Search results for: bacterial isolates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1472

Search results for: bacterial isolates

392 Production of Buttermilk as a Bio-Active Functional Food by Utilizing Dairy Waste

Authors: Hafsa Tahir, Sanaullah Iqbal

Abstract:

Glactooligosaccharide (GOS) is a type of prebiotic which is mainly found in human milk. GOS belongs to those bacteria which stimulates the growth of beneficial bacteria in human intestines. The aim of the present study was to develop a value-added product by producing prebiotic (GOS) in buttermilk through trans galactosylation. Buttermilk is considered as an industrial waste which is discarded after the production of butter and cream. It contains protein, minerals, vitamins and a smaller amount of fat. Raw milk was pasteurized at 100º C for butter production and then trans galactosylation process was induced in the butter milk thus obtained to produce prebiotic GOS. Results showed that the enzyme (which was obtained from bacterial strain of Esecrshia coli and has a gene of Lactobacillus reuteri L103) concentration between 400-600µl/5ml can produce GOS in 30 minutes. Chemical analysis and sensory evaluation of plain and GOS containing buttermilk showed no remarkable difference in their composition. Furthermore, the shelf-life study showed that there was non-significant (P>0.05) difference in glass and pouch packaging of buttermilk. Buttermilk in pouch packaging maintained its stability for 6 days without the addition of preservatives. Therefore it is recommended that GOS enriched buttermilk which is generally considered as a processing waste in dairy manufacturing can be turned into a cost-effective nutritional functional food product. This will not only enhance the production efficiency of butter processing but also will create a new market opportunity for dairy manufacturers all over the world.

Keywords: buttermilk, galactooligosaccharide, shelf Life, transgalactosylation

Procedia PDF Downloads 292
391 Paenibacillus illinoisensis CX11: A Cellulase- and Xylanase-Producing Bacteria for Saccharification of Lignocellulosic Materials

Authors: Abeer A. Q. Ahmed, Tracey McKay

Abstract:

Biomass can provide a sustainable source for the production of high valued chemicals. Under the uncertain availability of fossil resources biomass could be the only available source for chemicals in future. Cellulose and hemicellulose can be hydrolyzed into their building blocks (hexsoses and pentoses) which can be converted later to the desired high valued chemicals. A cellulase- and xylanase- producing bacterial strain identified as Paenibacillus illinoisensis CX11 by 16S rRNA gene sequencing and phylogenetic analysis was found to have the ability to saccharify different lignocellulosic materials. Cellulase and xylanase activities were evaluated by 3,5-dinitro-salicylic acid (DNS) method using CMC and xylan as substrates. Results showed that P. illinoisensis CX11 have cellulase (2.63± 0.09 mg/ml) and xylanase (3.25 ± 0.2 mg/ml) activities. The ability of P. illinoisensis CX11 to saccharify lignocellulosic materials was tested using wheat straw (WS), wheat bran (WB), saw dust (SD), and corn stover (CS). DNS method was used to determine the amount of reducing sugars that were released from lignocellulosic materials. P. illinoisensis CX11 showed to have the ability to saccharify lignocellulosic materials and producing total reducing sugars as 2.34 ± 0.12, 2.51 ± 0.37, 1.86 ± 0.16, and 3.29 ± 0.20 mg/l from WS, WB, SD, and CS respectively. According to the author's knowledge, current findings are the first to report P. illinoisensis CX11 as a cellulase and xylanase producing species and that it has the ability to saccharify different lignocellulosic materials. This study presents P. illinoisensis CX11 that can be good source for cellulase and xylanase enzymes which could be introduced into lignocellulose bioconversion processes to produce high valued chemicals.

Keywords: cellulase, high valued chemicals, lignocellulosic materials, Paenibacillus illinoisensis CX11, Xylanase

Procedia PDF Downloads 247
390 Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia

Authors: Lali Kutateladze, Tamar Urushadze, Tamar Dudauri, Besarion Metreveli, Nino Zakariashvili, Izolda Khokhashvili, Maya Jobava

Abstract:

Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.

Keywords: anaerobic bacteria, cellulosic wastes, Clostridia sp, ethanol

Procedia PDF Downloads 297
389 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis

Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat

Abstract:

Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.

Keywords: controlled release, drug delivery system, glucosamine, pluronic, thermoreversible hydrogel

Procedia PDF Downloads 270
388 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species

Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das

Abstract:

Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.

Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker

Procedia PDF Downloads 197
387 Economic Analysis, Growth and Yield of Grafting Tomato Varieties for Solanum torvum as a Rootstock

Authors: Evy Latifah, Eko Widaryanto, M. Dawam Maghfoer, Arifin

Abstract:

Tomato (Lycopersicon esculentum Mill.) is potential vegetables to develop, because it has high economic value and has the potential to be exported. There is a decrease in tomato productivity due to unfavorable growth conditions such as bacterial wilt, fusarium wilt, high humidity, high temperature and inappropriate production technology. Grafting technology is one alternative technology. In addition to being able to control the disease in the soil, grafting is also able to increase the growth and yield of production. Besides, it is also necessary to know the economic benefits if using grafting technology. A promising eggplant rootstock for tomato grafting is Solanum torvum. S. torvum is selected as a rootstock with high compatibility. The purpose of this research is to know the effect of grafting several varieties of tomatoes with Solanum torvum as a rootstock. The experiment was conducted in Agricultural Extension Center Pare. Experimental Garden of Pare Kediri sub-district from July to early December 2016. The materials used were tomato Cervo varieties, Karina, Timoty, and Solanum torvum. Economic analysis, growth, and yield including plant height, number of leaves, percentage of disease and tomato production were used as performance measures. The study showed that grafting tomato Timoty scion with Solanum torvum as rootstock had higher production. Financially, grafting tomato Timoty and Cervo scion had higher profit about. 28,6% and 16,3% compared to Timoty and Cervo variety treatment without grafting.

