Search results for: tomato yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4698

Search results for: tomato yield prediction

3648 Prediction Study of the Structural, Elastic and Electronic Properties of the Parent and Martensitic Phases of Nonferrous Ti, Zr, and Hf Pure Metals

Authors: Tayeb Chihi, Messaoud Fatmi

Abstract:

We present calculations of the structural, elastic and electronic properties of nonferrous Ti, Zr, and Hf pure metals in both parent and martensite phases in bcc and hcp structures respectively. They are based on the generalized gradient approximation (GGA) within the density functional theory (DFT). The shear modulus, Young's modulus and Poisson's ratio for Ti, Zr, and Hf metals have were calculated and compared with the corresponding experimental values. Using elastic constants obtained from calculations GGA, the bulk modulus along the crystallographic axes of single crystals was calculated. This is in good agreement with experiment for Ti and Zr, whereas the hcp structure for Hf is a prediction. At zero temperature and zero pressure, the bcc crystal structure is found to be mechanically unstable for Ti, Zr, and Hf. In our calculations the hcp structures is correctly found to be stable at the equilibrium volume. In the electronic density of states (DOS), the smaller n(EF) is, the more stable the compound is. Therefore, in agreement with the results obtained from the total energy minimum.

Keywords: Ti, Zr, Hf, pure metals, transformation, energy

Procedia PDF Downloads 353
3647 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions

Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju

Abstract:

Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.

Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism

Procedia PDF Downloads 165
3646 Assessing the Seed Yield of Some Varieties of Sesame (Sesami indicum) Under Disease Condition (Cercospora Leaf Spot) Caused by (Cercospora sesami, Zimm) and Identifying Disease Resistant Varieties

Authors: P. S. Akami, H. Nahunnaro, A. Zubainatu

Abstract:

Cercospora leaf spot (Cercospora sesami. Zimm) has been identified as one of the most prevalent diseases, posing serious constraints to sesame production in producing areas. Two sets of experiments were carried out. The first and second experiments were conducted in the Modibbo Adama University of Technology Yola at the Crop Production and Horticulture and Plant Science Departments, respectively. The field experiment was carried out using a Randomized Complete Block Design and was replicated three times on a plot size of 4m x 5m with four sesame varieties and three Mancob-M fungicide levels (0g, 2g and 4g) to give a total of Twelve treatments. The laboratory experiment involved the isolation of the pathogens from diseased leaves with symptoms of Cercospora leaf spot, which was identified as Cercospora sesami. Data collected were subjected to analysis of variance for a randomized complete block design using SAS (1999) statistical package. The treatment means that are significantly different were separated using the Least Significant Difference at P=0.05. The result revealed that 4g Mancob M recorded the lowest mean value for disease incidence and severity at 8WAS, which was 90.30% and 35.60%, respectively, while the control (0g) recorded the highest mean value for disease incidence and severity at 90.30% and 59.80% respectively. Ex-Sudan recorded the lowest value of 720 kg/ha, while NCRIBEN 03 recorded the highest yield of 834 kg/ha-¹. For the concentrations, 2g recorded a higher yield of 843 kg/ha-¹ followed by 0g, which recorded 765 kg/ha-¹. Conclusively, Cercospora leaf spot of sesame was found to be prevalent. E8 has a higher resistance to the disease, while NCRIBEN 03 tends to be more susceptible. It is therefore recommended that further trials should be carried out using different varieties in different locations.

Keywords: disease, evaluation, prevalence, treatment, resistance

Procedia PDF Downloads 93
3645 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 167
3644 Eco-Ways to Reduce Environmental Impacts of Flame Retardant Textiles at the End of Life

Authors: Sohail Yasin, Massimo Curti, Nemeshwaree Behary, Giorgio Rovero

Abstract:

It is well-known that the presence of discarded textile products in municipal landfills poses environmental problems due to leaching of chemical products from the textile to the environment. Incineration of such textiles is considered to be an efficient way to produce energy and reduce environmental impacts of textile materials at their end-of life stage. However, the presence of flame retardant products on textiles would decrease the energy yield and emit toxic gases during incineration stage. While some non-durable flame retardants can be removed by wet treatments (e.g. washing), these substances pollute water and pose concerns towards environmental health. Our study shows that infrared radiation can be used efficiently to degrade flame retardant products on the textiles. This method is finalized to minimize the decrease in energy yield during the incineration or gasification processes of flame retardant cotton fabrics.

