Search results for: area and volume
261 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications
Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi
Abstract:
This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications
Procedia PDF Downloads 139260 Multi-Scale Modeling of Ti-6Al-4V Mechanical Behavior: Size, Dispersion and Crystallographic Texture of Grains Effects
Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vidal, Farhad Rezai-Aria, Christine Boher
Abstract:
Ti-6Al-4V titanium alloy is one of the most widely used materials in aeronautical and aerospace industries. Because of its high specific strength, good fatigue, and corrosion resistance, this alloy is very suitable for moderate temperature applications. At room temperature, Ti-6Al-4V mechanical behavior is generally controlled by the behavior of alpha phase (beta phase percent is less than 8%). The plastic strain of this phase notably based on crystallographic slip can be hindered by various obstacles and mechanisms (crystal lattice friction, sessile dislocations, strengthening by solute atoms and grain boundaries…). The grains aspect of alpha phase (its morphology and texture) and the nature of its crystallographic lattice (which is hexagonal compact) give to plastic strain heterogeneous, discontinuous and anisotropic characteristics at the local scale. The aim of this work is to develop a multi-scale model for Ti-6Al-4V mechanical behavior using crystal plasticity approach; this multi-scale model is used then to investigate grains size, dispersion of grains size, crystallographic texture and slip systems activation effects on Ti-6Al-4V mechanical behavior under monotone quasi-static loading. Nine representative elementary volume (REV) are built for taking into account the physical elements (grains size, dispersion and crystallographic) mentioned above, then boundary conditions of tension test are applied. Finally, simulation of the mechanical behavior of Ti-6Al-4V and study of slip systems activation in alpha phase is reported. The results show that the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior of Ti-6Al-4V alloy modeled. The grains size influences also on mechanical proprieties of Ti-6Al-4V, especially on the yield stress; by decreasing of the grain size, the yield strength increases. Finally, the grains' distribution which characterizes the morphology aspect (homogeneous or heterogeneous) gives to the deformation fields distribution enough heterogeneity because the crystallographic slip is easier in large grains compared to small grains, which generates a localization of plastic deformation in certain areas and a concentration of stresses in others.Keywords: multi-scale modeling, Ti-6Al-4V alloy, crystal plasticity, grains size, crystallographic texture
Procedia PDF Downloads 157259 Numerical Simulation of Waves Interaction with a Free Floating Body by MPS Method
Authors: Guoyu Wang, Meilian Zhang, Chunhui LI, Bing Ren
Abstract:
In recent decades, a variety of floating structures have played a crucial role in ocean and marine engineering, such as ships, offshore platforms, floating breakwaters, fish farms, floating airports, etc. It is common for floating structures to suffer from loadings under waves, and the responses of the structures mounted in marine environments have a significant relation to the wave impacts. The interaction between surface waves and floating structures is one of the important issues in ship or marine structure design to increase performance and efficiency. With the progress of computational fluid dynamics, a number of numerical models based on the NS equations in the time domain have been developed to explore the above problem, such as the finite difference method or the finite volume method. Those traditional numerical simulation techniques for moving bodies are grid-based, which may encounter some difficulties when treating a large free surface deformation and a moving boundary. In these models, the moving structures in a Lagrangian formulation need to be appropriately described in grids, and the special treatment of the moving boundary is inevitable. Nevertheless, in the mesh-based models, the movement of the grid near the structure or the communication between the moving Lagrangian structure and Eulerian meshes will increase the algorithm complexity. Fortunately, these challenges can be avoided by the meshless particle methods. In the present study, a moving particle semi-implicit model is explored for the numerical simulation of fluid–structure interaction with surface flows, especially for coupling of fluid and moving rigid body. The equivalent momentum transfer method is proposed and derived for the coupling of fluid and rigid moving body. The structure is discretized into a group of solid particles, which are assumed as fluid particles involved in solving the NS equation altogether with the surrounding fluid particles. The momentum conservation is ensured by the transfer from those fluid particles to the corresponding solid particles. Then, the position of the solid particles is updated to keep the initial shape of the structure. Using the proposed method, the motions of a free-floating body in regular waves are numerically studied. The wave surface evaluation and the dynamic response of the floating body are presented. There is good agreement when the numerical results, such as the sway, heave, and roll of the floating body, are compared with the experimental and other numerical data. It is demonstrated that the presented MPS model is effective for the numerical simulation of fluid-structure interaction.Keywords: floating body, fluid structure interaction, MPS, particle method, waves
Procedia PDF Downloads 76258 Effects of Acacia Honey Drink Ingestion during Rehydration after Exercise Compared to Sports Drink on Physiological Parameters and Subsequent Running Performance in the Heat
Authors: Foong Kiew Ooi, Aidi Naim Mohamad Samsani, Chee Keong Chen, Mohamed Saat Ismail
Abstract:
Introduction: Prolonged exercise in a hot and humid environment can result in glycogen depletion and associated with loss of body fluid. Carbohydrate contained in sports beverages is beneficial for improving sports performance and preventing dehydration. Carbohydrate contained in honey is believed can be served as an alternative form of carbohydrate for enhancing sports performance. Objective: To investigate the effectiveness of honey drink compared to sports drink as a recovery aid for running performance and physiological parameters in the heat. Method: Ten male recreational athletes (age: 22.2 ± 2.0 years, VO2max: 51.5 ± 3.7 ml.kg-1.min-1) participated in this randomized cross-over study. On each trial, participants were required to run for 1 hour in the glycogen depletion phase (Run-1), followed by a rehydration phase for 2 hours and subsequently a 20 minutes time trial performance (Run-2). During Run-1, subjects were required to run on the treadmill in the heat (31°C) with 70% relative humidity at 70 % of their VO2max. During rehydration phase, participants drank either honey drink or sports drink, or plain water with amount equivalent to 150% of body weight loss in dispersed interval (60 %, 50 % and 40 %) at 0 min, 30 min and 60 min respectively. Subsequently, time trial was performed by the participants in 20 minutes and the longest distance covered was recorded. Physiological parameters were analysed using two-way ANOVA with repeated measure and time trial performance was analysed using one-way ANOVA. Results: Result showed that Acacia honey elicited a better time trial performance with significantly longer distance compared to water trial (P<0.05). However, there was no significant difference between Acacia honey and sport drink trials (P > 0.05). Acacia honey and sports drink trials elicited 249 m (8.24 %) and 211 m (6.79 %) longer in distance compared to the water trial respectively. For physiological parameters, plasma glucose, plasma insulin and plasma free fatty acids in Acacia honey and sports drink trials were significantly higher compared to the water trial respectively during rehydration phase and time trial running performance phase. There were no significant differences in body weight changes, oxygen uptake, hematocrit, plasma volume changes and plasma cortisol in all the trials. Conclusion: Acacia honey elicited greatest beneficial effects on sports performance among the drinks, thus it has potential to be used for rehydration in athletes who train and compete in hot environment.Keywords: honey drink, rehydration, sports performance, plasma glucose, plasma insulin, plasma cortisol
Procedia PDF Downloads 309257 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water
Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya
Abstract:
Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination
Procedia PDF Downloads 34256 Estimation of Rock Strength from Diamond Drilling
Authors: Hing Hao Chan, Thomas Richard, Masood Mostofi
Abstract:
The mining industry relies on an estimate of rock strength at several stages of a mine life cycle: mining (excavating, blasting, tunnelling) and processing (crushing and grinding), both very energy-intensive activities. An effective comminution design that can yield significant dividends often requires a reliable estimate of the material rock strength. Common laboratory tests such as rod, ball mill, and uniaxial compressive strength share common shortcomings such as time, sample preparation, bias in plug selection cost, repeatability, and sample amount to ensure reliable estimates. In this paper, the authors present a methodology to derive an estimate of the rock strength from drilling data recorded while coring with a diamond core head. The work presented in this paper builds on a phenomenological model of the bit-rock interface proposed by Franca et al. (2015) and is inspired by the now well-established use of the scratch test with PDC (Polycrystalline Diamond Compact) cutter to derive the rock uniaxial compressive strength. The first part of the paper introduces the phenomenological model of the bit-rock interface for a diamond core head that relates the forces acting on the drill bit (torque, axial thrust) to the bit kinematic variables (rate of penetration and angular velocity) and introduces the intrinsic specific energy or the energy required to drill a unit volume of rock for an ideally sharp drilling tool (meaning ideally sharp diamonds and no contact between the bit matrix and rock debris) that is found well correlated to the rock uniaxial compressive strength for PDC and roller cone bits. The second part describes the laboratory drill rig, the experimental procedure that is tailored to minimize the effect of diamond polishing over the duration of the experiments, and the step-by-step methodology to derive the intrinsic specific energy from the recorded data. The third section presents the results and shows that the intrinsic specific energy correlates well to the uniaxial compressive strength for the 11 tested rock materials (7 sedimentary and 4 igneous rocks). The last section discusses best drilling practices and a method to estimate the rock strength from field drilling data considering the compliance of the drill string and frictional losses along the borehole. The approach is illustrated with a case study from drilling data recorded while drilling an exploration well in Australia.Keywords: bit-rock interaction, drilling experiment, impregnated diamond drilling, uniaxial compressive strength