Keywords: grafting technology, economic analysis, growth, yield of tomato, Solanum torvum

Procedia PDF Downloads 237
386 Administration of Lactobacillus plantarum PS128 Improves Animal Behavior and Monoamine Neurotransmission in Germ-Free Mice

Authors: Liu Wei-Hsien, Chuang Hsiao-Li, Huang Yen-Te, Wu Chien-Chen, Chou Geng-Ting, Tsai Ying-Chieh

Abstract:

Intestinal microflora play an important role in communication along the gut-brain axis. Probiotics, defined as live bacteria or bacterial products, confer a significant health benefit to the host. Here we administered Lactobacillus plantarum PS128 (PS128) to the germ-free (GF) mouse to investigate the impact of the gut-brain axis on emotional behavior. Administration of live PS128 significantly increased the total distance traveled in the open field test; it decreased the time spent in the closed arm and increased the time spent and total entries into the open arm in the elevated plus maze. In contrast, heat-killed PS128 caused no significant changes in the GF mice. Treatment with live PS128 significantly increased levels of both serotonin and dopamine in the striatum, but not in the prefrontal cortex or hippocampus. However, live PS128 did not alter pro- or anti-inflammatory cytokine production by mitogen-stimulated splenocytes. The above data indicate that the normalization of emotional behavior correlated with monoamine neurotransmission, but not with immune activity. Our findings suggest that daily intake of the probiotic PS128 could ameliorate neuropsychiatric disorders such as anxiety and excessive psychological stress.

Keywords: dopamine, hypothalamic-pituitary-adrenal axis, intestinal microflora, serotonin

Procedia PDF Downloads 416
385 NprRX Regulation on Surface Spreading Motility in Bacillus cereus

Authors: Yan-Shiang Chiou, Yi-Huang Hsueh

Abstract:

Bacillus cereus is a foodborne pathogen that causes two types of foodborne illness, the emetic and diarrheal syndromes. B. cereus consistently ranks among the top three among bacterial foodborne outbreaks in the ten years of 2001 to 2010 in Taiwan. Foodborne outbreak caused by B. cereus has been increased, and recently it ranks second foodborne pathogen after Vibrio parahaemolyticus. This pathogen is difficult to control due to its ubiquitousness in the environment, the psychrotrophic nature of many strains, and the heat resistance of their spores. Because complete elimination of biofilms is difficult, a better understanding of the molecular mechanisms of biofilm formation by B. cereus will help to develop better strategies to control this pathogen. Surface translocation can be an important factor in biofilm formation. In B. cereus, NprR is a quorum sensor, and its apo NprR is a dimer and changes to a tetramer in the presence of NprX. The small peptide NprX may induce conformational change allowing the apo dimer to switch to an active tetramer specifically recognizing target DNA sequences. Our result showed that mutation of nprRX causes surface spreading deficiency. Mutation of flagella, pili and surfactant genes (flgAB, bcpAB, krsABC), did not abolish spreading motility. Under nprRX mutant, mutation of spo0A restored the spreading deficiency. This suggests that spreading motility is not related surfactant, pili and flagella but other unknown mechanism and Spo0A, a sporulation initiation protein, inhibits spreading motility.

Keywords: Bacillus cereus, nprRX, spo0A, spreading motility

Procedia PDF Downloads 257
384 Efficient Production of Cell-Adhesive Motif From Human Fibronectin Domains to Design a Bio-Functionalized Scaffold for Tissue Engineering

Authors: Amina Ben Abla, Sylvie Changotade, Geraldine Rohman, Guilhem Boeuf, Cyrine Dridi, Ahmed Elmarjou, Florence Dufour, Didier Lutomski, Abdellatif Elm’semi

Abstract:

Understanding cell adhesion and interaction with the extracellular matrix is essential for biomedical and biotechnological applications, including the development of biomaterials. In recent years, numerous biomaterials have emerged and were used in the field of tissue engineering. Nevertheless, the lack of interaction of biomaterials with cells still limits their bio-integration. Thus, the design of bioactive biomaterials to improve cell attachment and proliferation is of growing interest. In this study, bio-functionalized material was developed combining a synthetic polymer scaffold surface with selected domains of type III human fibronectin (FNIII-DOM) to promote cell adhesion and proliferation. Bioadhesive ligand includes cell-binding domains of human fibronectin, a major ECM protein that interacts with a variety of integrins cell-surface receptors, and ECM proteins through specific binding domains were engineered. FNIII-DOM was produced in bacterial system E. coli in 5L fermentor with a high yield level reaching 20mg/L. Bioactivity of the produced fragment was validated by studying cellular adhesion of human cells. The adsorption and immobilization of FNIII-DOM onto the polymer scaffold were evaluated in order to develop an innovative biomaterial.

