Search results for: housing energy efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13394

Search results for: housing energy efficiency

2504 China’s Hedging Strategy in Response to the Russia-Ukraine Conflict

Authors: Zhao Xinlei

Abstract:

The outbreak of the Ukraine crisis has had an important impact on the global political and economic order, especially the global food crisis and energy crisis, thus aggravating social and political conflicts. At the same time, with the intensification of the Ukraine crisis, the United States and European countries have imposed severe economic sanctions on Russia to prevent and contain Russia's special military operations against Ukraine. The essence of the Ukraine crisis is a geopolitical conflict and competition between Russia and the United States. For a long time, the United States has always regarded Russia as a serious strategic crisis and challenge. Therefore, for the United States, the outbreak of the Ukraine crisis is an extremely important opportunity to condemn and stop Russia's actions from an international perspective. In this process, China plays a very special role. This special positioning is not only reflected in the long-term friendly relationship between China and Russia and mutual support and assistance on the international stage but also in the complex economic relationship and interdependence between China and the United States. Therefore, China has adopted a "hedging strategy" in dealing with the Ukrainian crisis, and the use of the hedging strategy not only plays a special role in safeguarding China's own security and interests but also because China can act as an intermediary to coordinate Russia and the United States to promote the resolution of the Ukrainian crisis in a peaceful manner.

Keywords: Ukraine crisis Russia-Ukraine conflict balanced strategy Sino-US competition

Procedia PDF Downloads 68
2503 Role of Human Epididymis Protein 4 as a Biomarker in the Diagnosis of Ovarian Cancer

Authors: Amar Ranjan, Julieana Durai, Pranay Tanwar

Abstract:

Background &Introduction: Ovarian cancer is one of the most common malignant tumor in the female. 70% of the cases of ovarian cancer are diagnosed at an advanced stage. The five-year survival rate associated with ovarian cancer is less than 30%. The early diagnosis of ovarian cancer becomes a key factor in improving the survival rate of patients. Presently, CAl25 (carbohydrate antigen125) is used for the diagnosis and therapeutic monitoring of ovarian cancer, but its sensitivity and specificity is not ideal. The introduction of HE4, human epididymis protein 4 has attracted much attention. HE4 has a sensitivity and specificity of 72.9% and 95% for differentiating between benign and malignant adnexal masses, which is better than CA125 detection.  Methods: Serum HE4 and CA -125 were estimated using the chemiluminescence method. Our cases were 40 epithelial ovarian cancer, 9 benign ovarian tumor, 29 benign gynaecological diseases and 13 healthy individuals. This group include healthy woman those who have undergoing family planning and menopause-related medical consultations and they are negative for ovarian mass. Optimal cut off values for HE4 and CA125 were 55.89pmol/L and 40.25U/L respectively (determined by statistical analysis). Results: The level of HE4 was raised in all ovarian cancer patients (n=40) whereas CA125 levels were normal in 6/40 ovarian cancer patients, which were the cases of OC confirmed by histopathology. There is a significant decrease in the level of HE4 with comparison to CA125 in benign ovarian tumor cases. Both the levels of HE4 and CA125 were raised in the nonovarian cancer group, which includes cancer of endometrium and cervix. In the healthy group, HE4 was normal in all patients except in one case of the rudimentary horn, and the reason for this raised HE4 level is due to the incomplete development of uterus whereas CA125 was raised in 3 cases. Conclusions: Findings showed that the serum level of HE4 is an important indicator in the diagnosis of ovarian cancer, and it also distinguishes between benign and malignant pelvic masses. However, a combination of HE4 and CA125 panel will be extremely valuable in improving the diagnostic efficiency of ovarian cancer. These findings of our study need to be validated in the larger cohort of patients.

Keywords: human epididymis protein 4, ovarian cancer, diagnosis, benign lesions

Procedia PDF Downloads 116
2502 Thermal Comfort in Office Rooms in a Historic Building with Modernized Heating, Ventilation and Air Conditioning Systems

Authors: Hossein Bakhtiari, Mathias Cehlin, Jan Akander

Abstract:

Envelopes with low thermal performance is a common characteristic in many European historic buildings which leads to higher energy demand for heating and cooling as well as insufficient thermal comfort for the occupants. This paper presents the results of a study on the thermal comfort in the City Hall (Rådhuset) in Gävle, Sweden. This historic building is currently used as an office building. It is equipped with two relatively modern mechanical heat recovery ventilation systems with displacement ventilation supply devices in the offices. The district heating network heats the building via pre-heat supply air and radiators. Summer cooling comes from an electric heat pump that rejects heat into the exhaust ventilation air. A building management system controls HVAC equipment (heating, ventilation and air conditioning). The methodology is based on on-site measurements, data logging on the management system and evaluating the occupants’ perception of a summer and a winter period indoor environment using a standardized questionnaire. The main aim of the study is to investigate whether or not it is enough to have modernized HVAC systems to get adequate thermal comfort in a historic building with poor envelope performance used as an office building in Nordic climate conditions.

