Search results for: queer performance
1959 Determination of Phenolic Compounds in Apples Grown in Different Geographical Regions
Authors: Mindaugas Liaudanskas, Monika Tallat-Kelpsaite, Darius Kviklys, Jonas Viskelis, Pranas Viskelis, Norbertas Uselis, Juozas Lanauskas, Valdimaras Janulis
Abstract:
Apples are an important source of various biologically active compounds used for human health. Phenolic compounds detected in apples are natural antioxidants and have antimicrobial, anti-inflammatory, anticarcinogenic, and cardiovascular protective activity. The quantitative composition of phenolic compounds in apples may be affected by various factors. It is important to investigate it in order to provide the consumer with high-quality well-known composition apples and products made out of it. The objective of this study was to evaluate phenolic compounds quantitative composition in apple fruits grown in a different geographical region. In this study, biological replicates of apple cv. 'Ligol', grown in Lithuania, Latvia, Poland, and Estonia, were investigated. Three biological replicates were analyzed; one of each contained 10 apples. Samples of lyophilized apple fruits were extracted with 70% ethanol (v/v) for 20 min at 40∘C temperature using the ultrasonic bath. The ethanol extracts of apple fruits were analyzed by the high-performance liquid chromatography method. The study found that the geographical location of apple-trees had an impact on the composition of phenolic compounds in apples. The number of quercetin glycosides varied from 314.78±9.47 µg/g (Poland) to 648.17±5.61 µg/g (Estonia). The same trend was also observed with flavan-3-ols (from 829.56±47.17 µg/g to 2300.85±35.49 µg/g), phloridzin (from 55.29±1.7 µg/g to 208.78±0.35 µg/g), and chlorogenic acid (from 501.39±28.84 µg/g to 1704.35±22.65 µg/g). It was observed that the amount of investigated phenolic compounds tended to increase from apples grown in the southern location (Poland) (1701.02±75.38 µg/g) to apples grown northern location (Estonia) (4862.15±56.37 µg/g). Apples (cv. 'Ligol') grown in Estonia accumulated approx. 2.86 times higher amount of phenolic compounds than apples grown in Poland. Acknowledgment: This work was supported by a grant from the Research Council of Lithuania, project No. S-MIP-17-8.Keywords: apples, cultivar 'Ligol', geographical regions, HPLC, phenolic compounds
Procedia PDF Downloads 1871958 Numerical Study of a Ventilation Principle Based on Flow Pulsations
Authors: Amir Sattari, Mac Panah, Naeim Rashidfarokhi
Abstract:
To enhance the mixing of fluid in a rectangular enclosure with a circular inlet and outlet, an energy-efficient approach is further investigated through computational fluid dynamics (CFD). Particle image velocimetry (PIV) measurements help confirm that the pulsation of the inflow velocity improves the mixing performance inside the enclosure considerably without increasing energy consumption. In this study, multiple CFD simulations with different turbulent models were performed. The results obtained were compared with experimental PIV results. This study investigates small-scale representations of flow patterns in a ventilated rectangular room. The objective is to validate the concept of an energy-efficient ventilation strategy with improved thermal comfort and reduction of stagnant air inside the room. Experimental and simulated results confirm that through pulsation of the inflow velocity, strong secondary vortices are generated downstream of the entrance wall-jet. The pulsatile inflow profile promotes a periodic generation of vortices with stronger eddies despite a relatively low inlet velocity, which leads to a larger boundary layer with increased kinetic energy in the occupied zone. A real-scale study was not conducted; however, it can be concluded that a constant velocity inflow profile can be replaced with a lower pulsated flow rate profile while preserving the mixing efficiency. Among the turbulent CFD models demonstrated in this study, SST-kω is most advantageous, exhibiting a similar global airflow pattern as in the experiments. The detailed near-wall velocity profile is utilized to identify the wall-jet instabilities that consist of mixing and boundary layers. The SAS method was later applied to predict the turbulent parameters in the center of the domain. In both cases, the predictions are in good agreement with the measured results.Keywords: CFD, PIV, pulsatile inflow, ventilation, wall-jet
Procedia PDF Downloads 1741957 Using the Weakest Precondition to Achieve Self-Stabilization in Critical Networks
Authors: Antonio Pizzarello, Oris Friesen
Abstract:
Networks, such as the electric power grid, must demonstrate exemplary performance and integrity. Integrity depends on the quality of both the system design model and the deployed software. Integrity of the deployed software is key, for both the original versions and the many that occur throughout numerous maintenance activity. Current software engineering technology and practice do not produce adequate integrity. Distributed systems utilize networks where each node is an independent computer system. The connections between them is realized via a network that is normally redundantly connected to guarantee the presence of a path between two nodes in the case of failure of some branch. Furthermore, at each node, there is software which may fail. Self-stabilizing protocols are usually present that recognize failure in the network and perform a repair action that will bring the node back to a correct state. These protocols first introduced by E. W. Dijkstra are currently present in almost all Ethernets. Super stabilization protocols capable of reacting to a change in the network topology due to the removal or addition of a branch in the network are less common but are theoretically defined and available. This paper describes how to use the Software Integrity Assessment (SIA) methodology to analyze self-stabilizing software. SIA is based on the UNITY formalism for parallel and distributed programming, which allows the analysis of code for verifying the progress property p leads-to q that describes the progress of all computations starting in a state satisfying p to a state satisfying q via the execution of one or more system modules. As opposed to demonstrably inadequate test and evaluation methods SIA allows the analysis and verification of any network self-stabilizing software as well as any other software that is designed to recover from failure without external intervention of maintenance personnel. The model to be analyzed is obtained by automatic translation of the system code to a transition system that is based on the use of the weakest precondition.Keywords: network, power grid, self-stabilization, software integrity assessment, UNITY, weakest precondition