Keywords: biomaterials, cellular adhesion, fibronectin, tissue engineering

Procedia PDF Downloads 154
383 Increasing Sustainability of Melanin Bio-Production Using Seawater

Authors: Harsha Thaira, Ritu Raval, Keyur Raval

Abstract:

Melanin has immense applications in the field of agriculture, cosmetics and pharmaceutical industries due to its photo-protective, UV protective and anti- oxidant activities. However, its production is limited to costly chemical methods or harsh extractive methods from hair which ultimately gives poor yields. This makes the cost of melanin very high, to the extent of US Dollar 300 per gram. Some microorganisms are reported to produce melanin under stress conditions. Out of all melanin producing organisms, Pseudomonas stutzeri can grow in sea water and produce melanin under saline stress. The objective of this study was to develop a sea water based bioprocess. Effects of different growth media and process parameters on melanin production using sea water were investigated. The marine bacterial strain Pseudomonas stutzeri HMGM-7(MTCC 11712) was selected and the effect of different media such as Nutrient Broth (NB), Luria Bertini (LB) broth, Bushnell- Haas broth (BHB) and Trypticase Soy broth (TSB) and various medium components were investigated with one factor at a time approach. Parameters like shaking frequency, inoculum age, inoculum size, pH and temperature were also investigated in order to obtain the optimum conditions for maximum melanin production. The highest yield of melanin concentration, 0.306 g/L, was obtained in Trypticase Soy broth at 36 hours. The yield was 1.88 times higher than the melanin obtained before optimization, 0.163 g/L at 36 hours. Studies are underway to optimize medium constituents to further enhance melanin production.

Keywords: melanin, marine, bioprocess, pseudomonas

Procedia PDF Downloads 277
382 Studies on Some Aspects of Sub Clinical Mastitis in Cattle

Authors: Kavita Jaidiya, Anju Chahar, Chitra Jaidiya

Abstract:

The present study was conducted on 200 quarters from 50 apparently healthy cows. Samples are subjected to California Mastitis Test (CMT), cultural examination, and mPCR. Milk samples were also subjected to changes in composition Viz. fat, protein, and lactose. The prevalence of subclinical mastitis based on culture examination was 30(60/200), 36 (72/200), and 40 percent (93/200) based on CMT, culture examination, and mPCR on a quarterly basis. The prevalence of subclinical mastitis on animal basis was 40 (20/50), 46 (23/50), and 52 percent (26/50) based on CMT, Culture examination, and mPCR. The highest prevalence was observed in IVth parity on a quarterly basis and in Vth parity on cow basis. On culture examination, Staphylococcus aureus was the most prevalent organism (50.56%), followed by Streptococcus dysaglactiae (11.33%), E. coli (7.8 %), Staphylococcus agalactiae (13.48 %), Staphylococcus epidermidis (2.2 %), Streptococcus hyicus (6.94%), Streptococcus uberis (5.16%), Klebsiella pneumonia (6.74%). On isolation by bacterial mPCR, Staphylococcus spp. (42%) was the major pathogen. Organisms isolated in mixed infections are Streptococcus spp., Klebsiella pneumonia, E.coli and Pseudomonas aeruginous. The average mean value of fat, protein, and lactose content in subclinically affected milk samples were 3.40 ± 0.101, 3.009 ± 0.033, and 4.48 ± 0.03, and the mean value of fat, protein, and lactose content in normal milk were 4.13 ± 0.035, 3.39 ± 0.021, and 5.10 ± 0.016. The mean blood level of reduced glutathione in subclinical mastitis (30.44 ± 1.87 ng/ml) was lower than healthy cows (47.98 ± 4.04ng/ml). The concentration of malondialdehyde (10.026 ± 0.21mmol/L) in subclinical mastitis was significantly higher as compared to healthy group cows (2.19 ± 0.23mmol/L).

Keywords: cow, subclinical mastitis, mPCR, California Mastitis test

Procedia PDF Downloads 149
381 Recovery and Identification of Phenolic Acids in Honey Samples from Different Floral Sources of Pakistan Having Antimicrobial Activity

Authors: Samiyah Tasleem, Muhammad Abdul Haq, Syed Baqir Shyum Naqvi, Muhammad Abid Husnain, Sajjad Haider Naqvi

Abstract:

The objective of the present study was: a) to investigate the antimicrobial activity of honey samples of different floral sources of Pakistan, b) to recover the phenolic acids in them as a possible contributing factor of antimicrobial activity. Six honey samples from different floral sources, namely: Trachysperm copticum, Acacia species, Helianthus annuus, Carissa opaca, Zizyphus and Magnifera indica were used. The antimicrobial activity was investigated by the disc diffusion method against eight freshly isolated clinical isolates (Staphylococci aureus, Staphylococci epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris and Candida albicans). Antimicrobial activity of honey was compared with five commercial antibiotics, namely: doxycycline (DO-30ug/mL), oxytetracycline (OT-30ug/mL), clarithromycin (CLR–15ug/mL), moxifloxacin (MXF-5ug/mL) and nystatin (NT – 100 UT). The fractions responsible for antimicrobial activity were extracted using ethyl acetate. Solid phase extraction (SPE) was used to recover the phenolic acids of honey samples. Identification was carried out via High-Performance Liquid Chromatography (HPLC). The results indicated that antimicrobial activity was present in all honey samples and found comparable to the antibiotics used in the study. In the microbiological assay, the ethyl acetate honey extract was found to exhibit a very promising antimicrobial activity against all the microorganisms tested, indicating the existence of phenolic compounds. Six phenolic acids, namely: gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids were identified besides some unknown substance by HPLC. In conclusion, Pakistani honey samples showed a broad spectrum antibacterial and promising antifungal activity. Identification of six different phenolic acids showed that Pakistani honey samples are rich sources of phenolic compounds that could be the contributing factor of antimicrobial activity.