Keywords: historic buildings, on-site measurements, standardized questionnaire, thermal comfort

Procedia PDF Downloads 357
2501 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm

Authors: El Harraj Abdeslam, Raissouni Naoufal

Abstract:

The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.

Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes

Procedia PDF Downloads 242
2500 Transition Metal Carbodiimide vs. Spinel Matrices for Photocatalytic Water Oxidation

Authors: Karla Lienau, Rafael Müller, René Moré, Debora Ressnig, Dan Cook, Richard Walton, Greta R. Patzke

Abstract:

The increasing demand for renewable energy sources and storable fuels underscores the high potential of artificial photosynthesis. The four electron transfer process of water oxidation remains the bottleneck of water splitting, so that special emphasis is placed on the development of economic, stable and efficient water oxidation catalysts (WOCs). Our investigations introduced cobalt carbodiimide CoNCN and its transition metal analogues as WOC types, and further studies are focused on the interaction of different transition metals in the convenient all-nitrogen/carbon matrix. This provides further insights into the nature of the ‘true catalyst’ for cobalt centers in this non-oxide environment. Water oxidation activity is evaluated with complementary methods, namely photocatalytically using a Ru-dye sensitized standard setup as well as electrocatalytically, via immobilization of the WOCs on glassy carbon electrodes. To further explore the tuning potential of transition metal combinations, complementary investigations were carried out in oxidic spinel WOC matrices with more versatile host options than the carbodiimide framework. The influence of the preparative history on the WOC performance was evaluated with different synthetic methods (e.g. hydrothermally or microwave assisted). Moreover, the growth mechanism of nanoscale Co3O4-spinel as a benchmark WOC was investigated with in-situ PXRD techniques.

Keywords: carbodiimide, photocatalysis, spinels, water oxidation

Procedia PDF Downloads 271
2499 Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution

Authors: Mohammed Ali Hjaji, Magdi Mohareb

Abstract:

This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects.

Keywords: asymmetric cross-section, flexural-lateral-torsional response, Vlasov-Timoshenko beam theory, closed form solution

Procedia PDF Downloads 459
2498 Dido: An Automatic Code Generation and Optimization Framework for Stencil Computations on Distributed Memory Architectures

Authors: Mariem Saied, Jens Gustedt, Gilles Muller

Abstract:

We present Dido, a source-to-source auto-generation and optimization framework for multi-dimensional stencil computations. It enables a large programmer community to easily and safely implement stencil codes on distributed-memory parallel architectures with Ordered Read-Write Locks (ORWL) as an execution and communication back-end. ORWL provides inter-task synchronization for data-oriented parallel and distributed computations. It has been proven to guarantee equity, liveness, and efficiency for a wide range of applications, particularly for iterative computations. Dido consists mainly of an implicitly parallel domain-specific language (DSL) implemented as a source-level transformer. It captures domain semantics at a high level of abstraction and generates parallel stencil code that leverages all ORWL features. The generated code is well-structured and lends itself to different possible optimizations. In this paper, we enhance Dido to handle both Jacobi and Gauss-Seidel grid traversals. We integrate temporal blocking to the Dido code generator in order to reduce the communication overhead and minimize data transfers. To increase data locality and improve intra-node data reuse, we coupled the code generation technique with the polyhedral parallelizer Pluto. The accuracy and portability of the generated code are guaranteed thanks to a parametrized solution. The combination of ORWL features, the code generation pattern and the suggested optimizations, make of Dido a powerful code generation framework for stencil computations in general, and for distributed-memory architectures in particular. We present a wide range of experiments over a number of stencil benchmarks.

Keywords: stencil computations, ordered read-write locks, domain-specific language, polyhedral model, experiments

Procedia PDF Downloads 115
2497 Knowledge, Attitude, and Practice Related to Potential Application of Artificial Intelligence in Health Supply Chain

Authors: Biniam Bahiru Tufa, Hana Delil Tesfaye, Seife Demisse Legesse, Manaye Tamire

Abstract:

The healthcare industry is witnessing a digital transformation, with artificial intelligence (AI) offering potential solutions for challenges in health supply chain management (HSCM). However, the adoption of AI in this field remains limited. This research aimed to assess the knowledge, attitude, and practice of AI among students and employees in the health supply chain sector in Ethiopia. Using an explanatory case study research design with a concurrent mixed approach, quantitative and qualitative data were collected simultaneously. The study included 153 participants comprising students and employed health supply chain professionals working in various sectors. The majority had a pharmacy background, and one-third of the participants were male. Most respondents were under 35 years old, and around 68.6% had less than 10 years of experience. The findings revealed that 94.1% of participants had prior knowledge of AI, but only 35.3% were aware of its application in the supply chain. Moreover, the majority indicated that their training curriculum did not cover AI in health supply chain management. Participants generally held positive attitudes toward the necessity of AI for improving efficiency, effectiveness, and cost savings in the supply chain. However, many expressed concerns about its impact on job security and satisfaction, considering it as a burden Graduate students demonstrated higher knowledge of AI compared to employed staff, while graduate students also exhibited a more positive attitude toward AI. The study indicated low previous utilization and potential future utilization of AI in the health supply chain, suggesting untapped opportunities for improvement. Overall, while supply chain experts and graduate students lacked sufficient understanding of AI and its significance, they expressed favorable views regarding its implementation in the sector. The study recommends that the Ethiopian government and international organizations consider introducing AI in the undergraduate pharmacy curriculum and promote its integration into the health supply chain field.

Keywords: knowledge, attitude, practice, supply chain, articifial intellegence

Procedia PDF Downloads 74
2496 A Study on Improvement of the Torque Ripple and Demagnetization Characteristics of a PMSM

Authors: Yong Min You

Abstract:

The study on the torque ripple of Permanent Magnet Synchronous Motors (PMSMs) has been rapidly progressed, which effects on the noise and vibration of the electric vehicle. There are several ways to reduce torque ripple, which are the increase in the number of slots and poles, the notch of the rotor and stator teeth, and the skew of the rotor and stator. However, the conventional methods have the disadvantage in terms of material cost and productivity. The demagnetization characteristic of PMSMs must be attained for electric vehicle application. Due to rare earth supply issue, the demand for Dy-free permanent magnet has been increasing, which can be applied to PMSMs for the electric vehicle. Dy-free permanent magnet has lower the coercivity; the demagnetization characteristic has become more significant. To improve the torque ripple as well as the demagnetization characteristics, which are significant parameters for electric vehicle application, an unequal air-gap model is proposed for a PMSM. A shape optimization is performed to optimize the design variables of an unequal air-gap model. Optimal design variables are the shape of an unequal air-gap and the angle between V-shape magnets. An optimization process is performed by Latin Hypercube Sampling (LHS), Kriging Method, and Genetic Algorithm (GA). Finite element analysis (FEA) is also utilized to analyze the torque and demagnetization characteristics. The torque ripple and the demagnetization temperature of the initial model of 45kW PMSM with unequal air-gap are 10 % and 146.8 degrees, respectively, which are reaching a critical level for electric vehicle application. Therefore, the unequal air-gap model is proposed, and then an optimization process is conducted. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 7.7 %. In addition, the demagnetization temperature of the optimized model was also increased by 1.8 % while maintaining the efficiency. From these results, a shape optimized unequal air-gap PMSM has shown the usefulness of an improvement in the torque ripple and demagnetization temperature for the electric vehicle.

Keywords: permanent magnet synchronous motor, optimal design, finite element method, torque ripple

Procedia PDF Downloads 265
2495 Development of a Solar Energy Based Prototype, CyanoClean, for Arsenic Removal from Water with the Use of a Cyanobacterial Consortium in Field Conditions of India

Authors: Anurakti Shukla, Sudhakar Srivastava

Abstract:

Cyanobacteria are known for rapid growth rates, high biomass, and the ability to accumulate potentially toxic elements and contaminants. The present work was planned to develop a low-cost, feasible prototype, CyanoClean, for the growth of a cyanobacterial consortium for the removal of arsenic (As) from water. The cyanobacterial consortium consisting of Oscillatoria, Phormidiumand Gloeotrichiawas used, and the conditions for optimal growth of the consortium were standardized. A pH of 7.6, initial cyanobacterial biomass of 10 g/L, and arsenite [As(III)] and arsenate [As(V)] concentration of 400 μΜand 600 μM, respectively, were found to be suitable. The CyanoClean prototype was designed with acrylic sheet and had arrangements for optimal cyanobacterial growth in natural sunlight and also in artificial light. The As removal experiments in concentration- and duration-dependent manner demonstrated removal of up to 39-69% and 9-33% As respectively from As(III) and As(V)-contaminated water. In field testing of CyanoClean, natural As-contaminated groundwater was used, and As reduction was monitored when a flow rate of 3 L/h was maintained. In a field experiment, As concentration in groundwater was found to reduce from 102.43 μg L⁻¹ to <10 μg L⁻¹ after 6 h in natural sunlight. However, in shaded conditions under artificial light, the same result was achieved after 9 h. The CyanoClean prototype is of simple design and can be easily up-scaled for application at a small- to medium-size land and shall be affordable even for a low- to middle-income group farmer.