Procedia PDF Downloads 2231956 Delivery of Ginseng Extract Containing Phytosome Loaded Microsphere System: A Preclinical Approach for Treatment of Neuropathic Pain in Rodent Model
Authors: Nitin Kumar
Abstract:
Purpose: The current research work focuses mainly on evolving a delivery system for ginseng extract (GE), which in turn will ameliorate the neuroprotective potential by means of enhancing the ginsenoside (Rb1) bio-availability (BA). For more noteworthy enhancement in oral bioavailability (OBA) along with pharmacological properties, the drug carriers’ performance can be strengthened by utilizing phytosomes-loaded microspheres (PM) delivery system. Methods: For preparing the disparate phytosome complexes (F1, F2, and F3), an aqueous extract of ginseng roots (GR) along with phospholipids were reacted in disparate ratio. Considering the outcomes, F3 formulation (spray-dried) was chosen for preparing the phytosomes powder (PP), PM, and extract microspheres (EM). PM was made by means of loading of F3 into Gum Arabic (GA) in addition to maltodextrin polymer mixture, whereas EM was prepared by means of the addition of extract directly into the same polymer mixture. For investigating the neuroprotective effect (NPE) in addition to their pharmacokinetic (PK) properties, PP, PM, and EM formulations were assessed. Results: F3 formulation gave enhanced entrapment efficiency (EE) (i.e., 50.61%) along with good homogeneity of spherical shaped particle size (PS) (42.58 ± 1.4 nm) with least polydispersity index (PDI) (i.e., 0.193 ± 0.01). The sustained release (up to 24 h) of ginsenoside Rb1 (GRb1) is revealed by the dissolution study of PM. A significantly (p < 0.05) greater anti-oxidant (AO) potential of PM can well be perceived as of the diminution in the lipid peroxidase level in addition to the rise in the glutathione superoxide dismutase (SOD) in addition to catalase levels. It also showed a greater neuroprotective potential exhibiting significant (p < 0.05) augmentation in the nociceptive threshold together with the diminution in damage to nerves. A noteworthy enhancement in the relative BA (157.94%) of GRb1 through the PM formulation can well be seen in the PK studies. Conclusion: It is exhibited that the PM system is an optimistic and feasible strategy to enhance the delivery of GE for the effectual treatment of neuropathic pain.Keywords: ginseng, neuropathic, phytosome, pain
Procedia PDF Downloads 1871955 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment
Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman
Abstract:
Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands
Procedia PDF Downloads 671954 Improving Search Engine Performance by Removing Indexes to Malicious URLs
Authors: Durga Toshniwal, Lokesh Agrawal
Abstract:
As the web continues to play an increasing role in information exchange, and conducting daily activities, computer users have become the target of miscreants which infects hosts with malware or adware for financial gains. Unfortunately, even a single visit to compromised web site enables the attacker to detect vulnerabilities in the user’s applications and force the downloading of multitude of malware binaries. We provide an approach to effectively scan the so-called drive-by downloads on the Internet. Drive-by downloads are result of URLs that attempt to exploit their visitors and cause malware to be installed and run automatically. To scan the web for malicious pages, the first step is to use a crawler to collect URLs that live on the Internet, and then to apply fast prefiltering techniques to reduce the amount of pages that are needed to be examined by precise, but slower, analysis tools (such as honey clients or antivirus programs). Although the technique is effective, it requires a substantial amount of resources. A main reason is that the crawler encounters many pages on the web that are legitimate and needs to be filtered. In this paper, to characterize the nature of this rising threat, we present implementation of a web crawler on Python, an approach to search the web more efficiently for pages that are likely to be malicious, filtering benign pages and passing remaining pages to antivirus program for detection of malwares. Our approaches starts from an initial seed of known, malicious web pages. Using these seeds, our system generates search engines queries to identify other malicious pages that are similar to the ones in the initial seed. By doing so, it leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web. The results shows that this guided approach is able to identify malicious web pages more efficiently when compared to random crawling-based approaches.Keywords: web crawler, malwares, seeds, drive-by-downloads, security
Procedia PDF Downloads 2291953 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization
Procedia PDF Downloads 1471952 Reliability Analysis of Variable Stiffness Composite Laminate Structures
Authors: A. Sohouli, A. Suleman
Abstract:
This study focuses on reliability analysis of variable stiffness composite laminate structures to investigate the potential structural improvement compared to conventional (straight fibers) composite laminate structures. A computational framework was developed which it consists of a deterministic design step and reliability analysis. The optimization part is Discrete Material Optimization (DMO) and the reliability of the structure is computed by Monte Carlo Simulation (MCS) after using Stochastic Response Surface Method (SRSM). The design driver in deterministic optimization is the maximum stiffness, while optimization method concerns certain manufacturing constraints to attain industrial relevance. These manufacturing constraints are the change of orientation between adjacent patches cannot be too large and the maximum number of successive plies of a particular fiber orientation should not be too high. Variable stiffness composites may be manufactured by Automated Fiber Machines (AFP) which provides consistent quality with good production rates. However, laps and gaps are the most important challenges to steer fibers that effect on the performance of the structures. In this study, the optimal curved fiber paths at each layer of composites are designed in the first step by DMO, and then the reliability analysis is applied to investigate the sensitivity of the structure with different standard deviations compared to the straight fiber angle composites. The random variables are material properties and loads on the structures. The results show that the variable stiffness composite laminate structures are much more reliable, even for high standard deviation of material properties, than the conventional composite laminate structures. The reason is that the variable stiffness composite laminates allow tailoring stiffness and provide the possibility of adjusting stress and strain distribution favorably in the structures.Keywords: material optimization, Monte Carlo simulation, reliability analysis, response surface method, variable stiffness composite structures
Procedia PDF Downloads 5201951 Synthesis of Highly Active Octahedral NaInS₂ for Enhanced H₂ Evolution
Authors: C. K. Ngaw
Abstract:
Crystal facet engineering, which involves tuning and controlling a crystal surface and morphology, is a commonly employed strategy to optimize the performance of crystalline nanocrystals. The principle behind this strategy is that surface atomic rearrangement and coordination, which inherently determines their catalytic activity, can be easily tuned by morphological control. Because of this, the catalytic properties of a nanocrystal are closely related to the surface of an exposed facet, and it has provided great motivation for researchers to synthesize photocatalysts with high catalytic activity by maximizing reactive facets exposed through morphological control. In this contribution, octahedral NaInS₂ crystals have been successfully developed via solvothermal method. The formation of the octahedral NaInS₂ crystals was investigated using field emission scanning electron microscope (FESEM) and X-Ray diffraction (XRD), and results have shown that the concentration of sulphur precursor plays an important role in the growth process, leading to the formation of other NaInS₂ crystal structures in the form of hexagonal nanosheets and microspheres. Structural modeling analysis suggests that the octahedral NaInS₂ crystals were enclosed with {012} and {001} facets, while the nanosheets and microspheres are bounded with {001} facets only and without any specific facets, respectively. Visible-light photocatalytic H₂ evolution results revealed that the octahedral NaInS₂ crystals (~67 μmol/g/hr) exhibit ~6.1 and ~2.3 times enhancement as compared to the conventional NaInS₂ microspheres (~11 μmol/g/hr) and nanosheets (~29 μmol/g/hr), respectively. The H₂ enhancement of the NaInS₂ octahedral crystal is attributed to the presence of {012} facets on the surface. Detailed analysis of the octahedron model revealed obvious differences in the atomic arrangement between the {001} and {012} facets and this can affect the interaction between the water molecules and the surface facets before reducing into H₂ gas. These results highlight the importance of tailoring crystal morphology with highly reactive facets in improving photocatalytic properties.Keywords: H₂ evolution, photocatalysis, octahedral, reactive facets
Procedia PDF Downloads 661950 Sustainable Milling Process for Tensile Specimens
Authors: Shilpa Kumari, Ramakumar Jayachandran
Abstract:
Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.Keywords: dry milling, tensile testing, wet milling, 6xxx alloy
Procedia PDF Downloads 1981949 Driving towards Sustainability with Shared Electric Mobility: A Case Study of Time-Sharing Electric Cars on University’s Campus
Authors: Jiayi Pan, Le Qin, Shichan Zhang
Abstract:
Following the worldwide growing interest in the sharing economy, especially in China, innovations within the field are rapidly emerging. It is, therefore, appropriate to address the under-investigated sustainability issues related to the development of shared mobility. In 2019, Shanghai Jiao Tong University (SJTU) introduced one of the first on-campus Time-sharing Electric Cars (TEC) that counts now about 4000 users. The increasing popularity of this original initiative highlights the necessity to assess its sustainability and find ways to extend the performance and availability of this new transport option. This study used an online questionnaire survey on TEC usage and experience to collect answers among students and university staff. The study also conducted interviews with TEC’s team in order to better understand its motivations and operating model. Data analysis underscores that TEC’s usage frequency is positively associated with a lower carbon footprint, showing that this scheme contributes to improving the environmental sustainability of transportation on campus. This study also demonstrates that TEC provides a convenient solution to those not owning a car in situations where soft mobility cannot satisfy their needs, this contributing to a globally positive assessment of TEC in the social domains of sustainability. As SJTU’s TEC project belongs to the non-profit sector and aims at serving current research, its economical sustainability is not among the main preoccupations, and TEC, along with similar projects, could greatly benefit from this study’s findings to better evaluate the overall benefits and develop operation on a larger scale. This study suggests various ways to further improve the TEC users’ experience and enhance its promotion. This research believably provides meaningful insights on the position of shared transportation within transport mode choice and how to assess the overall sustainability of such innovations.Keywords: shared mobility, sharing economy, sustainability assessment, sustainable transportation, urban electric transportation