Keywords: Pakistani honey, antimicrobial activity, Phenolic acids eg.gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids

Procedia PDF Downloads 549
380 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Authors: Teerapon Pirom, Ura Pancharoen

Abstract:

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Keywords: aliquat336, amoxicillin, HFSLM, kinetic

Procedia PDF Downloads 275
379 Comparison of Methods for the Detection of Biofilm Formation in Yeast and Lactic Acid Bacteria Species Isolated from Dairy Products

Authors: Goksen Arik, Mihriban Korukluoglu

Abstract:

Lactic acid bacteria (LAB) and some yeast species are common microorganisms found in dairy products and most of them are responsible for the fermentation of foods. Such cultures are isolated and used as a starter culture in the food industry because of providing standardisation of the final product during the food processing. Choice of starter culture is the most important step for the production of fermented food. Isolated LAB and yeast cultures which have the ability to create a biofilm layer can be preferred as a starter in the food industry. The biofilm formation could be beneficial to extend the period of usage time of microorganisms as a starter. On the other hand, it is an undesirable property in pathogens, since biofilm structure allows a microorganism become more resistant to stress conditions such as antibiotic presence. It is thought that the resistance mechanism could be turned into an advantage by promoting the effective microorganisms which are used in the food industry as starter culture and also which have potential to stimulate the gastrointestinal system. Development of the biofilm layer is observed in some LAB and yeast strains. The resistance could make LAB and yeast strains dominant microflora in the human gastrointestinal system; thus, competition against pathogen microorganisms can be provided more easily. Based on this circumstance, in the study, 10 LAB and 10 yeast strains were isolated from various dairy products, such as cheese, yoghurt, kefir, and cream. Samples were obtained from farmer markets and bazaars in Bursa, Turkey. As a part of this research, all isolated strains were identified and their ability of biofilm formation was detected with two different methods and compared with each other. The first goal of this research was to determine whether isolates have the potential for biofilm production, and the second was to compare the validity of two different methods, which are known as “Tube method” and “96-well plate-based method”. This study may offer an insight into developing a point of view about biofilm formation and its beneficial properties in LAB and yeast cultures used as a starter in the food industry.

Keywords: biofilm, dairy products, lactic acid bacteria, yeast

Procedia PDF Downloads 264
378 Correlation between Copper Uptake and Decrease of Copper (Hypocupremia) in Burn Patients-Infected Pseudomonas aeruginosa

Authors: Khaled M. Khleifat

Abstract:

Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram-positive bacteria Bacillusthuringiensis strain Israelisas well as Gram-negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis and Enterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron-binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.

Keywords: Pseudomonas aeruginosa, hypocupremia, correlation, PCV

Procedia PDF Downloads 313
377 Effect of Peganum harmala Seeds on Blood Factors, Immune Response and Intestinal Selected Bacterial Population in Broiler Chickens

Authors: Majid Goudarzi

Abstract:

This experiment was designed to study the effects of feeding different levels of Peganum harmala seeds (PHS) and antibiotic on serum biochemical parameters, immune response and intestinal microflora composition in Ross broiler chickens. A total of 240 one-d-old unsexed broiler chickens were randomly allocated to each of the four treatment groups, each with four replicate pens of 15 chicks. The dietary treatments included of control (C) - without PHS and antibiotic - the diet contains 300 mg/kg Lincomycin 0.88% (A) and the diets contain 2 g/kg (H1) and 4 g/kg (H2) PHS. The chicks were raised on floor pens and received diets and water ad libitum for six weeks. Blood samplings were performed for the determination of antibody titer against Newcastle disease on 14 and 21 days and for biochemical parameters on 42 days of age. The populations of Lactobacilli spp. and Escherichia coli were enumerated in ileum by conventional microbiological techniques using selective agar media. Inclusion of PHS in diet resulted in a significant decrease in total cholesterol and significant increase in HDL relative to the control and antibiotic groups. Antibody titer against NDV was not affected by experimental treatments. E. coli population in birds supplemented with antibiotic and PHS was significantly lower than control, but Lactobacilli spp. population increased only by antibiotic and not by PHS. In conclusion, the results of this study showed that addition of PHS powder seem to have a positive influence on some biochemical parameters and gastrointestinal microflora.

Keywords: antibiotic, biochemical parameters, immune system, Peganum harmala

Procedia PDF Downloads 362
376 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Waste Water: A Study of Techno-Economics, Energy Use, and Greenhouse Gas Emissions

Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez

Abstract:

The biodegradable family of polymers polyhydroxyalkanoates are interesting substitutes for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.