Procedia PDF Downloads 138255 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car
Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga
Abstract:
Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption
Procedia PDF Downloads 271254 Role of Yeast-Based Bioadditive on Controlling Lignin Inhibition in Anaerobic Digestion Process
Authors: Ogemdi Chinwendu Anika, Anna Strzelecka, Yadira Bajón-Fernández, Raffaella Villa
Abstract:
Anaerobic digestion (AD) has been used since time in memorial to take care of organic wastes in the environment, especially for sewage and wastewater treatments. Recently, the rising demand/need to increase renewable energy from organic matter has caused the AD substrates spectrum to expand and include a wider variety of organic materials such as agricultural residues and farm manure which is annually generated at around 140 billion metric tons globally. The problem, however, is that agricultural wastes are composed of materials that are heterogeneous and too difficult to degrade -particularly lignin, that make up about 0–40% of the total lignocellulose content. This study aimed to evaluate the impact of varying concentrations of lignin on biogas yields and their subsequent response to a commercial yeast-based bioadditive in batch anaerobic digesters. The experiments were carried out in batches for a retention time of 56 days with different lignin concentrations (200 mg, 300 mg, 400 mg, 500 mg, and 600 mg) treated to different conditions to first determine the concentration of the bioadditive that was most optimal for overall process improvement and yields increase. The batch experiments were set up using 130 mL bottles with a working volume of 60mL, maintained at 38°C in an incubator shaker (150rpm). Digestate obtained from a local plant operating at mesophilic conditions was used as the starting inoculum, and commercial kraft lignin was used as feedstock. Biogas measurements were carried out using the displacement method and were corrected to standard temperature and pressure using standard gas equations. Furthermore, the modified Gompertz equation model was used to non-linearly regress the resulting data to estimate gas production potential, production rates, and the duration of lag phases as indicatives of degrees of lignin inhibition. The results showed that lignin had a strong inhibitory effect on the AD process, and the higher the lignin concentration, the more the inhibition. Also, the modelling showed that the rates of gas production were influenced by the concentrations of the lignin substrate added to the system – the higher the lignin concentrations in mg (0, 200, 300, 400, 500, and 600) the lower the respective rate of gas production in ml/gVS.day (3.3, 2.2, 2.3, 1.6, 1.3, and 1.1), although the 300 mg increased by 0.1 ml/gVS.day over that of the 200 mg. The impact of the yeast-based bioaddition on the rate of production was most significant in the 400 mg and 500 mg as the rate was improved by 0.1 ml/gVS.day and 0.2 ml/gVS.day respectively. This indicates that agricultural residues with higher lignin content may be more responsive to inhibition alleviation by yeast-based bioadditive; therefore, further study on its application to the AD of agricultural residues of high lignin content will be the next step in this research.Keywords: anaerobic digestion, renewable energy, lignin valorisation, biogas
Procedia PDF Downloads 92253 Hydrocarbon Source Rocks of the Maragh Low
Authors: Elhadi Nasr, Ibrahim Ramadan
Abstract:
Biostratigraphical analyses of well sections from the Maragh Low in the Eastern Sirt Basin has allowed high resolution correlations to be undertaken. Full integration of this data with available palaeoenvironmental, lithological, gravity, seismic, aeromagnetic, igneous, radiometric and wireline log information and a geochemical analysis of source rock quality and distribution has led to a more detailed understanding of the geological and the structural history of this area. Pre Sirt Unconformity two superimposed rifting cycles have been identified. The oldest is represented by the Amal Group of sediments and is of Late Carboniferous, Kasimovian / Gzelian to Middle Triassic, Anisian age. Unconformably overlying is a younger rift cycle which is represented the Sarir Group of sediments and is of Early Cretaceous, late Neocomian to Aptian in age. Overlying the Sirt Unconformity is the marine Late Cretaceous section. An assessment of pyrolysis results and a palynofacies analysis has allowed hydrocarbon source facies and quality to be determined. There are a number of hydrocarbon source rock horizons in the Maragh Low, these are sometimes vertically stacked and they are of fair to excellent quality. The oldest identified source rock is the Triassic Shale, this unit is unconformably overlain by sandstones belonging to the Sarir Group and conformably overlies a Triassic Siltstone unit. Palynological dating of the Triassic Shale unit indicates a Middle Triassic, Anisian age. The Triassic Shale is interpreted to have been deposited in a lacustrine palaeoenvironment. This particularly is evidenced by the dark, fine grained, organic rich nature of the sediment and is supported by palynofacies analysis and by the recovery of fish fossils. Geochemical analysis of the Triassic Shale indicates total organic carbon varying between 1.37 and 3.53. S2 pyrolysate yields vary between 2.15 mg/g and 6.61 mg/g and hydrogen indices vary between 156.91 and 278.91. The source quality of the Triassic Shale varies from being of fair to very good / rich. Linked to thermal maturity it is now a very good source for light oil and gas. It was once a very good to rich oil source. The Early Barremian Shale was also deposited in a lacustrine palaeoenvironment. Recovered palynomorphs indicate an Early Cretaceous, late Neocomian to early Barremian age. The Early Barremian Shale is conformably underlain and overlain by sandstone units belonging to the Sarir Group of sediments which are also of Early Cretaceous age. Geochemical analysis of the Early Barremian Shale indicates that it is a good oil source and was originally very good. Total organic carbon varies between 3.59% and 7%. S2 varies between 6.30 mg/g and 10.39 mg/g and the hydrogen indices vary between 148.4 and 175.5. A Late Barremian Shale unit of this age has also been identified in the central Maragh Low. Geochemical analyses indicate that total organic carbon varies between 1.05 and 2.38%, S2 pyrolysate between 1.6 and 5.34 mg/g and the hydrogen index between 152.4 and 224.4. It is a good oil source rock which is now mature. In addition to the non marine hydrocarbon source rocks pre Sirt Unconformity, three formations in the overlying Late Cretaceous section also provide hydrocarbon quality source rocks. Interbedded shales within the Rachmat Formation of Late Cretaceous, early Campanian age have total organic carbon ranging between, 0.7 and 1.47%, S2 pyrolysate varying between 1.37 and 4.00 mg/g and hydrogen indices varying between 195.7 and 272.1. The indication is that this unit would provide a fair gas source to a good oil source. Geochemical analyses of the overlying Tagrifet Limestone indicate that total organic carbon varies between 0.26% and 1.01%. S2 pyrolysate varies between 1.21 and 2.16 mg/g and hydrogen indices vary between 195.7 and 465.4. For the overlying Sirt Shale Formation of Late Cretaceous, late Campanian age, total organic carbon varies between 1.04% and 1.51%, S2 pyrolysate varies between 4.65 mg/g and 6.99 mg/g and the hydrogen indices vary between 151 and 462.9. The study has proven that both the Sirt Shale Formation and the Tagrifet Limestone are good to very good and rich sources for oil in the Maragh Low. High resolution biostratigraphical interpretations have been integrated and calibrated with thermal maturity determinations (Vitrinite Reflectance (%Ro), Spore Colour Index (SCI) and Tmax (ºC) and the determined present day geothermal gradient of 25ºC / Km for the Maragh Low. Interpretation of generated basin modelling profiles allows a detailed prediction of timing of maturation development of these source horizons and leads to a determination of amounts of missing section at major unconformities. From the results the top of the oil window (0.72% Ro) is picked as high as 10,700’ and the base of the oil window (1.35% Ro) assuming a linear trend and by projection is picked as low as 18,000’ in the Maragh Low. For the Triassic Shale the early phase of oil generation was in the Late Palaeocene / Early to Middle Eocene and the main phase of oil generation was in the Middle to Late Eocene. The Early Barremian Shale reached the main phase of oil generation in the Early Oligocene with late generation being reached in the Middle Miocene. For the Rakb Group section (Rachmat Formation, Tagrifet Limestone and Sirt Shale Formation) the early phase of oil generation started in the Late Eocene with the main phase of generation being between the Early Oligocene and the Early Miocene. From studying maturity profiles and from regional considerations it can be predicted that up to 500’ of sediment may have been deposited and eroded by the Sirt Unconformity in the central Maragh Low while up to 2000’ of sediment may have been deposited and then eroded to the south of the trough.Keywords: Geochemical analysis of the source rocks from wells in Eastern Sirt Basin.