Keywords: cyanoclean, gloeotrichia, oscillatoria, phormidium, phycoremediation

Procedia PDF Downloads 124
2494 Elucidation of the Sequential Transcriptional Activity in Escherichia coli Using Time-Series RNA-Seq Data

Authors: Pui Shan Wong, Kosuke Tashiro, Satoru Kuhara, Sachiyo Aburatani

Abstract:

Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. This method presented here works to augment existing regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. This method is applied on a time-series RNA-Seq data set from Escherichia coli as it transitions from growth to stationary phase over five hours. Investigations are conducted on the various metabolic activities in gene regulation processes by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. Especially, the changes in metabolic activity during phase transition are analyzed with focus on the pagP gene as well as other associated transcription factors. The visualization of the sequential transcriptional activity is used to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. The results show a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli.

Keywords: Escherichia coli, gene regulation, network, time-series

Procedia PDF Downloads 358
2493 Maintenance Performance Measurement Derived Optimization: A Case Study

Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Stanley Mburu

Abstract:

Maintenance performance measurement (MPM) represents an integrated aspect that considers both operational and maintenance related aspects while evaluating the effectiveness and efficiency of maintenance to ensure assets are working as they should. Three salient issues require to be addressed for an asset-intensive organization to employ an MPM-based framework to optimize maintenance. Firstly, the organization should establish important perfomance metric(s), in this case the maintenance objective(s), which they will be focuss on. The second issue entails aligning the maintenance objective(s) with maintenance optimization. This is achieved by deriving maintenance performance indicators that subsequently form an objective function for the optimization program. Lastly, the objective function is employed in an optimization program to derive maintenance decision support. In this study, we develop a framework that initially identifies the crucial maintenance performance measures, and employs them to derive maintenance decision support. The proposed framework is demonstrated in a case study of a geothermal drilling rig, where the objective function is evaluated utilizing a simulation-based model whose parameters are derived from empirical maintenance data. Availability, reliability and maintenance inventory are depicted as essential objectives requiring further attention. A simulation model is developed mimicking a drilling rig operations and maintenance where the sub-systems are modelled undergoing imperfect maintenance, corrective (CM) and preventive (PM), with the total cost as the primary performance measurement. Moreover, three maintenance spare inventory policies are considered; classical (retaining stocks for a contractual period), vendor-managed inventory with consignment stock and periodic monitoring order-to-stock (s, S) policy. Optimization results infer that the adoption of (s, S) inventory policy, increased PM interval and reduced reliance of CM actions offers improved availability and total costs reduction.

Keywords: maintenance, vendor-managed, decision support, performance, optimization

Procedia PDF Downloads 111
2492 S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.

Authors: Madhalasa Iyer

Abstract:

The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation.

Keywords: biofuel, co-culture, S. cerevisiae, microalgae, yeast

Procedia PDF Downloads 99
2491 Issues in Implementation of Vertical Greenery System on Existing Government Building in Malaysia

Authors: Jamilah Halina Abdul Halim, Norsiah Hassan, Azlina Aziz, Norhayati Mat Wajid, Mohd Saipul Asrafi

Abstract:

There are various types of vertical greenery system (VGS) in Malaysia, but none is installed at government buildings, although the government is looking into energy efficient building design. This is due to lack of technical information that focus on the maintenance and care, issues, and challenges face by vertical greenery system under tropical climate conditions. This research aim to identify issues in implementation of vertical greenery system on existing government building in Malaysia. The methodology used are literature reviews (desktop study), observation on sites, and case studies. Initial findings indicates that design and maintenance issues of vertical greenery system are the main challenges faced mainly by designer, especially those who involved in decision-making process. It can be concluded that orientation, openings, maintenance, performance, longevity, structural load, access, wind resistance, design failure, system failure, and lack of maintenance foresight are the main factors that need to be considered. These factors should be holistically aligned towards the economic cost, effective time, and quality design in implementation of vertical greenery system on existing government building. A comprehensive implementation of vertical greenery system will lead to greater sustainable investment for government buildings and responsive action to climate change.

Keywords: issues, government building, maintenance, vertical greenery system

Procedia PDF Downloads 74
2490 Analysis of Bed Load Sediment Transport Mataram-Babarsari Irrigation Canal

Authors: Agatha Padma Laksitaningtyas, Sumiyati Gunawan

Abstract:

Mataram Irrigation Canal has 31,2 km length, is the main irrigation canal in Special Region Province of Yogyakarta, connecting Progo River on the west side and Opak River on the east side. It has an important role as the main water carrier distribution for various purposes such as agriculture, fishery, and plantation which should be free from sediment material. Bed Load Sediment is the basic sediment that will make the sediment process on the irrigation canal. Sediment process is a simultaneous event that can make deposition sediment at the base of irrigation canal and can make the height of elevation water change, it will affect the availability of water to be used for irrigation functions. To predict the amount of drowning sediments in the irrigation canal using two methods: Meyer-Peter and Muller’s Method which is an energy approach method and Einstein Method which is a probabilistic approach. Speed measurement using floating method and using current meters. The channel geometry is measured directly in the field. The basic sediment of the channel is taken in the field by taking three samples from three different points. The result of the research shows that by using the formula Meyer -Peter Muller get the result of 60,75799 kg/s, whereas with Einsten’s Method get result of 13,06461 kg/s. the results may serve as a reference for dredging the sediments on the channel so as not to disrupt the flow of water in irrigation canal.