Procedia PDF Downloads 2151948 Effect of the Magnetite Nanoparticles Concentration on Biogas and Methane Production from Chicken Litter
Authors: Guadalupe Stefanny Aguilar-Moreno, Miguel Angel Aguilar-Mendez, Teodoro Espinosa-Solares
Abstract:
In the agricultural sector, one of the main emitters of greenhouse gases is manure management, which has been increased considerably in recent years. Biogas is an energy source that can be produced from different organic materials through anaerobic digestion (AD); however, production efficiency is still low. Several techniques have been studied to increase its performance, such as co-digestion, the variation of digestion conditions, and nanomaterials used. Therefore, the aim of this investigation was to evaluate the effect of magnetite nanoparticles (NPs) concentration, synthesized by co-precipitation, on the biogas and methane production in AD using chicken litter as a substrate. Synthesis of NPs was performed according to the co-precipitation method, for which a fractional factorial experimental design 25⁻² with two replications was used. The study factors were concentrations (precursors and passivating), time of sonication and dissolution temperatures, and the response variables were size, hydrodynamic diameter (HD) and zeta potential. Subsequently, the treatment that presented the smallest NPs was chosen for their use on AD. The AD was established in serological bottles with a working volume of 250 mL, incubated at 36 ± 1 °C for 80 days. The treatments consisted of the addition of different concentrations of NPs in the microcosms: chicken litter only (control), 20 mg∙L⁻¹ of NPs + chicken litter, 40 mg∙L⁻¹ of NPs + chicken litter and 60 mg∙L⁻¹ of NPs + chicken litter, all by triplicate. Methane and biogas production were evaluated daily. The smallest HD (49.5 nm) and the most stable NPs (21.22 mV) were obtained with the highest passivating concentration and the lower precursors dissolution temperature, which were the only factors that had a significant effect on the HD. In the transmission electron microscopy performed to these NPs, an average size of 4.2 ± 0.73 nm was observed. The highest biogas and methane production was obtained with the treatment that had 20 mg∙L⁻¹ of NPs, being 29.5 and 73.9%, respectively, higher than the control, while the treatment with the highest concentration of NPs was not statistically different from the control. From the above, it can be concluded that the magnetite NPs promote the biogas and methane production in AD; however, high concentrations may cause inhibitory effects among methanogenic microorganisms.Keywords: agricultural sector, anaerobic digestion, nanotechnology, waste management
Procedia PDF Downloads 1371947 A Ku/K Band Power Amplifier for Wireless Communication and Radar Systems
Authors: Meng-Jie Hsiao, Cam Nguyen
Abstract:
Wide-band devices in Ku band (12-18 GHz) and K band (18-27 GHz) have received significant attention for high-data-rate communications and high-resolution sensing. Especially, devices operating around 24 GHz is attractive due to the 24-GHz unlicensed applications. One of the most important components in RF systems is power amplifier (PA). Various PAs have been developed in the Ku and K bands on GaAs, InP, and silicon (Si) processes. Although the PAs using GaAs or InP process could have better power handling and efficiency than those realized on Si, it is very hard to integrate the entire system on the same substrate for GaAs or InP. Si, on the other hand, facilitates single-chip systems. Hence, good PAs on Si substrate are desirable. Especially, Si-based PA having good linearity is necessary for next generation communication protocols implemented on Si. We report a 16.5 to 25.5 GHz Si-based PA having flat saturated power of 19.5 ± 1.5 dBm, output 1-dB power compression (OP1dB) of 16.5 ± 1.5 dBm, and 15-23 % power added efficiency (PAE). The PA consists of a drive amplifier, two main amplifiers, and lump-element Wilkinson power divider and combiner designed and fabricated in TowerJazz 0.18µm SiGe BiCMOS process having unity power gain frequency (fMAX) of more than 250 GHz. The PA is realized as a cascode amplifier implementing both heterojunction bipolar transistor (HBT) and n-channel metal–oxide–semiconductor field-effect transistor (NMOS) devices for gain, frequency response, and linearity consideration. Particularly, a body-floating technique is utilized for the NMOS devices to improve the voltage swing and eliminate parasitic capacitances. The developed PA has measured flat gain of 20 ± 1.5 dB across 16.5-25.5 GHz. At 24 GHz, the saturated power, OP1dB, and maximum PAE are 20.8 dBm, 18.1 dBm, and 23%, respectively. Its high performance makes it attractive for use in Ku/K-band, especially 24 GHz, communication and radar systems. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Keywords: power amplifiers, amplifiers, communication systems, radar systems
Procedia PDF Downloads 1111946 Membrane Bioreactor for Wastewater Treatment and Reuse
Authors: Sarra Kitanou
Abstract:
Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse
Procedia PDF Downloads 831945 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes
Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim
Abstract:
Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.Keywords: EBFC, glucose, MWCNT, microfluidic
Procedia PDF Downloads 3251944 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models
Authors: A. B. M. Rezaul Islam, Ernur Karadogan
Abstract:
Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis
Procedia PDF Downloads 1441943 Analysis of Human Toxicity Potential of Major Building Material Production Stage Using Life Cycle Assessment
Authors: Rakhyun Kim, Sungho Tae
Abstract:
Global environmental issues such as abnormal weathers due to global warming, resource depletion, and ecosystem distortions have been escalating due to rapid increase of population growth, and expansion of industrial and economic development. Accordingly, initiatives have been implemented by many countries to protect the environment through indirect regulation methods such as Environmental Product Declaration (EPD), in addition to direct regulations such as various emission standards. Following this trend, life cycle assessment (LCA) techniques that provide quantitative environmental information, such as Human Toxicity Potential (HTP), for buildings are being developed in the construction industry. However, at present, the studies on the environmental database of building materials are not sufficient to provide this support adequately. The purpose of this study is to analysis human toxicity potential of major building material production stage using life cycle assessment. For this purpose, the theoretical consideration of the life cycle assessment and environmental impact category was performed and the direction of the study was set up. That is, the major material in the global warming potential view was drawn against the building and life cycle inventory database was selected. The classification was performed about 17 kinds of substance and impact index, such as human toxicity potential, that it specifies in CML2001. The environmental impact of analysis human toxicity potential for the building material production stage was calculated through the characterization. Meanwhile, the environmental impact of building material in the same category was analyze based on the characterization impact which was calculated in this study. In this study, establishment of environmental impact coefficients of major building material by complying with ISO 14040. Through this, it is believed to effectively support the decisions of stakeholders to improve the environmental performance of buildings and provide a basis for voluntary participation of architects in environment consideration activities.Keywords: human toxicity potential, major building material, life cycle assessment, production stage
Procedia PDF Downloads 1391942 Recycling of End of Life Concrete Based on C2CA Method
Authors: Somayeh Lotfi, Manuel Eggimann, Eckhard Wagner, Radosław Mróz, Jan Deja
Abstract:
One of the main environmental challenges in the construction industry is a strong social force to decrease the bulk transport of the building materials in urban environments. Considering this fact, applying more in-situ recycling technologies for Construction and Demolition Waste (CDW) is an urgent need. The European C2CA project develops a novel concrete recycling technology that can be performed purely mechanically and in situ. The technology consists of a combination of smart demolition, gentle grinding of the crushed concrete in an autogenous mill, and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in demonstration projects involving in total 20,000 tons of End of Life (EOL) concrete from two office towers in Groningen, The Netherlands. This paper concentrates on the second demonstration project of C2CA, where EOL concrete was recycled on an industrial site. After recycling, the properties of the produced Recycled Aggregate (RA) were investigated, and results are presented. An experimental study was carried out on mechanical and durability properties of produced Recycled Aggregate Concrete (RAC) compared to those of the Natural Aggregate Concrete (NAC). The aim was to understand the importance of RA substitution, w/c ratio and type of cement to the properties of RAC. In this regard, two series of reference concrete with strength classes of C25/30 and C45/55 were produced using natural coarse aggregates (rounded and crushed) and natural sand. The RAC series were created by replacing parts of the natural aggregate, resulting in series of concrete with 0%, 20%, 50% and 100% of RA. Results show that the concrete mix design and type of cement have a decisive effect on the properties of RAC. On the other hand, the substitution of RA even at a high percentage replacement level has a minor and manageable impact on the performance of RAC. This result is a good indication towards the feasibility of using RA in structural concrete by modifying the mix design and using a proper type of cement.Keywords: C2CA, ADR, concrete recycling, recycled aggregate, durability
Procedia PDF Downloads 3911941 Geospatial Assessment of Waste Disposal System in Akure, Ondo State, Nigeria
Authors: Babawale Akin Adeyemi, Esan Temitayo, Adeyemi Olabisi Omowumi
Abstract:
The paper analyzed waste disposal system in Akure, Ondo State using GIS techniques. Specifically, the study identified the spatial distribution of collection points and existing dumpsite; evaluated the accessibility of waste collection points and their proximity to each other with the view of enhancing better performance of the waste disposal system. Data for the study were obtained from both primary and secondary sources. Primary data were obtained through the administration of questionnaire. From field survey, 35 collection points were identified in the study area. 10 questionnaires were administered around each collection point making a total of 350 questionnaires for the study. Also, co-ordinates of each collection point were captured using a hand-held Global Positioning System (GPS) receiver which was used to analyze the spatial distribution of collection points. Secondary data used include administrative map collected from Akure South Local Government Secretariat. Data collected was analyzed using the GIS analytical tools which is neighborhood function. The result revealed that collection points were found in all parts of Akure with the highest concentration around the central business district. The study also showed that 80% of the collection points enjoyed efficient waste service while the remaining 20% does not. The study further revealed that most collection points in the core of the city were in close proximity to each other. In conclusion, the paper revealed the capability of Geographic Information System (GIS) as a technique in management of waste collection and disposal technique. The application of Geographic Information System (GIS) in the evaluation of the solid waste management in Akure is highly invaluable for the state waste management board which could also be beneficial to other states in developing a modern day solid waste management system. Further study on solid waste management is also recommended especially for updating of information on both spatial and non-spatial data.Keywords: assessment, geospatial, system, waste disposal