Keywords: circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization

Procedia PDF Downloads 457
375 Rapid, Label-Free, Direct Detection and Quantification of Escherichia coli Bacteria Using Nonlinear Acoustic Aptasensor

Authors: Shilpa Khobragade, Carlos Da Silva Granja, Niklas Sandström, Igor Efimov, Victor P. Ostanin, Wouter van der Wijngaart, David Klenerman, Sourav K. Ghosh

Abstract:

Rapid, label-free and direct detection of pathogenic bacteria is critical for the prevention of disease outbreaks. This paper for the first time attempts to probe the nonlinear acoustic response of quartz crystal resonator (QCR) functionalized with specific DNA aptamers for direct detection and quantification of viable E. coli KCTC 2571 bacteria. DNA aptamers were immobilized through biotin and streptavidin conjugation, onto the gold surface of QCR to capture the target bacteria and the detection was accomplished by shift in amplitude of the peak 3f signal (3 times the drive frequency) upon binding, when driven near fundamental resonance frequency. The developed nonlinear acoustic aptasensor system demonstrated better reliability than conventional resonance frequency shift and energy dissipation monitoring that were recorded simultaneously. This sensing system could directly detect 10⁽⁵⁾ cells/mL target bacteria within 30 min or less and had high specificity towards E. coli KCTC 2571 bacteria as compared to the same concentration of S.typhi bacteria. Aptasensor response was observed for the bacterial suspensions ranging from 10⁽⁵⁾-10⁽⁸⁾ cells/mL. Conclusively, this nonlinear acoustic aptasensor is simple to use, gives real-time output, cost-effective and has the potential for rapid, specific, label-free direction detection of bacteria.

Keywords: acoustic, aptasensor, detection, nonlinear

Procedia PDF Downloads 567
374 Utilizing the RhlR/RhlI Quorum Sensing System to Express the ß-Galactosidase Reporter Gene by Using the N-Butanoyl Homoserine Lactone and N-Hexanoyl Homoserine Lactone

Authors: Ngoc Tu Truong, Nuong T. Bui, Ben Rao, Ya L. Shen

Abstract:

Quorum sensing is a phenomenon present in many gram-negative bacteria that allows bacterial communication and controlled expression of a large suite of genes through quorum sensing signals - N-acyl homoserine lactones (AHLs). In order to investigate the ability of the rhlR/rhlI quorum sensing system in Pseudomonas aeruginosa to express the ß-Galactosidase reporter gene, an engineered E. coli strain EpHL02, was genetically engineered. This engineered E. coli strain EpHL02 responded to the presence of the N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone to express the ß-Galactosidase reporter gene at a concentration limit of 5x10⁻⁸ M. This was also found to be comparable to AHLs extraction from Serratia marcescens H31. Moreover, we examined this ability of this engineered E. coli strain for respond of AHLs from extractions of Pseudomonas aeruginosa ATCC9027. The results demonstrated that the rhlR/rhlI quorum sensing system can express the ß-Galactosidase reporter gene by using the N-butanoyl homoserine lactone, N-hexanoyl homoserine lactone and AHLs from extractions of Serratia marcescens H31 and Pseudomonas aeruginosa ATCC9027 in the engineered E. coli strain EpHL02.

Keywords: N-butanoyl homoserine lactone, C4-HSL, N-hexanoyl homoserine lactone, C6-HSL, Pseudomonas aeruginosa, quorum sensing, Serratia marcescens, ß-galactosidase reporter gene

Procedia PDF Downloads 307
373 Development of a Symbiotic Milk Chocolate Using Inulin and Bifidobacterium Lactis

Authors: Guity Karim, Valiollah Ayareh

Abstract:

Probiotic dairy products are those that contain biologically active components that may affect beneficially one or more target functions in the body, beyond their adequate nutritional effects. As far as chocolate milk is a popular dairy product in the country especially among children and youth, production of a symbiotic (probiotic + peribiotic) new product using chocolate milk, Bifidobacterium lactis (DSM, Netherland) and inulin (Bene, Belgium) would help to promote the nutritional and functional properties of this product. Bifidobacterium Lactis is used as a probiotic in a variety of foods, particularly dairy products like yogurt and as a probiotic bacterium has benefit effects on the human health. Inulin as a peribiotic agent is considered as functional food ingredient. Experimental studies have shown its use as bifidogenic agent. Chocolate milk with different percent of fat (1 and 2 percent), 6 % of sugar and 0.9 % cacao was made, sterilized (UHT) and supplemented with Bifidobacterium lactis and inulin (0.5 %) after cooling . A sample was made without inulin as a control. Bifidobacterium lactis population was enumerated at days 0, 4, 8 and 12 together with measurement of pH, acidity and viscosity of the samples. Also sensory property of the product was evaluated by a 15 panel testers. The number of live bacterial cells was maintained at the functional level of 106-108 cfu/ml after keeping for 12 days in refrigerated temperature (4°C). Coliforms were found to be absent in the products during the storage. Chocolate milk containing 1% fat and inulin has the best effect on the survival and number of B. lactis at day 8 and after that. Moreover, the addition of inulin did not affect the sensorial quality of the product. In this work, chocolate has been evaluated as a potential protective carrier for oral delivery of B. lactis and inulin.