Keywords: degradation, flame retardant, infrared radiation, cotton, incineration

Procedia PDF Downloads 366
3643 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 338
3642 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering

Authors: Sara Hasani

Abstract:

This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.

Keywords: disaster management, natural disaster, pattern recognition, prediction

Procedia PDF Downloads 153
3641 Density Interaction in Determinate and Indeterminate Faba Bean Types

Authors: M. Abd El Hamid Ezzat

Abstract:

Two field trials were conducted to study the effect of plant densities i.e., 190, 222, 266, 330 and 440 10³ plants ha⁻¹ on morphological characters, physiological and yield attributes of two faba bean types viz. determinate (FLIP-87 -117 strain) and indeterminate (c.v. Giza-461). The results showed that the indeterminate plants significantly surpassed the determinate plants in plant height at 75 and 90 days from sowing, number of leaves at all growth stages and dry matter accumulation at 45 and 90 days from sowing. Determinate plants possessed greater number of side branches than that of the indeterminate plants, but it was only significant at 90 days from sowing. Greater number of flowers were produced by the indeterminate plants than that of the determinate plants at 75 and 90 days from sowing, and although shedding was obvious in both types, it was greater in the determinate plants as compared with the indeterminate one at 90 days from sowing. Increasing plant density resulted in reductions in number of leaves, branches flowers and dry matter accumulation per plant of both faba bean types. However, plant height criteria took a reversible magnitude. Moreover, under all rates of plant densities the indeterminate type plants surpassed the determinate plants in all growth characters studied except for number of branches per plant at 90 days from sowing. The indeterminate plant leaves significantly contained greater concentrations of photosynthetic pigments i.e., chl. a, b and carotenoids than those found in the determinate plant leaves. Also, the data showed significant reduction in photosynthetic pigments concentration as planting density increases. Light extinction coefficient (K) values reached their maximum level at 60 days from sowing, then it declined sharply at 75 days from sowing. The data showed that the illumination inside the determinate faba bean canopies was better than the indeterminate plants. (K) values tended to increase as planting density increases, meanwhile, significant interactions were reported between faba bean type as planting density on (K) at all growth stages. Both of determinate and indeterminate faba bean plant leaves reached their maximum expansion at 75 days from sowing reflecting the highest LAI values, then their declined in the subsequent growth stage. The indeterminate faba bean plants significantly surpassed the determinate plants in LAI up to 75 days from sowing. Growth analysis showed that NAR, RGR and CGR reached their maximum rates at (60-75 days growth stage). Faba bean types did not differ significantly in NAR at the early growth stage. The indeterminate plants were able to grow faster with significant CGR values than the determinate plants. The indeterminate faba bean plants surpassed the determinate ones in number of seeds/pod and per plant, 100-seed weight, seed yield per plant and per hectare at all rates of plant density. Seed yield increased with increasing plant densities of both types. The highest seed yield was attained for both types 440 103 plants ha⁻¹.

Keywords: determinate, indeterminate faba bean, Physiological attributes, yield attributes

Procedia PDF Downloads 236
3640 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 462
3639 Accounting for Rice Productivity Heterogeneity in Ghana: The Two-Step Stochastic Metafrontier Approach

Authors: Franklin Nantui Mabe, Samuel A. Donkoh, Seidu Al-Hassan

Abstract:

Rice yields among agro-ecological zones are heterogeneous. Farmers, researchers and policy makers are making frantic efforts to bridge rice yield gaps between agro-ecological zones through the promotion of improved agricultural technologies (IATs). Farmers are also modifying these IATs and blending them with indigenous farming practices (IFPs) to form farmer innovation systems (FISs). Also, different metafrontier models have been used in estimating productivity performances and their drivers. This study used the two-step stochastic metafrontier model to estimate the productivity performances of rice farmers and their determining factors in GSZ, FSTZ and CSZ. The study used both primary and secondary data. Farmers in CSZ are the most technically efficient. Technical inefficiencies of farmers are negatively influenced by age, sex, household size, education years, extension visits, contract farming, access to improved seeds, access to irrigation, high rainfall amount, less lodging of rice, and well-coordinated and synergized adoption of technologies. Albeit farmers in CSZ are doing well in terms of rice yield, they still have the highest potential of increasing rice yield since they had the lowest TGR. It is recommended that government through the ministry of food and agriculture, development partners and individual private companies promote the adoption of IATs as well as educate farmers on how to coordinate and synergize the adoption of the whole package. Contract farming concept and agricultural extension intensification should be vigorously pursued to the latter.