Keywords: bed load, sediment, irrigation, Mataram canal

Procedia PDF Downloads 211
2489 Hydrodynamics of Undulating Ribbon-fin and Its Application in Bionic Underwater Robot

Authors: Zhang Jun, Zhai Shucheng, Bai Yaqiang, Zhang Guoping

Abstract:

The Gymnarchus Niioticus fish(GNF) cruises generally with high efficiency by undulating ribbon-fin propulsion while keeping its body for straight line. The swing amplitude of GNF fins is usually in 60° to 90°, and in normal state the amplitude is close to 90°, only in the control of hovering or swimming at very low speed, the amplitude is smaller (about 60°). It provides inspiration for underwater robot design. In the paper, the unsteady flow of undulating ribbon-fin propulsion is numerical simulated by the dynamic grid technique including spring-based smoothing model and local grid remeshing to adapt to the fin surface significantly deforming, and the swing amplitude of fin ray reaches 850. The numerical simulation method is validated by thrust experiments. The spatial vortex structure and its evolution with phase angle is analyzed. The propulsion mechanism is investigated by comprehensive analysis of the hydrodynamics, vortex structure, and pressure distribution on the fin surface. The numerical results indicates that there are mainly three kinds of vortexes, i.e. streamwise vortex, crescent vortex and toroidal vortex. The intensity of streamwise vortex is the strongest among all kinds of vortexes. Streamwise vortexes and crescent vortexes all alternately distribute on the two sides of mid-sagittal plane. Inside the crescent vortexes is high-speed flow, while outside is low-speed flow. The crescent vortexes mainly induce high-speed axial jet, which produces the primary thrust. This is hydrodynamic mechanism undulating ribbon-fin propulsion. The streamwise vortexes mainly induce the vertical jet, which generates the primary heave force. The effect on hydrodynamics of main geometry and movement parameters including wave length, amplitude and advanced coefficients is investigated. A bionic underwater robot with bilateral undulating ribbon-fins is designed, and its navigation performance and maneuverability are measured.

Keywords: bionic propulsion, mobile robot, underwater robot, undulating ribbon-fins

Procedia PDF Downloads 267
2488 Role of SiOx Interlayer on Lead Oxide Electrodeposited on Stainless Steel for Promoting Electrochemical Treatment of Wastewater Containing Textile Dye

Authors: Hanene Akrout, Ines Elaissaoui, Sabrina Grassini, Daniele Fulginiti, Latifa Bousselmi

Abstract:

The main objective of this work is to investigate the efficiency of depollution power related to PbO₂ layer deposited onto a stainless steel (SS) substrate with SiOx as interlayer. The elaborated electrode was used as anode for anodic oxidation of wastewater containing Amaranth dye, as recalcitrant organic pollutant model. SiOx interlayer was performed using Plasma Enhanced Chemical Vapor Deposition ‘PECVD’ in plasma fed with argon, oxygen, and tetraethoxysilane (TEOS, Si precursor) in different ratios, onto the SS substrate. PbO₂ layer was produced by pulsed electrodeposition on SS/SiOx. The morphological of different surfaces are depicted with Field Emission Scanning Electron Microscope (FESEM) and the composition of the lead oxide layer was investigated by X-Ray Diffractometry (XRD). The results showed that the SiOx interlayer with more rich oxygen content improved better the nucleation of β-PbO₂ form. Electrochemical Impedance Spectroscopy (EIS) measurements undertaken on different interfaces (at optimized conditions) revealed a decrease of Rfilm while CPE film increases for SiOx interlayer, characterized by a more inorganic nature and deposited in a plasma fed by higher O2-to-TEOS ratios. Quantitative determinations of the Amaranth dye degradation rate were performed in terms of colour and COD removals, reaching a 95% and an 80% respectively removal at pH = 2 in 300 min. Results proved the improvement of the degradation wastewater containing the amaranth dye. During the electrolysis, the Amaranth dye solution was sampled at 30 min intervals and analyzed by ‘High-performance Liquid Chromatography’ HPLC. The gradual degradation of the Amaranth dye confirmed by the decrease in UV absorption using the SS/SiOx(20:20:1)/PbO₂ anode, the reaction exhibited an apparent first-order kinetic for electrolysis time of 5 hours, with an initial rate constant of about 0.02 min⁻¹.