Keywords: chocolate milk, synbiotic, bifidobacterium lactis, inulin

Procedia PDF Downloads 361
372 Synergistic Effect of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi to Enhance Wheat Grain Yield, Biofortification and Soil Health: A Field Study

Authors: Radheshyam Yadav, Ramakrishna Wusirika

Abstract:

Plant Growth Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal (AM) Fungi are ubiquitous in soil and often very critical for crop yield and agriculture sustainability, and this has motivated the agricultural practices to support and promote PGPB and AM Fungi in agriculture. PGPB can be involved in a range of processes that affect Nitrogen (N) and Phosphorus (P) transformations in soil and thus influence nutrient availability and uptake to the plants. A field study with two wheat cultivars, HD-3086, and HD-2967 was performed in Malwa region, Bathinda of Punjab, India, to evaluate the effect of native and non-native PGPB alone and in combination with AM fungi as an inoculant on wheat grain yield, nutrient uptake and soil health parameters (dehydrogenase, urease, β‐glucosidase). Our results showed that despite an early insignificant increase in shoot length, plants treated with PGPB (Bacillus sp.) and AM Fungi led to a significant increase in shoot growth at maturity, aboveground biomass, nitrogen (45% - 40%) and phosphorus (40% - 34%) content in wheat grains relative to untreated control plants. Similarly, enhanced grain yield and nutrients uptake i.e. copper (27.15% - 36.25%) iron (43% - 53%) and zinc (44% - 47%) was recorded in PGPB and AM Fungi treated plants relative to untreated control. Overall, inoculation with native PGPB alone and in combination with AM Fungi provided benefits to enhance grain yield, wheat biofortification, and improved soil fertility, despite this effect varied depending on different PGPB isolates and wheat cultivars. These field study results provide evidence of the benefits of agricultural practices involving native PGPB and AM Fungi to the plants. These native strains and AM Fungi increased accumulations of copper, iron, and zinc in wheat grains, enhanced grain yield, and soil fertility.

Keywords: AM Fungi, biofortification, PGPB, soil microbial enzymes

Procedia PDF Downloads 325
371 Biosorption of Lead (II) from Lead Acid Battery Industry Wastewater by Immobilized Dead Isolated Bacterial Biomass

Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati

Abstract:

Over the past many years, many sites in the world have been contaminated with heavy metals, which are the largest class of contaminants. Lead is one of the toxic heavy metals contaminated in the environment. Lead is not biodegradable, that’s why it is accumulated in the human body and impacts all the systems of the human body when it has been taken by humans. The accumulation of lead in the water environment has been showing adverse effects on the public health. So the removal of lead from the water environment by the biosorption process, which is emerged as a potential method for the lead removal, is an efficient approach. This work was focused to examine the removal of Lead [Pb (II)] ions from aqueous solution and effluent from battery industry. Lead contamination in water is a widespread problem throughout the world and mainly results from lead acid battery manufacturing effluent. In this work, isolated bacteria from wastewater of lead acid battery industry has been utilized for the removal of lead. First effluent from the lead acid battery industry was characterized by the inductively coupled plasma atomic emission spectrometry (ICP – AES). Then the bacteria was isolated from the effluent and used it’s immobilized dead mass for the biosorption of lead. Scanning electron microscopic (SEM) and Atomic force microscopy (AFM) studies clearly suggested that the Lead (Pb) was adsorbed efficiently. The adsorbed percentage of lead (II) from waste was 97.40 the concentration of lead (II) is measured by Atomic Absorption Spectroscopy (AAS). From the result of AAS it can be concluded that immobilized isolated dead mass was well efficient and useful for biosorption of lead contaminated waste water.

Keywords: biosorption, ICP-AES, lead (Pb), SEM

Procedia PDF Downloads 385
370 World War II Vaccination Scheme as a Determinant of Gender-Specific Differences in Anti-Tetanus Antibody Levels in the British Elderly Population

Authors: Myrto Vlazaki

Abstract:

Tetanus is a non-transmissible, preventable bacterial disease with high mortality. In the U.K., the demographic group systematically accounting for a large proportion of the infections notified to the authorities over the years have been the elderly (> 60 years old). The 2009 seroepidemiological study for tetanus in England reports a gender-age interaction for the +70, with males having significantly higher anti-tetanus antibody levels than females. A systematic review of the literature was carried out to characterise: I. the seroepidemiology of tetanus in economically developed countries with similar immunisation schemes to the U.K., introduced in the 1960’s. II. the factors leading to differential vaccine uptake between males and females in 1910-1945 (corresponding to ages of 60-95 in 2005). III. the immune response elicited by anti-tetanus immunisation in males and females IV. the value of catch-up immunisation in the elderly Similar age- and gender- differences in anti-tetanus antibody levels are noted in other countries. Gender differences in immune responses elicited by vaccination are not consistent with the finding that elder females are less well protected against tetanus compared to their male counterparts. Attention is drawn to the selective anti-tetanus immunisation scheme introduced in the U.K. in 1938, specific to the World War II conscripts. The age-specific immunity gap observed amongst the +70 could be explained as the by-product of that early scheme targetting mostly males. Introducing anti-tetanus vaccination in the +70 in the U.K. could help bridge the immunity gap between males and females and reduce the overall tetanus susceptibility of this age group.