Keywords: efficiency, farmer innovation systems, improved agricultural technologies, two-step stochastic metafrontier approach

Procedia PDF Downloads 267
3638 Soybean Based Farming System Assessment in Pasuruan East Java Indonesia

Authors: Mohammad Saeri, Noor Rizkiyah, Kambang Vetrani Asie, Titin Apung Atikah

Abstract:

The study aims to assess efficient specific-location soybean farming technology assembly by assisting the farmers in applying the suggested technology. Superimposed trial was conducted to know NPK fertilizer effect toward soybean growth and yield and soybean improved variety test for the dissemination of improved variety. The assessment was conducted at the farmers group of Sumber Rejeki, Kepulungan Village, Gempol Sub-district, Pasuruan Regency as the soybean central at Pasuruan area. The number of farmers involved in the study was 38 people with 25 ha soybean area. This study was held from July to October 2012.  The recommended technology package agreed at the socialization time and used in this research were: using Argomulyo variety seeds of 40 kg/ha, planting by drilling, planting by distance of 40x10 cm, deciding the seeds amount of 2-3 seeds per hole, and giving fertilization based on recommendation of East Java AIAT of 50 kg Urea, 100 kg SP-36 and 50 kg KCl.  Farmers around the research location were used as control group. Assessment on soybean farming system was considered effective because it could increase the production up to 38%. The farming analysis showed that the result collaborator farmers gained were positively higher than non-collaborator farmers with RC ratio of 2.03 and 1.54, respectively. Argomulyo variety has the prospect to be developed due to the high yield of about 2 tons/ha and the larger seeds. The NPK fertilization test at the soybean plants showed that the fertilization had minor effect on the yield.

Keywords: farming system, soybean, variety, location specific

Procedia PDF Downloads 178
3637 The Role of Psychological Factors in Prediction Academic Performance of Students

Authors: Hadi Molaei, Yasavoli Davoud, Keshavarz, Mozhde Poordana

Abstract:

The present study aimed was to prediction the academic performance based on academic motivation, self-efficacy and Resiliency in the students. The present study was descriptive and correlational. Population of the study consisted of all students in Arak schools in year 1393-94. For this purpose, the number of 304 schools students in Arak was selected using multi-stage cluster sampling. They all questionnaires, self-efficacy, Resiliency and academic motivation Questionnaire completed. Data were analyzed using Pearson correlation and multiple regressions. Pearson correlation showed academic motivation, self-efficacy, and Resiliency with academic performance had a positive and significant relationship. In addition, multiple regression analysis showed that the academic motivation, self-efficacy and Resiliency were predicted academic performance. Based on the findings could be conclude that in order to increase the academic performance and further progress of students must provide the ground to strengthen academic motivation, self-efficacy and Resiliency act on them.

Keywords: academic motivation, self-efficacy, resiliency, academic performance

Procedia PDF Downloads 497
3636 Aging and Mechanical Behavior of Be-treated 7075 Aluminum Alloys

Authors: Mahmoud M. Tash, S. Alkahtani

Abstract:

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Aging treatments were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Double aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation as a function of different pre-aging and aging parameters are analysed to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be-treated 7075 alloys.

Keywords: duplex aging treatment, mechanical properties, Al-Mg-Zn (7075) alloys, manufacturing

Procedia PDF Downloads 240
3635 Solving Crimes through DNA Methylation Analysis

Authors: Ajay Kumar Rana

Abstract:

Predicting human behaviour, discerning monozygotic twins or left over remnant tissues/fluids of a single human source remains a big challenge in forensic science. Recent advances in the field of DNA methylations which are broadly chemical hallmarks in response to environmental factors can certainly help to identify and discriminate various single-source DNA samples collected from the crime scenes. In this review, cytosine methylation of DNA has been methodologically discussed with its broad applications in many challenging forensic issues like body fluid identification, race/ethnicity identification, monozygotic twins dilemma, addiction or behavioural prediction, age prediction, or even authenticity of the human DNA. With the advent of next-generation sequencing techniques, blooming of DNA methylation datasets and together with standard molecular protocols, the prospect of investigating and solving the above issues and extracting the exact nature of the truth for reconstructing the crime scene events would be undoubtedly helpful in defending and solving the critical crime cases.