Procedia PDF Downloads 409252 Mitigation of Indoor Human Exposure to Traffic-Related Fine Particulate Matter (PM₂.₅)
Authors: Ruchi Sharma, Rajasekhar Balasubramanian
Abstract:
Motor vehicles emit a number of air pollutants, among which fine particulate matter (PM₂.₅) is of major concern in cities with high population density due to its negative impacts on air quality and human health. Typically, people spend more than 80% of their time indoors. Consequently, human exposure to traffic-related PM₂.₅ in indoor environments has received considerable attention. Most of the public residential buildings in tropical countries are designed for natural ventilation where indoor air quality tends to be strongly affected by the migration of air pollutants of outdoor origin. However, most of the previously reported traffic-related PM₂.₅ exposure assessment studies relied on ambient PM₂.₅ concentrations and thus, the health impact of traffic-related PM₂.₅ on occupants in naturally ventilated buildings remains largely unknown. Therefore, a systematic field study was conducted to assess indoor human exposure to traffic-related PM₂.₅ with and without mitigation measures in a typical naturally ventilated residential apartment situated near a road carrying a large volume of traffic. Three PM₂.₅ exposure scenarios were simulated in this study, i.e., Case 1: keeping all windows open with a ceiling fan on as per the usual practice, Case 2: keeping all windows fully closed as a mitigation measure, and Case 3: keeping all windows fully closed with the operation of a portable indoor air cleaner as an additional mitigation measure. The indoor to outdoor (I/O) ratios for PM₂.₅ mass concentrations were assessed and the effectiveness of using the indoor air cleaner was quantified. Additionally, potential human health risk based on the bioavailable fraction of toxic trace elements was also estimated for the three cases in order to identify a suitable mitigation measure for reducing PM₂.₅ exposure indoors. Traffic-related PM₂.₅ levels indoors exceeded the air quality guidelines (12 µg/m³) in Case 1, i.e., under natural ventilation conditions due to advective flow of outdoor air into the indoor environment. However, while using the indoor air cleaner, a significant reduction (p < 0.05) in the PM₂.₅ exposure levels was noticed indoors. Specifically, the effectiveness of the air cleaner in terms of reducing indoor PM₂.₅ exposure was estimated to be about 74%. Moreover, potential human health risk assessment also indicated a substantial reduction in potential health risk while using the air cleaner. This is the first study of its kind that evaluated the indoor human exposure to traffic-related PM₂.₅ and identified a suitable exposure mitigation measure that can be implemented in densely populated cities to realize health benefits.Keywords: fine particulate matter, indoor air cleaner, potential human health risk, vehicular emissions
Procedia PDF Downloads 127251 Chronic wrist pain among handstand practitioners. A questionnaire study.
Authors: Martonovich Noa, Maman David, Alfandari Liad, Behrbalk Eyal.
Abstract:
Introduction: The human body is designed for upright standing and walking, with the lower extremities and axial skeleton supporting weight-bearing. Constant weight-bearing on joints not meant for this action can lead to various pathologies, as seen in wheelchair users. Handstand practitioners use their wrists as weight-bearing joints during activities, but little is known about wrist injuries in this population. This study aims to investigate the epidemiology of wrist pain among handstand practitioners, as no such data currently exist. Methods: The study is a cross-sectional online survey conducted among athletes who regularly practice handstands. Participants were asked to complete a three-part questionnaire regarding their workout regimen, training habits, and history of wrist pain. The inclusion criteria were athletes over 18 years old who practice handstands more than twice a month for at least 4 months. All data were collected using Google Forms, organized and anonymized using Microsoft Excel, and analyzed using IBM SPSS 26.0. Descriptive statistics were calculated, and potential risk factors were tested using asymptotic t-tests and Fisher's tests. Differences were considered significant when p < 0.05. Results: This study surveyed 402 athletes who regularly practice handstands to investigate the prevalence of chronic wrist pain and potential risk factors. The participants had a mean age of 31.3 years, with most being male and having an average of 5 years of training experience. 56% of participants reported chronic wrist pain, and 14.4% reported a history of distal radial fracture. Yoga was the most practiced form, followed by Capoeira. No significant differences were found in demographic data between participants with and without chronic wrist pain, and no significant associations were found between chronic wrist pain prevalence and warm-up routines or protective aids. Conclusion: The lower half of the body is meant to handle weight-bearing and impact, while transferring the load to upper extremities can lead to various pathologies. Athletes who perform handstands are particularly prone to chronic wrist pain, which affects over half of them. Warm-up sessions and protective instruments like wrist braces do not seem to prevent chronic wrist pain, and there are no significant differences in age or training volume between athletes with and without the condition. Further research is needed to understand the causes of chronic wrist pain in athletes, given the growing popularity of sports and activities that can cause this type of injury.Keywords: handstand, handbalance, wrist pain, hand and wrist surgery, yoga, calisthenics, circus, capoeira, movement.