Keywords: elderly, immunisation, gender-specific differences, seroepidemiology, tetanus, World War II

Procedia PDF Downloads 150
369 Fungal Profile and Antifungal Susceptibility Patterns among Symptomatic Pediatrics Patients Attending Aboozar Children’s Hospital, Ahvaz, Iran

Authors: Nasrin Amirrajab, Yasaman Razavi Ghahfarokhi, Zahra Tootak, Maryam Hadian, Fatemeh Abooali Shamshiri

Abstract:

Urinary tract infections (UTIs) have been reported in children with nephrotic syndrome. However, the only causes for the infection reported to date are bacteria, but not many prior reported occurrences of fungi or yeast as causative organisms. Hence, the present study aimed to describe the epidemiology of urinary tract fungal infections in a tertiary care pediatric. A single-center cross-sectional study was conducted at the nephrology ward of Aboozar Pediatric Hospital between March 21, 2021, and April 28, 2022. Urine was collected aseptically from children, inoculated onto culture media, and incubated at 37 °C for 18–48 hours. Yeast was identified following standard procedures. Antifungal susceptibility testing was determined by the disk diffusion method according to the CLSI guideline. Descriptive statistics and logistical regressions were used to estimate the crude ratio with a 95% confidence interval. P-value < 0.05 was considered significant. Among 68 individuals referred to the mycology lab, the result of direct examination and culture of all patients approved for C.albicans. Of these, 38 individuals (55.8%) were male, and 30 (44.2%) were female. The patients' age ranges were between one month and an 18-year-old. In the study of infection intensity, the patients were classified into three levels such as few (73.5%), moderate (20.6%), and many (5.9%). In the present study, all the patients were sensitive to Posaconazole. Also, the eagle effect was found in Amphotericin B, Voriconazole, and Fluconazole with frequencies of 91.7%, 91.7%, and 83%, respectively. In addition, just 8.3% of isolates were resistant to Itraconazole. It has not shown resistance in other mentioned medicine. The patients showed an intermediate response to Itraconazole (91.7%), Fluconazole (17%), Voriconazole (8.3%), and Amphotericin B (8.3%). There is a high prevalence of yeast infections in children with suspected UTIs. Also, boys are more likely to get yeast infections, and the severity of the infection is higher than girls. The present study demonstrated the importance of diagnosing and selecting the appropriate drug for urinary tract fungal infections in hospitalized children.

Keywords: urinary tract infections, children, fungal infections, yeast, antifungal susceptibility

Procedia PDF Downloads 98
368 Agarose Based Multifunctional Nanofibrous Bandages for Wound Healing Applications

Authors: Sachin Latiyan, T. S. Sampath Kumar, Mukesh Doble

Abstract:

Natural polymer based nanofibrous wound dressings have gained increased attention because of their high surface area, bioactivity, biodegradability and resemblance to extracellular matrix. Agarose (a natural polymer) have been used largely for angiogenesis, cartilage formation and wound healing applications. However, electrospinning of agarose is tedious thereby rendering limited studies on fabrication and evaluation of agarose based nanofibrous wound dressings. Thus, present study focuses on the fabrication of agarose (10% w/v)/ polyvinyl alcohol (12% w/v) based multifunctional nanofibrous scaffolds. Zinc citrate (1, 3 and 5% w/w of the polymer) was added as a potential antibacterial agent to combat wound infections. The fabricated scaffolds exhibit ~500% swelling (in phosphate buffer saline) with enhanced mechanical strength which is suitable for most of the wound healing applications. In vitro studies were found to reveal an increased migration and proliferation of L929 mouse fibroblasts with agarose blends w.r.t to the control. The fabricated dressings were found to be effective against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains. Hence, a multifunctional (as provides effective swelling and mechanical support along with antibacterial property), natural product based, eco-friendly scaffold was successfully fabricated to serve as a potential wound dressing material.

Keywords: antibacterial dressings, benign solvent, nanofibrous agarose, biocompatibility, enhanced swelling and mechanical strength, biopolymeric dressings

Procedia PDF Downloads 94
367 Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract

Authors: Yousef M. Abouzeed A. Elfahem, F. Zgheel, M. A. Saad, Mohamed O. Ahmed

Abstract:

The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug.

Keywords: Vitis vinifera raisin, extraction, phenolic compounds, antibacterial activity

Procedia PDF Downloads 606
366 Extracellular Hydrolase-Producing Bacteria Isolated from Chilca Salterns in Peru

Authors: Carol N. Flores-Fernández, Guadalupe Espilco, Cynthia Esquerre, Amparo I. Zavaleta

Abstract:

Saline environments represent a valuable source of enzymes with novel properties and particular features for application in food, pharmaceutical and chemical industry. This study focuses on the isolation and screening of hydrolase-producing bacteria from Chilca salterns and the evaluation of their biotechnological potential. Soil samples were collected from Chilca salterns in Peru. For the isolation, medium containing 0.2 % of yeast extract, 5 % of NaCl and 10 % of the soil sample was used. After 72 h of incubation at 37 °C, serial dilutions were made up to 10−12 dilutions, spread on agar plates with 0.5 % of yeast extract and 5 % of NaCl, and incubated at 37 °C for 48 h. Screening of hydrolase-producing bacteria was carried out for cellulases, amylases, lipases, DNase, and proteases on specific media. Moreover, protease-producing bacteria were tested using protein extracted from the following legumes as substrate: Glycine max, Lupinus mutabilis, Pisum sativum, Erythrina edulis, Cicer arietinum, Phaseolus vulgaris and Vicia faba. A total of 16 strains were isolated from soil samples. On the screening media; 75, 44, 81 and 50 % were cellulase, amylase, DNase and protease producers, respectively. Also, 19 % of the isolates produced all the hydrolytic enzymes above mentioned. Lipase producers were not found. The 37 % and 12 % of the strains grew at 20 % and 30 % of salt concentration, respectively. In addition, 75 % of the strains grew at pH range between 5 and 10. From the total of protease-producing bacteria, 100 % hydrolyzed Glycine max, Lupinus mutabilis, and Pisum sativum protein, while 87 % hydrolyzed Erythrina edulis and Cicer arietinum protein. Finally, 75 % and 50 % of the strains hydrolyzed Phaseolus vulgaris and Vicia faba protein, respectively. Hydrolase-producing bacteria isolated from Chilca salterns in Peru grew at high salt concentrations and wide range of pH. In addition, protease-producing bacteria hydrolyzed protein from different sources such as leguminous. These enzymes have great biotechnological potential and could be used for different industrial processes and applications.