Keywords: DNA methylation, differentially methylated regions, human identification, forensics

Procedia PDF Downloads 321
3634 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 105
3633 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
3632 Response of Canola Traits to Integrated Fertilization Systems

Authors: Khosro Mohammadi

Abstract:

In order to study the effect of different resources of farmyard manure, compost and biofertilizers on grain yield and quality of canola (Talaieh cultivar), an experiment was conducted at Kurdistan region. Experimental units were arranged in split-split plots design based on randomized complete blocks with three replications. Main plots consisted of two locations with difference in soil texture (L1): Agricultural Research Center of Sanandaj and (L2): Islamic Azad University of Sanandaj, as location levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): farmyard manure; (N2): compost; (N3): chemical fertilizers; (N4): farm yard manure + compost and (N5): farm yard manure + compost + chemical fertilizers were considered in split plots. Four levels of biofertilizers were (B1): Bacillus lentus and Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus and Pseudomonas putida & Trichoderma harzianum; and (B4): control. Results showed that location, different resources of fertilizer and interactions of them have a significant effect on grain yield. The highest grain yield (4660 kg/ha) was obtained from treatment, that farmyard manure, compost and biofertilizers were co application in clay loam soil (Gerizeh station). Different methods of fertilization have a significant effect on leaf chlorophyll. Highest amount of chlorophyll (38 Spad) was obtained from co application of farmyard manure, chemical fertilizers and compost (N5 treatment). Location, basal fertilizers and biofertilizers have a significant effect on N, S and N/S of canola seed. Oil content was decreased in Gerizeh station, but oil yield had a significant increasing than Azad University station. Co application of compost and farmyard manure produced highest percent of oleic acid (61.5 %) and linoleic acid (22.9 %). Co application of compost and farmyard manure has a significant increase in oleic acid and linoleic acid. Finally, L1N5B3 treatment, that compost, farmyard manure and biofertilizers were co application in Gerizeh station in compare to other treatments, selected as a best treatment of experiment.

Keywords: soil texture, organic fertilizer, chemical fertilizer, oil, Canola

Procedia PDF Downloads 403
3631 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
3630 Yield Loss Estimation Using Multiple Drought Severity Indices

Authors: Sara Tokhi Arab, Rozo Noguchi, Tofeal Ahamed

Abstract:

Drought is a natural disaster that occurs in a region due to a lack of precipitation and high temperatures over a continuous period or in a single season as a consequence of climate change. Precipitation deficits and prolonged high temperatures mostly affect the agricultural sector, water resources, socioeconomics, and the environment. Consequently, it causes agricultural product loss, food shortage, famines, migration, and natural resources degradation in a region. Agriculture is the first sector affected by drought. Therefore, it is important to develop an agricultural drought risk and loss assessment to mitigate the drought impact in the agriculture sector. In this context, the main purpose of this study was to assess yield loss using composite drought indices in the drought-affected vineyards. In this study, the CDI was developed for the years 2016 to 2020 by comprising five indices: the vegetation condition index (VCI), temperature condition index (TCI), deviation of NDVI from the long-term mean (NDVI DEV), normalized difference moisture index (NDMI) and precipitation condition index (PCI). Moreover, the quantitative principal component analysis (PCA) approach was used to assign a weight for each input parameter, and then the weights of all the indices were combined into one composite drought index. Finally, Bayesian regularized artificial neural networks (BRANNs) were used to evaluate the yield variation in each affected vineyard. The composite drought index result indicated the moderate to severe droughts were observed across the Kabul Province during 2016 and 2018. Moreover, the results showed that there was no vineyard in extreme drought conditions. Therefore, we only considered the severe and moderated condition. According to the BRANNs results R=0.87 and R=0.94 in severe drought conditions for the years of 2016 and 2018 and the R= 0.85 and R=0.91 in moderate drought conditions for the years of 2016 and 2018, respectively. In the Kabul Province within the two years drought periods, there was a significate deficit in the vineyards. According to the findings, 2018 had the highest rate of loss almost -7 ton/ha. However, in 2016 the loss rates were about – 1.2 ton/ha. This research will support stakeholders to identify drought affect vineyards and support farmers during severe drought.

Keywords: grapes, composite drought index, yield loss, satellite remote sensing

Procedia PDF Downloads 157
3629 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks

Authors: Emad A. Mohammed

Abstract:

The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.