Keywords: electrochemical treatment, PbO₂ anodes, COD removal, plasma

Procedia PDF Downloads 181
2487 Stabilisation of a Soft Soil by Alkaline Activation

Authors: Mohammadjavad Yaghoubi, Arul Arulrajah, Mahdi M. Disfani, Suksun Horpibulsuk, Myint W. Bo, Stephen P. Darmawan

Abstract:

This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activation of fly ash (FA) to use in deep soil mixing (DSM) technology. The content of FA was 20% by dry mass of soil, and the alkaline activator was sodium silicate (Na2SiO3). Samples were cured for 3, 7, 14, 28 and 56 days to evaluate the effect of curing time on strength development. To study the effect of adding slag (S) to the mixture on the strength development, 5% S was replaced with FA. In addition, the effect of the initial unit weight of samples on strength development was studied by preparing specimens with two different static compaction stresses. This was to replicate the field conditions where during implementing the DSM technique, the pressure on the soil while being mixed, increases with depth. Unconfined compression strength (UCS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) tests were conducted on the specimens. The results show that adding S to the FA based geopolymer activated by Na2SiO3 decreases the strength. Furthermore, samples prepared at a higher unit weight demonstrate greater strengths. Moreover, samples prepared at lower unit weight reached their final strength at about 14 days of curing, whereas the strength development continues to 56 days for specimens prepared at a higher unit weight.

Keywords: alkaline activation, curing time, fly ash, geopolymer, slag

Procedia PDF Downloads 329
2486 Urban Corridor Management Strategy Based on Intelligent Transportation System

Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain

Abstract:

Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.

Keywords: congestion, ITS strategies, mobility, safety

Procedia PDF Downloads 430
2485 Ambient Vibration Test and Numerical Modelling of Wind Turbine Towers including Soil Structure Interaction

Authors: Heba Kamal, Ghada Saudi

Abstract:

Due to The rapid expansion of energy and growing number of wind turbines construction in earthquake areas, a design method for simple and accurate evaluation of seismic load to ensure structural integrity is required. In Egypt, there are some appropriate places to build wind turbine towers lie in active seismically regions, so accurate analysis is necessary for prediction of seismic loads with consideration of intensity of the earthquake, soil and structural characteristics. In this research, seismic behavior of wind turbine towers Gamesa Type G52 in Zafarana Wind Farm Egypt is investigated using experimental work by ambient vibration test, and fully dynamic analysis based on time history from El Aqaba Earthquake 1995 using 3D by PLAXIS 3D software, including the soil structure interaction effect. The results obtained from dynamic analyses are discussed. From this study, it is concluded that, the fully dynamic seismic analysis based on used PLAXIS 3D with the aid of the full scale ambient vibration test gives almost good simulation for the seismic loads that can be applied to wind turbine tower design in Egypt.

Keywords: Wind turbine towers, Zafarana Wind Farm, Gamesa Type G52, ambient vibration test

Procedia PDF Downloads 196
2484 Static Characterization of a Bio-Based Sandwich in a Humid Environment

Authors: Zeineb Kesentini, Abderrahim El Mahi, Jean Luc Rebiere, Rachid El Guerjouma, Moez Beyaoui, Mohamed Haddar

Abstract:

Industries’ attention has been drawn to green and sustainable materials as a result of the present energy deficit and environmental damage. Sandwiches formed of auxetic structures made up of periodic cells are also being investigated by industry. Several tests have emphasized the exceptional properties of these materials. In this study, the sandwich's core is a one-cell auxetic core. Among plant fibers, flax fibers are chosen because of their good mechanical properties comparable to those of glass fibers. Poly (lactic acid) (PLA), as a green material, is available from starch, and its production process requires fewer fossil resources than petroleum-based plastics. A polylactic acid (PLA) reinforced with flax fiber filament was employed in this study. The manufacturing process used to manufacture the test specimens is 3D printing. The major drawback of a 100% bio-based material is its low resistance to moisture absorption. In this study, a sandwich based on PLA / flax with an auxetic core is characterized statically for different periods of immersion in water. Bending tests are carried out on the composite sandwich for three immersion time. Results are compared to those of non immersed specimens. It is found that non aged sandwich has the ultimate bending stiffness.

Keywords: auxetic, bending tests, biobased composite, sandwich structure, 3D printing

Procedia PDF Downloads 143
2483 A Structural and Magnetic Investigation of the Inversion Degree in Spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 Ferrites Prepared by Soft Mechanochemical Synthesis

Authors: Z. Ž. Lazarević, D. L. Sekulić, V. N. Ivanovski, N. Ž. Romčević

Abstract:

NiFe2O4 (nickel ferrite), ZnFe2O4 (zinc ferrite) and Ni0.5Zn0.5Fe2O4 (nickel-zinc ferrite) were prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2/Fe(OH)3, Zn(OH)2/Fe(OH)3 and Ni(OH)2/Zn(OH)2/Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 25 h, 18 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase ferrite samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.