Procedia PDF Downloads 92250 The Development of an Anaesthetic Crisis Manual for Acute Critical Events: A Pilot Study
Authors: Jacklyn Yek, Clara Tong, Shin Yuet Chong, Yee Yian Ong
Abstract:
Background: While emergency manuals and cognitive aids (CA) have been used in high-hazard industries for decades, this has been a nascent field in healthcare. CAs can potentially offset the large cognitive load involved in crisis resource management and possibly facilitate the efficient performance of key steps in treatment. A crisis manual was developed based on local guidelines and the latest evidence-based information and introduced to a tertiary hospital setting in Singapore. Hence, the objective of this study is to evaluate the effectiveness of the crisis manual in guiding response and management of critical events. Methods: 7 surgical teams were recruited to participate in a series of simulated emergencies in high-fidelity operating room simulator over the period of April to June 2018. All teams consisted of a surgical consultant and medical officer/registrar, anesthesia consultant and medical officer/registrar; as well as a circulating, scrub and anesthetic nurse. Each team performed a simulated operation in which 1 or more of the crisis events occurred. The teams were randomly assigned to a scenario of the crisis manual and all teams were deemed to be equal in experience and knowledge. Before the simulation, teams were instructed on proper checklist use but the use of the checklist was optional. Results: 7 simulation sessions were performed, consisting of the following scenarios: Airway fire, Massive Transfusion Protocol, Malignant Hyperthermia, Eclampsia, and Difficult Airway. Out of the 7 surgical teams, 2 teams made use of the crisis manual – of which both teams had encountered a ‘Malignant Hyperthermia’ scenario. These team members reflected that the crisis manual assisted allowed them to work in a team, especially being able to involve the surgical doctors who were unfamiliar with the condition and management. A run chart plotted showed a possible upward trend, suggesting that with increasing awareness and training, staff would become more likely to initiate the use of the crisis manual. Conclusion: Despite the high volume load in this tertiary hospital, certain crises remain rare and clinicians are often caught unprepared. A crisis manual is an effective tool and easy-to-use repository that can improve patient outcome and encourage teamwork. With training, familiarity would allow clinicians to be increasingly comfortable with reaching out for the crisis manual. More simulation training would need to be conducted to determine its effectiveness.Keywords: crisis resource management, high fidelity simulation training, medical errors, visual aids
Procedia PDF Downloads 127249 Mature Field Rejuvenation Using Hydraulic Fracturing: A Case Study of Tight Mature Oilfield with Reveal Simulator
Authors: Amir Gharavi, Mohamed Hassan, Amjad Shah
Abstract:
The main characteristics of unconventional reservoirs include low-to ultra low permeability and low-to-moderate porosity. As a result, hydrocarbon production from these reservoirs requires different extraction technologies than from conventional resources. An unconventional reservoir must be stimulated to produce hydrocarbons at an acceptable flow rate to recover commercial quantities of hydrocarbons. Permeability for unconventional reservoirs is mostly below 0.1 mD, and reservoirs with permeability above 0.1 mD are generally considered to be conventional. The hydrocarbon held in these formations naturally will not move towards producing wells at economic rates without aid from hydraulic fracturing which is the only technique to assess these tight reservoir productions. Horizontal well with multi-stage fracking is the key technique to maximize stimulated reservoir volume and achieve commercial production. The main objective of this research paper is to investigate development options for a tight mature oilfield. This includes multistage hydraulic fracturing and spacing by building of reservoir models in the Reveal simulator to model potential development options based on sidetracking the existing vertical well. To simulate potential options, reservoir models have been built in the Reveal. An existing Petrel geological model was used to build the static parts of these models. A FBHP limit of 40bars was assumed to take into account pump operating limits and to maintain the reservoir pressure above the bubble point. 300m, 600m and 900m lateral length wells were modelled, in conjunction with 4, 6 and 8 stages of fracs. Simulation results indicate that higher initial recoveries and peak oil rates are obtained with longer well lengths and also with more fracs and spacing. For a 25year forecast, the ultimate recovery ranging from 0.4% to 2.56% for 300m and 1000m laterals respectively. The 900m lateral with 8 fracs 100m spacing gave the highest peak rate of 120m3/day, with the 600m and 300m cases giving initial peak rates of 110m3/day. Similarly, recovery factor for the 900m lateral with 8 fracs and 100m spacing was the highest at 2.65% after 25 years. The corresponding values for the 300m and 600m laterals were 2.37% and 2.42%. Therefore, the study suggests that longer laterals with 8 fracs and 100m spacing provided the optimal recovery, and this design is recommended as the basis for further study.Keywords: unconventional, resource, hydraulic, fracturing
Procedia PDF Downloads 298248 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)
Authors: Stephan Treuke
Abstract:
The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.Keywords: economic mobility, neighborhood effects, Salvador, segregation
Procedia PDF Downloads 280247 Long-Term Variabilities and Tendencies in the Zonally Averaged TIMED-SABER Ozone and Temperature in the Middle Atmosphere over 10°N-15°N
Authors: Oindrila Nath, S. Sridharan
Abstract:
Long-term (2002-2012) temperature and ozone measurements by Sounding of Atmosphere by Broadband Emission Radiometry (SABER) instrument onboard Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite zonally averaged over 10°N-15°N are used to study their long-term changes and their responses to solar cycle, quasi-biennial oscillation and El Nino Southern Oscillation. The region is selected to provide more accurate long-term trends and variabilities, which were not possible earlier with lidar measurements over Gadanki (13.5°N, 79.2°E), which are limited to cloud-free nights, whereas continuous data sets of SABER temperature and ozone are available. Regression analysis of temperature shows a cooling trend of 0.5K/decade in the stratosphere and that of 3K/decade in the mesosphere. Ozone shows a statistically significant decreasing trend of 1.3 ppmv per decade in the mesosphere although there is a small positive trend in stratosphere at 25 km. Other than this no significant ozone trend is observed in stratosphere. Negative ozone-QBO response (0.02ppmv/QBO), positive ozone-solar cycle (0.91ppmv/100SFU) and negative response to ENSO (0.51ppmv/SOI) have been found more in mesosphere whereas positive ozone response to ENSO (0.23ppmv/SOI) is pronounced in stratosphere (20-30 km). The temperature response to solar cycle is more positive (3.74K/100SFU) in the upper mesosphere and its response to ENSO is negative around 80 km and positive around 90-100 km and its response to QBO is insignificant at most of the heights. Composite monthly mean of ozone volume mixing ratio shows maximum values during pre-monsoon and post-monsoon season in middle stratosphere (25-30 km) and in upper mesosphere (85-95 km) around 10 ppmv. Composite monthly mean of temperature shows semi-annual variation with large values (~250-260 K) in equinox months and less values in solstice months in upper stratosphere and lower mesosphere (40-55 km) whereas the SAO becomes weaker above 55 km. The semi-annual variation again appears at 80-90 km, with large values in spring equinox and winter months. In the upper mesosphere (90-100 km), less temperature (~170-190 K) prevails in all the months except during September, when the temperature is slightly more. The height profiles of amplitudes of semi-annual and annual oscillations in ozone show maximum values of 6 ppmv and 2.5 ppmv respectively in upper mesosphere (80-100 km), whereas SAO and AO in temperature show maximum values of 5.8 K and 4.6 K in lower and middle mesosphere around 60-85 km. The phase profiles of both SAO and AO show downward progressions. These results are being compared with long-term lidar temperature measurements over Gadanki (13.5°N, 79.2°E) and the results obtained will be presented during the meeting.Keywords: trends, QBO, solar cycle, ENSO, ozone, temperature
Procedia PDF Downloads 410246 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter
Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott
Abstract:
Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM
Procedia PDF Downloads 397245 Analysis of Reduced Mechanisms for Premixed Combustion of Methane/Hydrogen/Propane/Air Flames in Geometrically Modified Combustor and Its Effects on Flame Properties
Authors: E. Salem
Abstract:
Combustion has been used for a long time as a means of energy extraction. However, in recent years, there has been a further increase in air pollution, through pollutants such as nitrogen oxides, acid etc. In order to solve this problem, there is a need to reduce carbon and nitrogen oxides through learn burning modifying combustors and fuel dilution. A numerical investigation has been done to investigate the effectiveness of several reduced mechanisms in terms of computational time and accuracy, for the combustion of the hydrocarbons/air or diluted with hydrogen in a micro combustor. The simulations were carried out using the ANSYS Fluent 19.1. To validate the results “PREMIX and CHEMKIN” codes were used to calculate 1D premixed flame based on the temperature, composition of burned and unburned gas mixtures. Numerical calculations were carried for several hydrocarbons by changing the equivalence ratios and adding small amounts of hydrogen into the fuel blends then analyzing the flammable limit, the reduction in NOx and CO emissions, then comparing it to experimental data. By solving the conservations equations, several global reduced mechanisms (2-9-12) were obtained. These reduced mechanisms were simulated on a 2D cylindrical tube with dimensions of 40 cm in length and 2.5 cm diameter. The mesh of the model included a proper fine quad mesh, within the first 7 cm of the tube and around the walls. By developing a proper boundary layer, several simulations were performed on hydrocarbon/air blends to visualize the flame characteristics than were compared with experimental data. Once the results were within acceptable range, the geometry of the combustor was modified through changing the length, diameter, adding hydrogen by volume, and changing the equivalence ratios from lean to rich in the fuel blends, the results on flame temperature, shape, velocity and concentrations of radicals and emissions were observed. It was determined that the reduced mechanisms provided results within an acceptable range. The variation of the inlet velocity and geometry of the tube lead to an increase of the temperature and CO2 emissions, highest temperatures were obtained in lean conditions (0.5-0.9) equivalence ratio. Addition of hydrogen blends into combustor fuel blends resulted in; reduction in CO and NOx emissions, expansion of the flammable limit, under the condition of having same laminar flow, and varying equivalence ratio with hydrogen additions. The production of NO is reduced because the combustion happens in a leaner state and helps in solving environmental problems.Keywords: combustor, equivalence-ratio, hydrogenation, premixed flames
Procedia PDF Downloads 115244 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms
Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto
Abstract:
In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.Keywords: capacity-booking, SPA, monthly production planning, linear programming
Procedia PDF Downloads 520243 Haematology and Reproductive Performance of Pubertal Rabbit Do Administer Crude Moringa oleifera (LAM.) Leaf Extract
Authors: Ewuola E. O., Sokunbi O. A., Oyedemi O. M., Sanni K. M
Abstract:
Moringa oleifera leaf has been traditionally used in the local medicine as an ingredient in some herbal formulations for blood purifier, cholesterol reducing agent, immune and reproductive enhancers. Twenty-four pubertal rabbit are divided equally into four groups were administered with varied concentrations of crude extract of the leaves of Moringa oleifera gavage at doses of 2.5ml/kg body weight (BW) in every 48 hours for 63 days. These rabbits were allotted into four treatments and each treatment was replicated six times to investigate the effect of administered crude Moringa oleifera leaf extract (CMOLE) on haematology and reproductive performance of pubertal rabbit does. Four experimental treatments were used. The animals on the control (T1) were administered water only. Rabbits on treatments 2, 3, and 4 were administered 100ml CMOLE/L, 200ml CMOLE/L, and 300ml CMOLE/L, respectively. The does were placed on extract two weeks before mating, five weeks after mating and continued for another two weeks after kindling. Six proven untreated bucks were used for the mating of the twenty-four treated does and these bucks were randomly allotted to the does such that each buck mated at least one treated does in each treatment. The same management practices and experimental diets were given ad libitum to all animals. Blood was sampled from the gestating does at the third trimester for haematological analysis. The haematology results showed that treated rabbits with 100ml CMOLE/L with mean corpuscular volume value of 93.38fl significantly (p < 0.05) higher than those on the control which is water only (82.24fl) but not significantly different from T3 (200ml CMOLE/L) and T4 (300ml CMOLE/L) which had mean values of 91.69fl and 91.49fl, respectively. While the erythrocyte counts, leukocyte counts, haematocrit, haemoglobin concentration, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, lymphocyte, neutrophil, monocyte, and eosinophil count were not significantly different across the treatments. For platelets, treated animals on T2 (100ml CMOLE/L) had the highest numerical value of 148.80 x 109/L which was identical with those on T3 (200ml CMOLE/L) with mean value of 141.50x109/L but significantly (p < 0.05) higher than those on T4 (300ml CMOLE/L) with mean value of 135.00 x 109/L and those on the control which had the least mean value of 126.60 x 109/L. The percentage conception rate of the treated animals was higher than those in the control group. The animals administered 300ml CMOLE/L had the apparently highest litter size of 5.75, while gestation length and litter weight tended to decline with increase in CMOLE concentrations The investigation demonstrated the potential effect of crude Moringa oleifera leaf extract on pubertal rabbit does. The administration of up to 300ml crude Moringa oleifera leaf extract per liter did not adversely affect but improved the haematological response and reproductive potential in gestating rabbit does.Keywords: conception, haematology, moringa leaf extract, rabbit does
Procedia PDF Downloads 512242 Longitudinal Psychological Impact of Psoriasis: A Comparative Study Between Adults and Children in Canada and the United States
Authors: Jenny Carpenter, Josh Chan, Persephone MacKinlay, Madeline Chiang, Devlyn Sun, Hiba Syed, Jana Lau, Mariam Arshad, Joy Xu
Abstract:
Introduction: Psoriasis is a chronic inflammatory skin condition that affects 1 million Canadians and over 8 million Americans. It is associated with psychosocial challenges exacerbated by the presence of visible lesions, which can lead to feelings of embarrassment and social discomfort. Children often experience bullying and lower self-esteem, while adults face workplace discrimination, impaired productivity, and higher rates of comorbid mental health conditions. Understanding these impacts across age groups is vital for tailored interventions. Objective: The main objective is to compare the longitudinal psychological impact of psoriasis between adults and children in Canada and the United States. Methods: This systematic review was conducted following PRISMA guidelines and a PROSPERO-registered protocol. Studies were identified from PubMed, Scopus, ProQuest, PsycINFO, Dermatology Online Journal, JMIR Dermatology, and Embase. The included studies were published between 2014 and 2024, measured standardized psychological outcomes, and had a longitudinal design with at least a one-year follow-up period. Methodological quality was assessed using the GRADE tool. Results: Fifteen studies encompassing 67,964 participants (mean age 49.1 years, 53.3% female) were included. Adults with moderate-to-severe psoriasis demonstrated significant impairments in Dermatology Life Quality Index (DLQI) scores, with a mean baseline score of 9.0 to 10.2 for severe cases, reflecting moderate-to-severe quality of life (QoL) impairments. Treatment with biologic therapies significantly improved outcomes, with DLQI scores decreasing by an average of 7 points (from 9.6 to 2.6; p < 0.001). Key areas of improvement included social functioning, reduced physical symptoms, and increased work productivity. In severe cases, DLQI scores were 7.95 points higher compared to mild cases (p < 0.05), indicating a disproportionate burden of disease severity. Anxiety and depression were common in adults, affecting 16-23% and 18-22%, respectively. These conditions were linked to visible lesions, social stigma, and comorbidities such as hypertension and metabolic syndrome. Children with psoriasis also exhibited similar impairments in QoL, as assessed by the Children’s Life Quality Index (CLDQI). Visible lesions negatively affected school participation and peer interactions, with bullying and stigma consistently reported as major contributors to social isolation and emotional distress. Although biological therapies improved CDLQI scores, children faced persistent challenges in psychological well-being, including lower self-esteem and stigma, which often persisted in adolescence. Disease severity was quantified using the Psoriasis Area and Severity Index (PASI). Among adults, severe cases had a mean baseline PASI score of 13.9, improving by 87.1% (to 1.8, p < 0001) following biologic therapy. Canadian cohorts showed greater PASI improvements, with biologic-naive adults achieving a 95.1% reduction (from 16.3 to 0.7, p < 0.0001). Canadian patients also had higher biologic continuation rates (89.9%). Conclusion: Psoriasis significantly impacts quality of life and psychological well-being across age groups, with notable differences in outcomes between adults and children. Regional differences further highlighted greater work-related impairments in U.S. adults and more pronounced psychological challenges in Canadian children, where bullying and stigma delayed recovery. These findings emphasize the need for age- and region-specific strategies to address both the physical and psychosocial dimensions of psoriasis and support long-term well-being.Keywords: psoriasis, psychological impact, mental health, quality of life, self-esteem, autoimmune, chronic skin condition
