oxidation, carbon ceramic material, cobalt phthalocyanine

Procedia PDF Downloads 317
6675 Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions

Authors: Magdalena Blachnio, Viktor Bogatyrov, Mariia Galaburda, Anna Derylo-Marczewska

Abstract:

Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties.

Keywords: activated carbon, adsorption equilibrium, adsorption kinetics, organics adsorption

Procedia PDF Downloads 179
6674 A Relational Approach to Adverb Use in Interactions

Authors: Guillaume P. Fernandez

Abstract:

Individual language use is a matter of choice in particular interactions. The paper proposes a conceptual and theoretical framework with methodological consideration to develop how language produced in dyadic relations is to be considered and situated in the larger social configuration the interaction is embedded within. An integrated and comprehensive view is taken: social interactions are expected to be ruled by a normative context, defined by the chain of interdependences that structures the personal network. In this approach, the determinants of discursive practices are not only constrained by the moment of production and isolated from broader influences. Instead, the position the individual and the dyad have in the personal network influences the discursive practices in a twofold manner: on the one hand, the network limits the access to linguistic resources available within it, and, on the other hand, the structure of the network influences the agency of the individual, by the social control inherent to particular network characteristics. Concretely, we investigate how and to what extent consistent ego is from one interaction to another in his or her use of adverbs. To do so, social network analysis (SNA) methods are mobilized. Participants (N=130) are college students recruited in the french speaking part of Switzerland. The personal network of significant ones of each individual is created using name generators and edge interpreters, with a focus on social support and conflict. For the linguistic parts, respondents were asked to record themselves with five of their close relations. From the recordings, we computed an average similarity score based on the adverb used across interactions. In terms of analyses, two are envisaged: First, OLS regressions including network-level measures, such as density and reciprocity, and individual-level measures, such as centralities, are performed to understand the tenets of linguistic similarity from one interaction to another. The second analysis considers each social tie as nested within ego networks. Multilevel models are performed to investigate how the different types of ties may influence the likelihood to use adverbs, by controlling structural properties of the personal network. Primary results suggest that the more cohesive the network, the less likely is the individual to change his or her manner of speaking, and social support increases the use of adverbs in interactions. While promising results emerge, further research should consider a longitudinal approach to able the claim of causality.

Keywords: personal network, adverbs, interactions, social influence

Procedia PDF Downloads 68
6673 Dynamic Transmission Modes of Network Public Opinion on Subevents Clusters of an Emergent Event

Authors: Yuan Xu, Xun Liang, Meina Zhang

Abstract:

The rise and attenuation of the public opinion broadcast of an emergent accident, in the social network, has a close relationship with the dynamic development of its subevents cluster. In this article, we take Tianjin Port explosion's subevents as an example to research the dynamic propagation discipline of Internet public opinion in a sudden accident, and analyze the overall structure of dynamic propagation to propose four different routes for subevents clusters propagation. We also generate network diagrams for the dynamic public opinion propagation, analyze each propagation type specifically. Based on this, suggestions on the supervision and guidance of Internet public opinion broadcast can be made.

Keywords: network dynamic transmission modes, emergent subevents clusters, Tianjin Port explosion, public opinion supervision

Procedia PDF Downloads 297
6672 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.

Keywords: matching, OpenFlow tables, POX controller, SDN, table-miss

Procedia PDF Downloads 199
6671 Deposition of Diamond Like Carbon Thin Film by Pulse Laser Deposition for Surgical Instruments

Authors: M. Khalid Alamgir, Javed Ahsan Bhatti, M. Zafarullah Khan

Abstract:

Thin film of amorphous carbon (DLC) was deposited on 316 steel using Nd: YAG laser having energy 300mJ. Pure graphite was used as a target. The vacuum in the deposition chamber was generated in the range of 10-6 mbar by turbo molecular pump. Ratio of sp3 to sp2 content shows amorphous nature of the film. This was confirmed by Raman spectra having two peaks around 1300 cm-1 i.e. D-band to 1700 cm-1 i.e. G-band. If sp3 bonding ratio is high, the films behave like diamond-like whereas, with high sp2, films are graphite-like. The ratio of sp3 and sp2 contents in the film depends upon the deposition method, hydrogen contents and system parameters. The structural study of the film was carried out by XRD. The hardness of the films as measured by Vickers hardness tester and was found to be 28 GPa. The EDX result shows the presence of carbon contents on the surface in high rate and optical microscopy result shows the smoothness of the film on substrate. The film possesses good adhesion and can be used to coat surgical instruments.

Keywords: DLC, thin film, Raman spectroscopy, XRD, EDX

Procedia PDF Downloads 565
6670 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 140
6669 Novel Recommender Systems Using Hybrid CF and Social Network Information

Authors: Kyoung-Jae Kim

Abstract:

Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.

Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition

Procedia PDF Downloads 294
6668 Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network

Authors: Purva Joshi, Rohit Thanki, Omar Hanif

Abstract:

Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks.

Keywords: multi UAV network, optimal distance, propagation delay, K - nearest neighbor, traveling salesmen problem

Procedia PDF Downloads 205
6667 A Neural Network Approach to Evaluate Supplier Efficiency in a Supply Chain

Authors: Kishore K. Pochampally

Abstract:

The success of a supply chain heavily relies on the efficiency of the suppliers involved. In this paper, we propose a neural network approach to evaluate the efficiency of a supplier, which is being considered for inclusion in a supply chain, using the available linguistic (fuzzy) data of suppliers that already exist in the supply chain. The approach is carried out in three phases, as follows: In phase one, we identify criteria for evaluation of the supplier of interest. Then, in phase two, we use performance measures of already existing suppliers to construct a neural network that gives weights (importance values) of criteria identified in phase one. Finally, in phase three, we calculate the overall rating of the supplier of interest. The following are the major findings of the research conducted for this paper: (i) linguistic (fuzzy) ratings of suppliers such as 'good', 'bad', etc., can be converted (defuzzified) to numerical ratings (1 – 10 scale) using fuzzy logic so that those ratings can be used for further quantitative analysis; (ii) it is possible to construct and train a multi-level neural network in order to determine the weights of the criteria that are used to evaluate a supplier; and (iii) Borda’s rule can be used to group the weighted ratings and calculate the overall efficiency of the supplier.

Keywords: fuzzy data, neural network, supplier, supply chain

Procedia PDF Downloads 114