Keywords: permeability, hydraulic flow units, artificial intelligence, correlation

Procedia PDF Downloads 136
3628 Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment

Authors: Serge Mudinga Lemika, Samuel Olukayode Akinwamide, Aribo Sunday, Babatunde Abiodun Obadele, Peter Apata Olubambi

Abstract:

Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting.

Keywords: duplex stainless steel, hardness, nanoceramics, spark plasma sintering

Procedia PDF Downloads 306
3627 Levansucrase from Zymomonas Mobilis KIBGE-IB14: Production Optimization and Characterization for High Enzyme Yield

Authors: Sidra Shaheen, Nadir Naveed Siddiqui, Shah Ali Ul Qader

Abstract:

In recent years, significant progress has been made in discovering and developing new bacterial polysaccharides producing organisms possessing extremely functional properties. Levan is a natural biopolymer of fructose which is produced by transfructosylation reaction in the presence of levansucrase. It is one of the industrially promising enzymes that offer a variety of industrial applications in the field of cosmetics, foods and pharmaceuticals. Although levan has significant applications but the yield of levan produced is not equal to other biopolymers due to the inefficiency of producer microorganism. Among wide range of levansucrase producing microorganisms, Zymomonas mobilis is considered as a potential candidate for large scale production of this natural polysaccharide. The present investigation is concerned with the isolation of levansucrase producing natural isolate having maximum enzyme production. Furthermore, production parameters were optimized to get higher enzyme yield. Levansucrase was partially purified and characterized to study its applicability on industrial scale. The results of this study revealed that the bacterial strain Z. mobilis KIBGE-IB14 was the best producer of levansucrase. Bacterial growth and enzyme production was greatly influenced by physical and chemical parameters. Maximum levansucrase production was achieved after 24 hours of fermentation at 30°C using modified medium of pH-6.5. Contrary to other levansucrases, the one presented in the current study is able to produce high amount of products in relatively short period of time with optimum temperature at 35°C. Due to these advantages, this enzyme can be used on large scale for commercial production of levan and other important metabolites.

Keywords: levansucrase, metabolites, polysaccharides, transfructosylation

Procedia PDF Downloads 497
3626 Consumer Experience of 3D Body Scanning Technology and Acceptance of Related E-Commerce Market Applications in Saudi Arabia

Authors: Moudi Almousa

Abstract:

This research paper explores Saudi Arabian female consumers’ experiences using 3D body scanning technology and their level of acceptance of possible market applications of this technology to adopt for apparel online shopping. Data was collected for 82 women after being scanned then viewed a short video explaining three possible scenarios of 3D body scanning applications, which include size prediction, customization, and virtual try-on, before completing the survey questionnaire. Although respondents have strong positive responses towards the scanning experience, the majority were concerned about their privacy during the scanning process. The results indicated that size prediction and virtual try on had greater market application potential and a higher chance of crossing the gap based on consumer interest. The results of the study also indicated a strong positive correlation between respondents’ concern with inability to try on apparel products in online environments and their willingness to use the 3D possible market applications.

Keywords: 3D body scanning, market applications, online, apparel fit

Procedia PDF Downloads 145
3625 Flavonoid Content and Antioxidant Potential of White and Brown Sesame Seed Oils

Authors: Fatima Bello, Ibrahim Sani

Abstract:

Medicinal plants are the most important sources of life saving drugs for the majority of world’s population. People of all continents have used hundreds to thousands of indigenous plants in curing and management of many diseases. Sesame (Sesamum indicum L.) is one of the most widely cultivated species for its nutritious and medicinal seeds and oil. This research was carried out to determine the flavonoid content and antioxidant potential of two varieties of sesame seeds oil. Oil extraction was done using Soxhlet apparatus. The percentage oil yield for white and brown seeds were 47.85% and 20.72%, respectively. Flavonoid was present in both seeds with concentration of 480 mg/g and 360 mg/g in white and brown sesame seeds, respectively. The antioxidant potential was determined at different oil volume; 1.00, 0.75, 0.50 and 0.25ml. The results for the white and brown sesame seed oils were 96.8 and 70.7, 91.0 and 65.2, 83.1 and 55.4, 77.9 and 50.2, respectively. The white seed oil has higher oil yield than the brown seed oil. Likewise, the white seed oil has more flavonoid content than the brown seed oil and also better reducing power than the brown seed oil.