Procedia PDF Downloads 2391940 An Elaborated Software Solution: The Tennis Ranking System
Authors: Dionysios Kakaroumpas, Jesseka Farago, Stephen Webber
Abstract:
Athletes and spectators depend on the tennis ranking system to represent the truest caliber of athletic prowess; a careful look at the current ranking system though, reveals its main weakness: it undermines expectations of fans and players. Our study proposes several key changes to the existing ranking formula that provide a fair and accurate approach to measure player performance. The study proposes a modification of the system to value: participation, continued advancement, and overall achievement. The new ranking formula facilitates closing the trust gap, encouraging competition equality, engaging the fan base, attracting investment, and promoting tennis involvement worldwide. To probe the crux of our main contention we performed week-by-week comparisons between results procured from the current and proposed formulae. After performing this rigorous case-study of top players of each gender, the findings strongly indicated that there is identifiable inflation in the ranks and enhanced the conviction that the current system should be updated. The new system is accompanied by a web-based software package freely available to anyone involved or interested in tennis rankings. The software package is designed to automatically calculate new player rankings based on a responsive, multi-faceted formula that also generates projected point scenarios and provides separate rankings for the three different court surfaces. By taking a critical look at the current tennis ranking system with consideration to the perspective of fans, players, and businesses involved, an upgrade is in order for it to maintain the balance of trust between fans and the evaluation process. In closure, this proposed solution increases fair play competition, eliminates rank inflation, and better engages fans, players, and sponsors by bringing in a new era of professional tennis.Keywords: measurement and evaluation, rules and regulations, sports management and marketing, tennis ranking system
Procedia PDF Downloads 2711939 Systems Engineering and Project Management Process Modeling in the Aeronautics Context: Case Study of SMEs
Authors: S. Lemoussu, J. C. Chaudemar, R. A. Vingerhoeds
Abstract:
The aeronautics sector is currently living an unprecedented growth largely due to innovative projects. In several cases, such innovative developments are being carried out by Small and Medium sized-Enterprises (SMEs). For instance, in Europe, a handful of SMEs are leading projects like airships, large civil drones, or flying cars. These SMEs have all limited resources, must make strategic decisions, take considerable financial risks and in the same time must take into account the constraints of safety, cost, time and performance as any commercial organization in this industry. Moreover, today, no international regulations fully exist for the development and certification of this kind of projects. The absence of such a precise and sufficiently detailed regulatory framework requires a very close contact with regulatory instances. But, SMEs do not always have sufficient resources and internal knowledge to handle this complexity and to discuss these issues. This poses additional challenges for those SMEs that have system integration responsibilities and that must provide all the necessary means of compliance to demonstrate their ability to design, produce, and operate airships with the expected level of safety and reliability. The final objective of our research is thus to provide a methodological framework supporting SMEs in their development taking into account recent innovation and institutional rules of the sector. We aim to provide a contribution to the problematic by developing a specific Model-Based Systems Engineering (MBSE) approach. Airspace regulation, aeronautics standards and international norms on systems engineering are taken on board to be formalized in a set of models. This paper presents the on-going research project combining Systems Engineering and Project Management process modeling and taking into account the metamodeling problematic.Keywords: aeronautics, certification, process modeling, project management, SME, systems engineering
Procedia PDF Downloads 1661938 Assimilating Multi-Mission Satellites Data into a Hydrological Model
Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn
Abstract:
Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF
Procedia PDF Downloads 2891937 Treatment with RRx-001, a Minimally Toxic NLRP3 Inhibitor in Phase 3 Clinical Trials, Improves Exercise and Skeletal Muscle Oxidative Capacity in Untrained Mice
Authors: Pedro Cabrales, Scott Caroen, Tony R. Reid, Bryan Oronsky
Abstract:
Introduction and Purpose RRx-001 is an NLRP3 inhibitor and Nrf2 agonist in Phase 3 trials for the treatment of cancer. The purpose of this study was to examine whether treatment with RRx-001, given itsanti-inflammatory and antioxidant properties, improvedexercise and skeletal muscle oxidative capacity in mice on the generalpremiss that better health outcomes correlatewith more activity. Material and Methods Male and female adult mice (n=6 per group) were subjected to an endurance exercise capacity (EEC)test until exhaustion on a motorized treadmill after 3 once weekly doses of either RRx-001 5 mg/kg, RRx-001 2 mg/kg, or vehicle. The EEC protocol consisted of a treadmill velocity of 30meters per min at an uphill inclination (slope of 10%) until the mice reached fatigue, which was defined as the inability of the mice to maintain the appropriate pace despitecontinuous hand stimulation for 1 min. The concentration of malondialdehyde (MDA), an indicator of lipid peroxidation, and creatine kinase (CK), an indicator of muscle damage, in the blood samples collected immediately after the acute exercise was determined with a commercial ELISA assay kit. ResultsThe exhaustive exercise times of the RRx-001 groups were significantly longer than that of the vehicle group (p<0.05) by weeks 2 and 3. In addition, MDA levels in the gastrocnemius, soleus, and extensor digitorum longus muscles were significantly lower than those of the vehicle group were (p<0.05), as were the serum CK levels(p<0.05). ConclusionsIn conclusion, this study found that RRx-001 has anti-fatigue properties, as evidenced by an increase in exercise capacity with RRx-001 treatment, and protects against strenuous exercise-induced muscle damage and lipid peroxidation. This data potentially supports the use of RRx-001 in the clinic to improve exercise performance and reduce physical fatigue.Keywords: RRx-001, anti-fatigue, muscle protection, increased exercise tolerance, lipid peroxidation