Keywords: ferrites, Raman spectroscopy, IR spectroscopy, Mössbauer measurements

Procedia PDF Downloads 440
2482 Sustainability and Clustering: A Bibliometric Assessment

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner, David Gabriel F. Barros

Abstract:

Review researches are useful in terms of analysis of research problems. Between the types of review documents, we commonly find bibliometric studies. This type of application often helps the global visualization of a research problem and helps academics worldwide to understand the context of a research area better. In this document, a bibliometric view surrounding clustering techniques and sustainability problems is presented. The authors aimed at which issues mostly use clustering techniques, and, even which sustainability issue would be more impactful on today’s moment of research. During the bibliometric analysis, we found ten different groups of research in clustering applications for sustainability issues: Energy; Environmental; Non-urban planning; Sustainable Development; Sustainable Supply Chain; Transport; Urban Planning; Water; Waste Disposal; and, Others. And, by analyzing the citations of each group, we discovered that the Environmental group could be classified as the most impactful research cluster in the area mentioned. Now, after the content analysis of each paper classified in the environmental group, we found that the k-means technique is preferred for solving sustainability problems with clustering methods since it appeared the most amongst the documents. The authors finally conclude that a bibliometric assessment could help indicate a gap of researches on waste disposal – which was the group with the least amount of publications – and the most impactful research on environmental problems.

Keywords: bibliometric assessment, clustering, sustainability, territorial partitioning

Procedia PDF Downloads 91
2481 Methodological Aspect of Emergy Accounting in Co-Production Branching Systems

Authors: Keshab Shrestha, Hung-Suck Park

Abstract:

Emergy accounting of the systems networks is guided by a definite rule called ‘emergy algebra’. The systems networks consist of two types of branching. These are the co-product branching and split branching. The emergy accounting procedure for both the branching types is different. According to the emergy algebra, each branch in the co-product branching has different transformity values whereas the split branching has the same transformity value. After the transformity value of each branch is determined, the emergy is calculated by multiplying this with the energy. The aim of this research is to solve the problems in determining the transformity values in the co-product branching through the introduction of a new methodology, the modified physical quantity method. Initially, the existing methodologies for emergy accounting in the co-product branching is discussed and later, the modified physical quantity method is introduced with a case study of the Eucalyptus pulp production. The existing emergy accounting methodologies in the co-product branching has wrong interpretations with incorrect emergy calculations. The modified physical quantity method solves those problems of emergy accounting in the co-product branching systems. The transformity value calculated for each branch is different and also applicable in the emergy calculations. The methodology also strictly follows the emergy algebra rules. This new modified physical quantity methodology is a valid approach in emergy accounting particularly in the multi-production systems networks.

Keywords: co-product branching, emergy accounting, emergy algebra, modified physical quantity method, transformity value

Procedia PDF Downloads 275
2480 American Sign Language Recognition System

Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba

Abstract:

The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.

Keywords: sign language, computer vision, vision transformer, VGG16, CNN

Procedia PDF Downloads 20
2479 Critical Factors in the Formation, Development and Survival of an Eco-Industrial Park: A Systemic Understanding of Industrial Symbiosis

Authors: Iván González, Pablo Andrés Maya, Sebastián Jaén

Abstract:

Eco-industrial parks (EIPs) work as networks for the exchange of by-products, such as materials, water, or energy. This research identifies the relevant factors in the formation of EIPs in different industrial environments around the world. Then an aggregation of these factors is carried out to reduce them from 50 to 17 and classify them according to 5 fundamental axes. Subsequently, the Vester Sensitivity Model (VSM) systemic methodology is used to determine the influence of the 17 factors on an EIP system and the interrelationship between them. The results show that the sequence of effects between factors: Trust and Cooperation → Business Association → Flows → Additional Income represents the “backbone” of the system, being the most significant chain of influences. In addition, the Organizational Culture represents the turning point of the Industrial Symbiosis on which it must act correctly to avoid falling into unsustainable economic development. Finally, the flow of Information should not be lost since it is what feeds trust between the parties, and the latter strengthens the system in the face of individual or global imbalances. This systemic understanding will enable the formulation of pertinent policies by the actors that interact in the formation and permanence of the EIP. In this way, it seeks to promote large-scale sustainable industrial development, integrating various community actors, which in turn will give greater awareness and appropriation of the current importance of sustainability in industrial production.