Keywords: antioxidant potential, brown sesame seeds, flavonoid content, sesame seed oil, Sesamum indicum L., white sesame seeds

Procedia PDF Downloads 458
3624 Clinical Prediction Score for Ruptured Appendicitis In ED

Authors: Thidathit Prachanukool, Chaiyaporn Yuksen, Welawat Tienpratarn, Sorravit Savatmongkorngul, Panvilai Tangkulpanich, Chetsadakon Jenpanitpong, Yuranan Phootothum, Malivan Phontabtim, Promphet Nuanprom

Abstract:

Background: Ruptured appendicitis has a high morbidity and mortality and requires immediate surgery. The Alvarado Score is used as a tool to predict the risk of acute appendicitis, but there is no such score for predicting rupture. This study aimed to developed the prediction score to determine the likelihood of ruptured appendicitis in an Asian population. Methods: This study was diagnostic, retrospectively cross-sectional and exploratory model at the Emergency Medicine Department in Ramathibodi Hospital between March 2016 and March 2018. The inclusion criteria were age >15 years and an available pathology report after appendectomy. Clinical factors included gender, age>60 years, right lower quadrant pain, migratory pain, nausea and/or vomiting, diarrhea, anorexia, fever>37.3°C, rebound tenderness, guarding, white blood cell count, polymorphonuclear white blood cells (PMN)>75%, and the pain duration before presentation. The predictive model and prediction score for ruptured appendicitis was developed by multivariable logistic regression analysis. Result: During the study period, 480 patients met the inclusion criteria; of these, 77 (16%) had ruptured appendicitis. Five independent factors were predictive of rupture, age>60 years, fever>37.3°C, guarding, PMN>75%, and duration of pain>24 hours to presentation. A score > 6 increased the likelihood ratio of ruptured appendicitis by 3.88 times. Conclusion: Using the Ramathibodi Welawat Ruptured Appendicitis Score. (RAMA WeRA Score) developed in this study, a score of > 6 was associated with ruptured appendicitis.

Keywords: predictive model, risk score, ruptured appendicitis, emergency room

Procedia PDF Downloads 165
3623 Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition

Authors: Jing Li, Li Jin, Fulin Wang, Jie Dong, Wenjiang Ding

Abstract:

Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic slip in the former one, while basal slip, prismatic slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy.

Keywords: Mg-Li-Gd dual-phase alloy, phase boundary, HDI stress, dislocation slip activity, mechanical properties

Procedia PDF Downloads 204
3622 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 161
3621 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 77
3620 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 70
3619 Determination of Genotypic Relationship among 12 Sugarcane (Saccharum officinarum) Varieties

Authors: Faith Eweluegim Enahoro-Ofagbe, Alika Eke Joseph

Abstract:

Information on genetic variation within a population is crucial for utilizing heterozygosity for breeding programs that aim to improve crop species. The study was conducted to ascertain the genotypic similarities among twelve sugarcane (Saccharum officinarum) varieties to group them for purposes of hybridizations for cane yield improvement. The experiment was conducted at the University of Benin, Faculty of Agriculture Teaching and Research Farm, Benin City. Twelve sugarcane varieties obtained from National Cereals Research Institute, Badeggi, Niger State, Nigeria, were planted in three replications in a randomized complete block design. Each variety was planted on a five-row plot of 5.0 m in length. Data were collected on 12 agronomic traits, including; the number of millable cane, cane girth, internode length, number of male and female flowers (fuss), days to flag leaf, days to flowering, brix%, cane yield, and others. There were significant differences, according to the findings among the twelve genotypes for the number of days to flag leaf, number of male and female flowers (fuss), and cane yield. The relationship between the twelve sugarcane varieties was expressed using hierarchical cluster analysis. The twelve genotypes were grouped into three major clusters based on hierarchical classification. Cluster I had five genotypes, cluster II had four, and cluster III had three. Cluster III was dominated by varieties characterized by higher cane yield, number of leaves, internode length, brix%, number of millable stalks, stalk/stool, cane girth, and cane length. Cluster II contained genotypes with early maturity characteristics, such as early flowering, early flag leaf development, growth rate, and the number of female and male flowers (fuss). The maximum inter-cluster distance between clusters III and I indicated higher genetic diversity between the two groups. Hybridization between the two groups could result in transgressive recombinants for agronomically important traits.

Keywords: sugarcane, Saccharum officinarum, genotype, cluster analysis, principal components analysis

Procedia PDF Downloads 80