Procedia PDF Downloads 18241 Circular Economy Maturity Models: A Systematic Literature Review
Authors: Dennis Kreutzer, Sarah Müller-Abdelrazeq, Ingrid Isenhardt
Abstract:
Resource scarcity, energy transition and the planned climate neutrality pose enormous challenges for manufacturing companies. In order to achieve these goals and a holistic sustainable development, the European Union has listed the circular economy as part of the Circular Economy Action Plan. In addition to a reduction in resource consumption, reduced emissions of greenhouse gases and a reduced volume of waste, the principles of the circular economy also offer enormous economic potential for companies, such as the generation of new circular business models. However, many manufacturing companies, especially small and medium-sized enterprises, do not have the necessary capacity to plan their transformation. They need support and strategies on the path to circular transformation, because this change affects not only production but also the entire company. Maturity models offer an approach, as they enable companies to determine the current status of their transformation processes. In addition, companies can use the models to identify transformation strategies and thus promote the transformation process. While maturity models are established in other areas, e.g. IT or project management, only a few circular economy maturity models can be found in the scientific literature. The aim of this paper is to analyse the identified maturity models of the circular economy through a systematic literature review (SLR) and, besides other aspects, to check their completeness as well as their quality. Since the terms "maturity model" and "readiness model" are often used to assess the transformation process, this paper considers both types of models to provide a more comprehensive result. For this purpose, circular economy maturity models at the company (micro) level were identified from the literature, compared, and analysed with regard to their theoretical and methodological structure. A specific focus was placed, on the one hand, on the analysis of the business units considered in the respective models and, on the other hand, on the underlying metrics and indicators in order to determine the individual maturity level of the entire company. The results of the literature review show, for instance, a significant difference in the holism of their assessment framework. Only a few models include the entire company with supporting areas outside the value-creating core process, e.g. strategy and vision. Additionally, there are large differences in the number and type of indicators as well as their metrics. For example, most models often use subjective indicators and very few objective indicators in their surveys. It was also found that there are rarely well-founded thresholds between the levels. Based on the generated results, concrete ideas and proposals for a research agenda in the field of circular economy maturity models are made.Keywords: maturity model, circular economy, transformation, metric, assessment
Procedia PDF Downloads 114240 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies
Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo
Abstract:
Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants
Procedia PDF Downloads 302239 European Hinterland and Foreland: Impact of Accessibility, Connectivity, Inter-Port Competition on Containerization
Authors: Dial Tassadit Rania, Figueiredo De Oliveira Gabriel
Abstract:
In this paper, we investigate the relationship between ports and their hinterland and foreland environments and the competitive relationship between the ports themselves. These two environments are changing, evolving and introducing new challenges for commercial and economic development at the regional, national and international levels. Because of the rise of the containerization phenomenon, shipping costs and port handling costs have considerably decreased due to economies of scale. The volume of maritime trade has increased substantially and the markets served by the ports have expanded. On these bases, overlapping hinterlands can give rise to the phenomenon of competition between ports. Our main contribution comparing to the existing literature on this issue, is to build a set of hinterland, foreland and competition indicators. Using these indicators? we investigate the effect of hinterland accessibility, foreland connectivity and inter-ports competition on containerized traffic of Europeans ports. For this, we have a 10-year panel database from 2004 to 2014. Our hinterland indicators are given by two indicators of accessibility; they describe the market potential of a port and are calculated using information on population and wealth (GDP). We then calculate population and wealth for different neighborhoods within a distance from a port ranging from 100 to 1000km. For the foreland, we produce two indicators: port connectivity and number of partners for each port. Finally, we compute the two indicators of inter-port competition and a market concentration indicator (Hirshmann-Herfindhal) for different neighborhood-distances around the port. We then apply a fixed-effect model to test the relationship above. Again, with a fixed effects model, we do a sensitivity analysis for each of these indicators to support the results obtained. The econometric results of the general model given by the regression of the accessibility indicators, the LSCI for port i, and the inter-port competition indicator on the containerized traffic of European ports show a positive and significant effect for accessibility to wealth and not to the population. The results are positive and significant for the two indicators of connectivity and competition as well. One of the main results of this research is that the port development given here by the increase of its containerized traffic is strongly related to the development of its hinterland and foreland environment. In addition, it is the market potential, given by the wealth of the hinterland that has an impact on the containerized traffic of a port. However, accessibility to a large population pool is not important for understanding the dynamics of containerized port traffic. Furthermore, in order to continue to develop, a port must penetrate its hinterland at a deep level exceeding 100 km around the port and seek markets beyond this perimeter. The port authorities could focus their marketing efforts on the immediate hinterland, which can, as the results shows, not be captive and thus engage new approaches of port governance to make it more attractive.Keywords: accessibility, connectivity, European containerization, European hinterland and foreland, inter-port competition
Procedia PDF Downloads 197238 MCD-017: Potential Candidate from the Class of Nitroimidazoles to Treat Tuberculosis
Authors: Gurleen Kour, Mowkshi Khullar, B. K. Chandan, Parvinder Pal Singh, Kushalava Reddy Yumpalla, Gurunadham Munagala, Ram A. Vishwakarma, Zabeer Ahmed
Abstract:
New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). Apart from in-vitro potency against the target, physiochemical properties and pharmacokinetic properties play an imperative role in the process of drug discovery. We have identified novel nitroimidazole derivatives with potential activity against mycobacterium tuberculosis. One lead candidates, MCD-017, which showed potent activity against H37Rv strain (MIC=0.5µg/ml) and was further evaluated in the process of drug development. Methods: Basic physicochemical parameters like solubility and lipophilicity (LogP) were evaluated. Thermodynamic solubility was determined in PBS buffer (pH 7.4) using LC/MS-MS. The partition coefficient (Log P) of the compound was determined between octanol and phosphate buffered saline (PBS at pH 7.4) at 25°C by the microscale shake flask method. The compound followed Lipinski’s rule of five, which is predictive of good oral bioavailability and was further evaluated for metabolic stability. In-vitro metabolic stability was determined in rat liver microsomes. The hepatotoxicity of the compound was also determined in HepG2 cell line. In vivo pharmacokinetic profile of the compound after oral dosing was also obtained using balb/c mice. Results: The compound exhibited favorable solubility and lipophilicity. The physical and chemical properties of the compound were made use of as the first determination of drug-like properties. The compound obeyed Lipinski’s rule of five, with molecular weight < 500, number of hydrogen bond donors (HBD) < 5 and number of hydrogen bond acceptors(HBA) not more then 10. The log P of the compound was less than 5 and therefore the compound is predictive of exhibiting good absorption and permeation. Pooled rat liver microsomes were prepared from rat liver homogenate for measuring the metabolic stability. 99% of the compound was not metabolized and remained intact. The compound did not exhibit cytoxicity in hepG2 cells upto 40 µg/ml. The compound revealed good pharmacokinetic profile at a dose of 5mg/kg administered orally with a half life (t1/2) of 1.15 hours, Cmax of 642ng/ml, clearance of 4.84 ml/min/kg and a volume of distribution of 8.05 l/kg. Conclusion : The emergence of multi drug resistance (MDR) and extensively drug resistant (XDR) Tuberculosis emphasize the requirement of novel drugs active against tuberculosis. Thus, the need to evaluate physicochemical and pharmacokinetic properties in the early stages of drug discovery is required to reduce the attrition associated with poor drug exposure. In summary, it can be concluded that MCD-017 may be considered a good candidate for further preclinical and clinical evaluations.Keywords: mycobacterium tuberculosis, pharmacokinetics, physicochemical properties, hepatotoxicity