Keywords: critical factors, eco-industrial park, industrial symbiosis, system methodology

Procedia PDF Downloads 103
2478 Thermal Performance of Fully Immersed Server into Saturated Fluid Porous Medium

Authors: Yaser Al-Anii, Abdulmajeed Almaneea, Jonathan L. Summers, Harvey M. Thompson, Nikil Kapur

Abstract:

The natural convection cooling system of a fully immersed server in dielectric liquid is studied numerically. In present case study, the dielectric liquid represents working fluid and it is in contact with server inside capsule. The capsule includes electronic component and fluid, which can be modelled as saturated porous media. This medium follow Darcy flow regime and assumed to be in balance between its components. The study focus is on role of spatial parameters on thermal behavior of convective heat transfer. Based on server known unit, which is 1U, two parameters Ly and S are changed to test their effect. Meanwhile, wide range of modified Rayleigh number, which is 0.5 to 300, are covered to better understand thermal performance. Navier-Stokes equations are used to model physical domain. Furthermore, successive over relaxation and time marching techniques are used to solve momentum and energy equation. From obtained correlation, the in-between distance S is more effective on Nusselt number than distance to edge Ly by approximately 14%. In addition, as S increase, the average Nusselt number of the upper unit is increased sharply, whereas the lower one keeps on same level.

Keywords: convective cooling of server, darcy flow, liquid-immersed server, porous media

Procedia PDF Downloads 388
2477 A Study on the Optimum Shoulder Width in the Tunnel Considering Driving Safety

Authors: Somyoung Shin, Donghun Jeong, Yeoil Yun

Abstract:

South Korea continuously installed tunnels in consideration of the safety and operation efficiency, and the number of installed tunnels has doubled over the past ten years. The tunnel section is designed based on the guidelines, but the tunnel entrance becomes narrow due to dark adaptation and pressure. In fact, around 13% of traffic in expressways of Japan happens at the entrance, leading to congestion and rear-ends collision accidents. Therefore, this study aims to analyze the stability from the expansion of the shoulder width in the tunnel entrance by applying a virtual reality driving simulator in order to reduce the accidents that happen in the tunnel entrance. To compare the driving stability based on the changes in the width of the right shoulder under the same condition, a virtual reality driving simulator is used to conduct an experiment on 30 subjects in their 20s to 60s and to provide a more practical virtual reality driving environment, and an experiment map is designed based on actual roads as the background to conduct the experiment. The right shoulder is classified into 2.5m and 3.0m based on the design guidelines of the expressways and the road structure installation regulations. The experimenters' experiment order is decided randomly. As a result of analyzing the average speed, it was displayed as 100.73km/h when the shoulder width was 2.5m and 101.69km/h when the shoulder width was 3.0m and as a result of conducting t-test analysis, the p-value appeared as more than 0.05 in the significance level of 95%, so it was statistically insignificant. Also, as a result of analyzing the speed deviation between the average driving speed of the analyzed interval and the average driving speed upon entering the tunnel, it was displayed as 3.06km/h when the shoulder width was 2.5m and 1.87km/h when the shoulder width was 3.0m and as a result of conducting t-test analysis, the p-value appeared as less than 0.05 in the significance level of 95%, so it was statistically significant. This means that when the shoulder width is 3.0m, there is stability in terms of the driving stability compared to when it is 2.5m. Therefore, it is considered that when new roads are constructed in Korea, the right shoulder width should be installed as 3.0m to enhance the driving stability.

Keywords: driving stability, shoulder width, tunnel, virtual reality driving simulator

Procedia PDF Downloads 181
2476 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: digital twin, distributed energy resources, remote terminal units, supervisory control and data acquisition system, smart recursive load flow

Procedia PDF Downloads 87
2475 Elaboration and Characterization of Silver Nanoparticles for Therapeutic and Environmental Applications

Authors: Manel Bouloudenine, Karima Djeddou, Hadjer Ben Manser, Hana Soualah Alila, Mohmed Bououdina

Abstract:

This survey research involves the elaboration and characterization of silver nanoparticles for therapeutic and environmental applications. The silver nanoparticles "Ag NPs" were synthesized by reducing AgNO3 with microwaves. The characterization of nanoparticles was done by using Transmission Electron Microscopy " TEM ", Energy Dispersive Spectroscopy "EDS", Selected Area Electron Diffraction "SEAD", UV-Visible Spectroscopy and Dynamic Light Scattering "DLS". Transmission Electron Microscopy and Electron Diffraction have confirmed the nanoscale, the shape, and the crystalline quality of as synthesized silver nanoparticles. Elementary analysis has proved the purity of Ag NPs and the presence of the Surface Plasmon Resonance phenomenon "SPR". A strong absorption shift was observed in the visible range of the UV-visible spectrum of as synthesized Ag NPs, which indicates the presence of metallic silver. When the strong absorption in the ultraviolet range of the spectrum has revealed the presence of ionic Ag NPs ionic Ag aggregates species. The autocorrelation function measured by the Dynamic Light Scattering has shown a strong monodispersed character of Ag NPs, which is indicated by the presence of a single size population, with a minima and a maxima laying between 40 and 111 nm. Related to other research, our results confirm the performance properties of as synthesized Ag NPs, which allows them to be performing in many technological applications, including therapeutic and environmental ones.

Keywords: silvers nanoparticles, microwaves, EDS, TEM

Procedia PDF Downloads 136