Keywords: bacteria, extracellular, hydrolases, Peru, salterns

Procedia PDF Downloads 209
365 Association between Copper Uptake and Decrease of Copper (hypocupremia) in Burn Patients-Infected Pseudomonas aeruginosa

Authors: Khaled Khleifat, Muayyad Abboud, Amjad Khleifat, Humodi Saeed

Abstract:

In this study, Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram positive bacteria Bacillusthuringiensis strain Israelisas well as Gram negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis andEnterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.

Keywords: pseudomonas, Cu uptake, burn patients, biosorption

Procedia PDF Downloads 392
364 Typification and Determination of Antibiotic Resistance Rates of Stenotrophomonas Maltophilia Strains Isolated from Intensive Care Unit Patients in a University Practice and Research Hospital

Authors: Recep Kesli, Gulsah Asik, Cengiz Demir, Onur Turkyilmaz

Abstract:

Objective: Stenotrophomonas maltophilia (S. maltophilia) has recently emerged as an important nosocomial microorganism. Treatment of invasive infections caused by this organism is problematic because this microorganism is usually resistant to a wide range of commonly used antimicrobials. We aimed to evaluate clinical isolates of S. maltophilia in respect to sampling sites and antimicrobial resistant. Method: During a two years period (October 2013 and September 2015) eighteen samples collected from the intensive care unit (ICU) patients hospitalized in Afyon Kocatepe University, ANS Practice and Research Hospital. Identification of the bacteria was determined by conventional methods and automated identification system-VITEK 2 (bio-Mérieux, Marcy l’toile, France). Antibacterial resistance tests were performed by Kirby Bauer disc (Oxoid, England) diffusion method following the recommendations of CLSI. Results: Eighteen S. maltophilia strains were identified as the causative agents of different infections. The main type of infection was lower respiratory tract infection (83,4 %); three patients (16,6 %) had bloodstream infection. While, none of the 18 S. maltophilia strains were found to be resistant against to trimethoprim sulfametaxasole (TMP-SXT) and levofloxacine, eight strains 66.6 % were found to be resistant against ceftazidim. Conclusion: The isolation of S.maltophilia starains resistant to TMP-SXT is vital. In order to prevent or minimize infections due to S. maltophilia such precuations should be utilized: Avoidance of inappropriate antibiotic use, prolonged implementation of foreign devices, reinforcement of hand hygiene practices and the application of appropriate infection control practices. Microbiology laboratories also may play important roles in controlling S. maltophilia infections by monitoring the prevalence, continuously, the provision of local antibiotic resistance paterns data and the performance of synergistic studies also may help to guide appropirate antimicrobial therapy choices.

Keywords: Stenotrophomonas maltophilia, trimethoprim-sulfamethoxazole, antimicrobial resistance, Stenotrophomonas spp.

Procedia PDF Downloads 250
363 Biological Control of Fusarium Crown and Root and Tomato (Solanum lycopersicum L.) Growth Promotion Using Endophytic Fungi from Withania somnifera L.

Authors: Nefzi Ahlem, Aydi Ben Abdallah Rania, Jabnoun-Khiareddine Hayfa, Ammar Nawaim, Mejda Daami-Remadi

Abstract:

Fusarium Crown and Root Rot (FCRR) caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL) is a serious tomato (Solanum lycopersicum L.) disease in Tunisia. Its management is very difficult due to the long survival of its resting structures and to the luck of genetic resistance. In this work, we explored the wild Solanaceae species Withania somnifera, growing in the Tunisian Centre-East, as a potential source of biocontrol agents effective in FCRR suppression and tomato growth promotion. Seven fungal isolates were shown able to colonize tomato roots, crowns, and stems. Used as conidial suspensions or cell-free culture filtrates, all tested fungal treatments significantly enhanced tomato growth parameters by 21.5-90.3% over FORL-free control and by 27.6-93.5% over pathogen-inoculated control. All treatments significantly decreased the leaf and root damage index by 28.5-92.8 and the vascular browning extent 9.7-86.4% over FORL-inoculated and untreated control. The highest disease suppression ability (decrease by 86.4-92.8% in FCRR severity) over pathogen-inoculated control and by 81.3-88.8 over hymexazol-treated control) was expressed by I6 based treatments. This endophytic fungus was morphologically characterized and identified using rDNA sequencing gene as Fusarium sp. I6 (MG835371). This fungus was shown able to reduce FORL radial growth by 58.5–83.2% using its conidial suspension or cell-free culture filtrate. Fusarium sp. I6 showed chitinolytic, proteolytic and amylase activities. The current study clearly demonstrated that Fusarium sp. (I6) is a promising biocontrol candidate for suppressing FCRR severity and promoting tomato growth. Further investigations are required for elucidating its mechanism of action involved in disease suppression and plant growth promotion.

Keywords: antifungal activity, associated fungi, Fusarium oxysporum f. sp. radicis-lycopersici, Withania somnifera, tomato growth

Procedia PDF Downloads 146