Procedia PDF Downloads 457237 Modeling of the Biodegradation Performance of a Membrane Bioreactor to Enhance Water Reuse in Agri-food Industry - Poultry Slaughterhouse as an Example
Authors: masmoudi Jabri Khaoula, Zitouni Hana, Bousselmi Latifa, Akrout Hanen
Abstract:
Mathematical modeling has become an essential tool for sustainable wastewater management, particularly for the simulation and the optimization of complex processes involved in activated sludge systems. In this context, the activated sludge model (ASM3h) was used for the simulation of a Biological Membrane Reactor (MBR) as it includes the integration of biological wastewater treatment and physical separation by membrane filtration. In this study, the MBR with a useful volume of 12.5 L was fed continuously with poultry slaughterhouse wastewater (PSWW) for 50 days at a feed rate of 2 L/h and for a hydraulic retention time (HRT) of 6.25h. Throughout its operation, High removal efficiency was observed for the removal of organic pollutants in terms of COD with 84% of efficiency. Moreover, the MBR has generated a treated effluent which fits with the limits of discharge into the public sewer according to the Tunisian standards which were set in March 2018. In fact, for the nitrogenous compounds, average concentrations of nitrate and nitrite in the permeat reached 0.26±0.3 mg. L-1 and 2.2±2.53 mg. L-1, respectively. The simulation of the MBR process was performed using SIMBA software v 5.0. The state variables employed in the steady state calibration of the ASM3h were determined using physical and respirometric methods. The model calibration was performed using experimental data obtained during the first 20 days of the MBR operation. Afterwards, kinetic parameters of the model were adjusted and the simulated values of COD, N-NH4+and N- NOx were compared with those reported from the experiment. A good prediction was observed for the COD, N-NH4+and N- NOx concentrations with 467 g COD/m³, 110.2 g N/m³, 3.2 g N/m³ compared to the experimental data which were 436.4 g COD/m³, 114.7 g N/m³ and 3 g N/m³, respectively. For the validation of the model under dynamic simulation, the results of the experiments obtained during the second treatment phase of 30 days were used. It was demonstrated that the model simulated the conditions accurately by yielding a similar pattern on the variation of the COD concentration. On the other hand, an underestimation of the N-NH4+ concentration was observed during the simulation compared to the experimental results and the measured N-NO3 concentrations were lower than the predicted ones, this difference could be explained by the fact that the ASM models were mainly designed for the simulation of biological processes in the activated sludge systems. In addition, more treatment time could be required by the autotrophic bacteria to achieve a complete and stable nitrification. Overall, this study demonstrated the effectiveness of mathematical modeling in the prediction of the performance of the MBR systems with respect to organic pollution, the model can be further improved for the simulation of nutrients removal for a longer treatment period.Keywords: activated sludge model (ASM3h), membrane bioreactor (MBR), poultry slaughter wastewater (PSWW), reuse
Procedia PDF Downloads 60236 Assessment of Water Reuse Potential in a Metal Finishing Factory
Authors: Efe Gumuslu, Guclu Insel, Gülten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tuğba Olmez Hanci, Didem Okutman Tas, Fatoş Germirli Babuna, Derya Firat Ertem, Ökmen Yildirim, Özge Erturan, Betül Kirci
Abstract:
Although water reclamation and reuse are inseparable parts of sustainable production concept all around the world, current levels of reuse constitute only a small fraction of the total volume of industrial effluents. Nowadays, within the perspective of serious climate change, wastewater reclamation and reuse practices should be considered as a requirement. Industrial sector is one of the largest users of water sources. The OECD Environmental Outlook to 2050 predicts that global water demand for manufacturing will increase by 400% from 2000 to 2050 which is much larger than any other sector. Metal finishing industry is one of the industries that requires high amount of water during the manufacturing. Therefore, actions regarding the improvement of wastewater treatment and reuse should be undertaken on both economic and environmental sustainability grounds. Process wastewater can be reused for more purposes if the appropriate treatment systems are installed to treat the wastewater to the required quality level. Recent studies showed that membrane separation techniques may help in solving the problem of attaining a suitable quality of water that allows being recycled back to the process. The metal finishing factory where this study is conducted is one of the biggest white-goods manufacturers in Turkey. The sheet metal parts used in the cookers production have to be exposed to surface pre-treatment processes composed of degreasing, rinsing, nanoceramics coating and deionization rinsing processes, consecutively. The wastewater generating processes in the factory are enamel coating, painting and styrofoam processes. In the factory, the main source of water is the well water. While some part of the well water is directly used in the processes after passing through resin treatment, some portion of it is directed to the reverse osmosis treatment to obtain required water quality for enamel coating and painting processes. In addition to these processes another important source of water that can be considered as a potential water source is rainwater (3660 tons/year). In this study, process profiles as well as pollution profiles were assessed by a detailed quantitative and qualitative characterization of the wastewater sources generated in the factory. Based on the preliminary results the main water sources that can be considered for reuse in the processes were determined as painting and styrofoam processes.Keywords: enamel coating, painting, reuse, wastewater
Procedia PDF Downloads 380235 Environmental Performance of Different Lab Scale Chromium Removal Processes
Authors: Chiao-Cheng Huang, Pei-Te Chiueh, Ya-Hsuan Liou
Abstract:
Chromium-contaminated wastewater from electroplating industrial activity has been a long-standing environmental issue, as it can degrade surface water quality and is harmful to soil ecosystems. The traditional method of treating chromium-contaminated wastewater has been to use chemical coagulation processes. However, this method consumes large amounts of chemicals such as sulfuric acid, sodium hydroxide, and sodium bicarbonate in order to remove chromium. However, a series of new methods for treating chromium-containing wastewater have been developed. This study aimed to compare the environmental impact of four different lab scale chromium removal processes: 1.) chemical coagulation process (the most common and traditional method), in which sodium metabisulfite was used as reductant, 2.) electrochemical process using two steel sheets as electrodes, 3.) reduction by iron-copper bimetallic powder, and 4.) photocatalysis process by TiO2. Each process was run in the lab, and was able to achieve 100% removal of chromium in solution. Then a Life Cycle Assessment (LCA) study was conducted based on the experimental data obtained from four different case studies to identify the environmentally preferable alternative to treat chromium wastewater. The model used for calculating the environmental impact was TRACi, and the system scope includes the production phase and use phase of chemicals and electricity consumed by the chromium removal processes, as well as the final disposal of chromium containing sludge. The functional unit chosen in this study was the removal of 1 mg of chromium. Solution volume of each case study was adjusted to 1 L in advance and the chemicals and energy consumed were proportionally adjusted. The emissions and resources consumed were identified and characterized into 15 categories of midpoint impacts. The impact assessment results show that the human ecotoxicity category accounts for 55 % of environmental impact in Case 1, which can be attributed to the sulfuric acid used for pH adjustment. In Case 2, production of steel sheet electrodes is an energy-intensive process, thus contributed to 20 % of environmental impact. In Case 3, sodium bicarbonate is used as an anti-corrosion additive, which results mainly in 1.02E-05 Comparative Toxicity Unit (CTU) in the human toxicity category and 0.54E-05 (CTU) in acidification of air. In Case 4, electricity consumption for power supply of UV lamp gives 5.25E-05 (CTU) in human toxicity category, 1.15E-05 (kg Neq) in eutrophication. In conclusion, Case 3 and Case 4 have higher environmental impacts than Case 1 and Case 2, which can be attributed mostly to higher energy and chemical consumption, leading to high impacts in the global warming and ecotoxicity categories.Keywords: chromium, lab scale, life cycle assessment, wastewater