Procedia PDF Downloads 981936 Oxide Based Memristor and Its Potential Application in Analog-Digital Electronics
Authors: P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu
Abstract:
Oxide based memristors were fabricated in order to establish its potential applications in analog/digital electronics. BaTiO₃-BiFeO₃ (BT-BFO) was employed as an active material, whereas platinum (Pt) and Nb-doped SrTiO₃ (Nb:STO) were served as a top and bottom electrodes, respectively. Piezoelectric force microscopy (PFM) was utilized to present the ferroelectricity and repeatable polarization inversion in the BT-BFO, demonstrating its effectiveness for resistive switching. The fabricated memristors exhibited excellent electrical characteristics, such as hysteresis current-voltage (I-V), high on/off ratio, high retention time, cyclic endurance, and low operating voltages. The band-alignment between the active material BT-BFO and the substrate Nb:STO was experimentally investigated using X-Ray photoelectron spectroscopy, and it attributed to staggered heterojunction alignment. An energy band diagram was proposed in order to understand the electrical transport in BT-BFO/Nb:STO heterojunction. It was identified that the I-V curves of these memristors have several discontinuities. Curve fitting technique was utilized to analyse the I-V characteristic, and the obtained I-V equations were found to be parabolic. Utilizing this analysis, a non-linear BT-BFO memristors equivalent circuit model was developed. Interestingly, the obtained equivalent circuit of the BT-BFO memristors mimics the identical electrical performance, those obtained in the fabricated devices. Based on the developed equivalent circuit, a finite state machine (FSM) design was proposed. Efforts were devoted to fabricate the same FSM, and the results were well matched with those in the simulated FSM devices. Its multilevel noise filtering and immunity to external noise characteristics were also studied. Further, the feature of variable negative resistance was established by controlling the current through the memristor.Keywords: band alignment, finite state machine, polarization inversion, resistive switching
Procedia PDF Downloads 1331935 Implementation of Enterprise Asset Management (E-AM) System at Oman Electricity Transmission Company
Authors: Omran Al Balushi, Haitham Al Rawahi
Abstract:
Enterprise Asset Management (eAM) has been implemented across different Generation, Transmission and Distribution subsidiaries in Nama Group companies. As part of Nama group, Oman Electricity Transmission Company (OETC) was the first company to implement this system. It was very important for OETC to implement and maintain such a system to achieve its business objectives and for effective operations, which will also support the delivery of the asset management strategy. Enterprise Asset Management (eAM) addresses the comprehensive asset maintenance requirements of Oman Electricity Transmission Company (OETC). OETC needs to optimize capacity and increase utilization, while lowering unit production. E-AM will enable OETC to adopt this strategy. Implementation of e-AM has improved operation performance with preventive and scheduled maintenance as well as it increased safety. Implementation of e-AM will also enable OETC to create optimal asset management strategy which will increase revenue and decrease cost by effectively monitoring operational data such as maintenance history and operation conditions. CMMS (Computerised Maintenance Management System) is the main software and the back-bone of e-AM system. It is used to provide an improved working practice to properly establish information and data flow related to maintenance activities. Implementation of e-AM system was one of the factors that supported OETC to achieve ISO55001 Certificate on fourth quarter of 2016. Also, full implementation of e-AM system will result in strong integration between CMMS and Geographical Information Systems (GIS) application and it will improve OETC to build a reliable maintenance strategy for all asset classes in its Transmission network. In this paper we will share our experience and knowledge of implementing such a system and how it supported OETC’s management to make decisions. Also we would highlight the challenges and difficulties that we encountered during the implementation of e-AM. Also, we will list some features and advantages of e-AM in asset management, preventive maintenance and maintenance cost management.Keywords: CMMS, Maintenance Management, Asset Management, Maintenance Strategy
Procedia PDF Downloads 1441934 Enhancement of Density-Based Spatial Clustering Algorithm with Noise for Fire Risk Assessment and Warning in Metro Manila
Authors: Pinky Mae O. De Leon, Franchezka S. P. Flores
Abstract:
This study focuses on applying an enhanced density-based spatial clustering algorithm with noise for fire risk assessments and warnings in Metro Manila. Unlike other clustering algorithms, DBSCAN is known for its ability to identify arbitrary-shaped clusters and its resistance to noise. However, its performance diminishes when handling high dimensional data, wherein it can read the noise points as relevant data points. Also, the algorithm is dependent on the parameters (eps & minPts) set by the user; choosing the wrong parameters can greatly affect its clustering result. To overcome these challenges, the study proposes three key enhancements: first is to utilize multiple MinHash and locality-sensitive hashing to decrease the dimensionality of the data set, second is to implement Jaccard Similarity before applying the parameter Epsilon to ensure that only similar data points are considered neighbors, and third is to use the concept of Jaccard Neighborhood along with the parameter MinPts to improve in classifying core points and identifying noise in the data set. The results show that the modified DBSCAN algorithm outperformed three other clustering methods, achieving fewer outliers, which facilitated a clearer identification of fire-prone areas, high Silhouette score, indicating well-separated clusters that distinctly identify areas with potential fire hazards and exceptionally achieved a low Davies-Bouldin Index and a high Calinski-Harabasz score, highlighting its ability to form compact and well-defined clusters, making it an effective tool for assessing fire hazard zones. This study is intended for assessing areas in Metro Manila that are most prone to fire risk.Keywords: DBSCAN, clustering, Jaccard similarity, MinHash LSH, fires
Procedia PDF Downloads 41933 Application of Digital Technologies as Tools for Transformative Agricultural Science Instructional Delivery in Secondary Schools
Authors: Cajethan U. Ugwuoke
Abstract:
Agriculture is taught in secondary schools to develop skills in students which will empower them to contribute to national economic development. Unfortunately, our educational system emphasizes the application of conventional teaching methods in delivering instructions, which fails to produce students competent enough to carry out agricultural production. This study was therefore aimed at examining the application of digital technologies as tools for transformative instructional delivery. Four specific purposes, research questions and hypotheses guided the study. The study adopted a descriptive survey research design where 80 subjects representing 64 teachers of agriculture and 16 principals in the Udenu local government area of Enugu State, Nigeria, participated in the study. A structured questionnaire was used to collect data. The assumption of normality was ascertained by subjecting the data collected to a normality test. Data collected were later subjected to mean, Pearson product-moment correlation, ANOVA and t-test to answer the research questions and test the hypotheses at a 5% significant level. The result shows that the application of digital technologies helps to reduce learners’ boredom (3.52.75), improves learners’ performance (3.63.51), and is used as a visual aid for learners (3.56.61), among others. There was a positive, strong and significant relationship between the application of digital technologies and effective instructional delivery (+.895, p=.001<.05, F=17.73), competency of teachers to the application of digital technologies and effective instructional delivery (+998, p=.001<0.5, F=16263.45), and frequency of the application of digital technologies and effective instructional delivery (+.999, p=.001<.05, F=31436.14). There was no evidence of autocorrelation and multicollinearity in the regression models between the application of digital technologies and effective instructional delivery (2.03, Tolerance=1.00, VIF=1.00), competency of teachers in the application of digital technologies and effective instructional delivery (2.38, Tolerance=1.00, VIF=1.00) and frequency of the application of digital technologies and effective instructional delivery (2.00, Tolerance=1.00, VIF=1.00). Digital technologies should be therefore applied in teaching to facilitate effective instructional delivery in agriculture.Keywords: agricultural science, digital technologies, instructional delivery, learning
Procedia PDF Downloads 721932 The Effect of Curing Temperature and Rice Husk Ash Addition on the Behaviour of Sulfate-Rich Clay after Lime Stabilization
Authors: E. Bittar, A. Quiñonez, F. Mencia, E. Aguero, M. Delgado, V. Arriola, R. López
Abstract:
In the western region of Paraguay, the poor condition of the roads has negatively affected the development of this zone, where the absence of petrous material has led engineers to opt for the stabilization of soils with lime or cement as the main structure for bases and subbases of these roads. In several areas of this region, high sulfate contents have been found both in groundwater and in soils, which, when reacted with lime or cement, generate a new problem instead of solving it. On the other hand, the use of industrial waste as granulated slag and fly ash proved to be a sustainable practice widely used in the manufacture of cement, and now also, in the stabilization of soils worldwide. Works related to soils containing sulfates stabilized either with granulated slag or fly ash and lime shown a good performance in their mechanical behaviour. This research seeks to evaluate the mechanical behaviour of soils with high contents of sulfates stabilized with lime by curing them both, at the normalized temperature (23 ± 2 °C) and at 40 ± 2 °C. Moreover, it attempts to asses if the addition of rice husk ash has a positive influence on the new geomaterial. The 40 ± 2 °C curing temperature was selected trying to simulate the average local temperature in summer and part of spring session whereas rice husk ash is an affordable waste produced in the region. An extensive experimental work, which includes unconfined compression, durability and free swell tests were carried out considering different dry unit weights, lime content and the addition of 20% of rice husk ash. The results showed that the addition of rice husk ash increases the resistance and durability of the material and decreases the expansion of this, moreover, the specimens cured at a temperature of 40 ± 2 °C showed higher resistance, better durability and lower expansion compared to those cured at the normalized temperature of 23 ± 2 °C.Keywords: durability, expansion, lime stabilization, rice husk ash, sulfate
Procedia PDF Downloads 1231931 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 831930 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 85