Procedia PDF Downloads 265234 Environmental Aspects of Alternative Fuel Use for Transport with Special Focus on Compressed Natural Gas (CNG)
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
The history of gaseous fuel use in the motive power of vehicles dates back to the second half of the nineteenth century, and thus the beginnings of the automotive industry. The engines were powered by coal gas and became the prototype for internal combustion engines built so far. It can thus be considered that this construction gave rise to the automotive industry. As the socio-economic development advances, so does the number of motor vehicles. Although, due to technological progress in recent decades, the emissions generated by internal combustion engines of cars have been reduced, a sharp increase in the number of cars and the rapidly growing traffic are an important source of air pollution and a major cause of acoustic threat, in particular in large urban agglomerations. One of the solutions, in terms of reducing exhaust emissions and improving air quality, is a more extensive use of alternative fuels: CNG, LNG, electricity and hydrogen. In the case of electricity use for transport, it should be noted that the environmental outcome depends on the structure of electricity generation. The paper shows selected regulations affecting the use of alternative fuels for transport (including Directive 2014/94/EU) and its dynamics between 2000 and 2015 in Poland and selected EU countries. The paper also gives a focus on the impact of alternative fuels on the environment by comparing the volume of individual emissions (compared to the emissions from conventional fuels: petrol and diesel oil). Bearing in mind that the extent of various alternative fuel use is determined in first place by economic conditions, the article describes the price relationships between alternative and conventional fuels in Poland and selected EU countries. It is pointed out that although Poland has a wealth of experience in using methane alternative fuels for transport, one of the main barriers to their development in Poland is the extensive use of LPG. In addition, a poorly developed network of CNG stations in Poland, which does not allow easy transport, especially in the northern part of the country, is a serious problem to a further development of CNG use as fuel for transport. An interesting solution to this problem seems to be the use of home CNG filling stations: Home Refuelling Appliance (HRA, refuelling time 8-10 hours) and Home Refuelling Station (HRS, refuelling time 8-10 minutes). The team is working on HRA and HRS technologies. The article also highlights the impact of alternative fuel use on energy security by reducing reliance on imports of crude oil and petroleum products.Keywords: alternative fuels, CNG (Compressed Natural Gas), CNG stations, LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles), pollutant emissions
Procedia PDF Downloads 229233 Ultra-Sensitive Point-Of-Care Detection of PSA Using an Enzyme- and Equipment-Free Microfluidic Platform
Authors: Ying Li, Rui Hu, Shizhen Chen, Xin Zhou, Yunhuang Yang
Abstract:
Prostate cancer is one of the leading causes of cancer-related death among men. Prostate-specific antigen (PSA), a specific product of prostatic epithelial cells, is an important indicator of prostate cancer. Though PSA is not a specific serum biomarker for the screening of prostate cancer, it is recognized as an indicator for prostate cancer recurrence and response to therapy for patient’s post-prostatectomy. Since radical prostatectomy eliminates the source of PSA production, serum PSA levels fall below 50 pg/mL, and may be below the detection limit of clinical immunoassays (current clinical immunoassay lower limit of detection is around 10 pg/mL). Many clinical studies have shown that intervention at low PSA levels was able to improve patient outcomes significantly. Therefore, ultra-sensitive and precise assays that can accurately quantify extremely low levels of PSA (below 1-10 pg/mL) will facilitate the assessment of patients for the possibility of early adjuvant or salvage treatment. Currently, the commercially available ultra-sensitive ELISA kit (not used clinically) can only reach a detection limit of 3-10 pg/mL. Other platforms developed by different research groups could achieve a detection limit as low as 0.33 pg/mL, but they relied on sophisticated instruments to get the final readout. Herein we report a microfluidic platform for point-of-care (POC) detection of PSA with a detection limit of 0.5 pg/mL and without the assistance of any equipment. This platform is based on a previously reported volumetric-bar-chart chip (V-Chip), which applies platinum nanoparticles (PtNPs) as the ELISA probe to convert the biomarker concentration to the volume of oxygen gas that further pushes the red ink to form a visualized bar-chart. The length of each bar is used to quantify the biomarker concentration of each sample. We devised a long reading channel V-Chip (LV-Chip) in this work to achieve a wide detection window. In addition, LV-Chip employed a unique enzyme-free ELISA probe that enriched PtNPs significantly and owned 500-fold enhanced catalytic ability over that of previous V-Chip, resulting in a significantly improved detection limit. LV-Chip is able to complete a PSA assay for five samples in 20 min. The device was applied to detect PSA in 50 patient serum samples, and the on-chip results demonstrated good correlation with conventional immunoassay. In addition, the PSA levels in finger-prick whole blood samples from healthy volunteers were successfully measured on the device. This completely stand-alone LV-Chip platform enables convenient POC testing for patient follow-up in the physician’s office and is also useful in resource-constrained settings.Keywords: point-of-care detection, microfluidics, PSA, ultra-sensitive
Procedia PDF Downloads 111232 Advantages of Computer Navigation in Knee Arthroplasty
Authors: Mohammad Ali Al Qatawneh, Bespalchuk Pavel Ivanovich
Abstract:
Computer navigation has been introduced in total knee arthroplasty to improve the accuracy of the procedure. Computer navigation improves the accuracy of bone resection in the coronal and sagittal planes. It was also noted that it normalizes the rotational alignment of the femoral component and fully assesses and balances the deformation of soft tissues in the coronal plane. The work is devoted to the advantages of using computer navigation technology in total knee arthroplasty in 62 patients (11 men and 51 women) suffering from gonarthrosis, aged 51 to 83 years, operated using a computer navigation system, followed up to 3 years from the moment of surgery. During the examination, the deformity variant was determined, and radiometric parameters of the knee joints were measured using the Knee Society Score (KSS), Functional Knee Society Score (FKSS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scales. Also, functional stress tests were performed to assess the stability of the knee joint in the frontal plane and functional indicators of the range of motion. After surgery, improvement was observed in all scales; firstly, the WOMAC values decreased by 5.90 times, and the median value to 11 points (p < 0.001), secondly KSS increased by 3.91 times and reached 86 points (p < 0.001), and the third one is that FKSS data increased by 2.08 times and reached 94 points (p < 0.001). After TKA, the axis deviation of the lower limbs of more than 3 degrees was observed in 4 patients at 6.5% and frontal instability of the knee joint just in 2 cases at 3.2%., The lower incidence of sagittal instability of the knee joint after the operation was 9.6%. The range of motion increased by 1.25 times; the volume of movement averaged 125 degrees (p < 0.001). Computer navigation increases the accuracy of the spatial orientation of the endoprosthesis components in all planes, reduces the variability of the axis of the lower limbs within ± 3 °, allows you to achieve the best results of surgical interventions, and can be used to solve most basic tasks, allowing you to achieve excellent and good outcomes of operations in 100% of cases according to the WOMAC scale. With diaphyseal deformities of the femur and/or tibia, as well as with obstruction of their medullary canal, the use of computer navigation is the method of choice. The use of computer navigation prevents the occurrence of flexion contracture and hyperextension of the knee joint during the distal sawing of the femur. Using the navigation system achieves high-precision implantation for the endoprosthesis; in addition, it achieves an adequate balance of the ligaments, which contributes to the stability of the joint, reduces pain, and allows for the achievement of a good functional result of the treatment.Keywords: knee joint, arthroplasty, computer navigation, advantages
Procedia PDF Downloads 91