Search results for: switch-mode power supply
7213 Advanced CoMP Scheme for LTE-based V2X System
Authors: Su-Hyun Jung, Young-Su Ryu, Yong-Jun Kim, Hyoung-Kyu Song
Abstract:
In this paper, a highly efficient coordinated multiple-point (CoMP) scheme for vehicular communication is proposed. The proposed scheme controls the transmit power and applies proper transmission scheme for the various situations. The proposed CoMP scheme provides comparable performance to the conventional dynamic cell selection (DCS) scheme. Moreover, this scheme provides improved power efficiency compared with the conventional joint transmission (JT) scheme. Simulation results show that the proposed scheme can achieve more enhanced performance with the high power efficiency and improve the cell capacity.Keywords: CoMP, LTE-A, V2I, V2V, V2X.
Procedia PDF Downloads 5857212 Assessing Available Power from a Renewable Energy Source in the Southern Hemisphere using Anisotropic Model
Authors: Asowata Osamede, Trudy Sutherland
Abstract:
The purpose of this paper is to assess the available power from a Renewable Energy Source (off-grid photovoltaic (PV) panel) in the Southern Hemisphere using anisotropic model. Direct solar radiation is the driving force in photovoltaics. In a basic PV panels in the Southern Hemisphere, Power conversion is eminent, and this is achieved by the PV cells converting solar energy into electrical energy. In this research, the results was determined for a 6 month period from September 2022 through February 2023. Preliminary results, which include Normal Probability plot, data analysis - R2 value, effective conversion-time per week and work-time per day, indicate a favorably comparison between the empirical results and the simulation results.Keywords: power-conversion, mathematical model, PV panels, DC-DC converters, direct solar radiation
Procedia PDF Downloads 957211 Cable Diameter Effect on the Contact Temperature of Power Automotive Connector
Authors: Amine Beloufa, Mohamed Amirat
Abstract:
In the electric vehicle, high power leads to high current; automotive power connector should resist to this high current in order to avoid a serious damage caused by the increase of contact temperature. The purpose of this paper is to analyze experimentally and numerically the effect of the cable diameter variation on the decrease of contact temperature. For this reason, a finite element model was developed to calculate the numerical contact temperature for several cable diameters and several electrical high currents. Also, experimental tests were established in order to validate this numerical model. Results show that the influence of cable diameter on the contact temperature is never neglected.Keywords: contact temperature, experimental test, finite element, power automotive connector
Procedia PDF Downloads 2677210 Green Supply Chain Management: A Revolutionary and Robust Innovation in the Field of Efficient Environmental Development and Regulation
Authors: Jinesh Kumar Jain, Faishal Pathan
Abstract:
The concept of sustainable development and effective environmental regulation has led to the emergence of a new field of study and practise that is the Green Supply Chain Management. GSCM has become a subject of great importance for both the developed and developing countries to achieve the desired and much-awaited goals of the firm within the environmental and sustainable framework. Its merits are comprised of good financial pay off and competitiveness to the firms in a long lasting and sustainable manner. The purpose of the paper is to briefly review the recent literature of the GSCM and also determines the new direction area of this emerging field. A detailed study has helped to enlighten the minute details and develop the research direction of the study. The GSCM has gained popularity with both academic and practitioners. The items for the study were developed based on the extent literature. Here we found that the state of adoption of GSCM practices by Indian Firms was still in its infancy, the awareness of environmental sustainability was quite low among consumers and the regulatory frameworks were also lacking in terms promoting environmental sustainability. The present paper is an attempt to emphasize much attention on the above-mentioned issues and present a conclusive summary to make its use widespread and for reaching.Keywords: environmental management, environmental performance, financial performance, green supply chain management
Procedia PDF Downloads 2167209 Sustainable Cities: Harnessing the Power of Urban Renewable Energy
Authors: Mehrzad Soltani, Pegah Rezaei
Abstract:
In the endeavor to construct cities that are not only thriving but also environmentally responsible, effective urban planning and architectural design assume paramount significance. The focal point of this pursuit is the harnessing of urban renewable energy. By embracing sustainable practices such as the integration of solar panels into the urban landscape and the establishment of smart grids, cities are poised to confront head-on the dual challenge of surging energy demands and pressing environmental concerns. Urban renewable energy solutions offer a multifaceted approach to these issues. Firstly, they usher in a clean and sustainable source of energy, reducing the cities' ecological footprint while ensuring a continuous power supply. This transition to eco-friendly energy is also intrinsically linked to enhanced spatial utilization, thereby streamlining the efficiency of urban areas. Moreover, it spurs the adoption of sustainable transportation alternatives, diminishing the reliance on fossil fuels and mitigating air pollution. However, the significance of integrating renewable energy solutions transcends the realm of urban sustainability. It embodies a holistic approach towards creating cities that harmoniously coexist with the natural environment while catering to the needs and aspirations of their inhabitants. In essence, prioritizing sustainability in urban planning and architectural design has evolved from a choice to a necessity, one that not only safeguards the cities' well-being but also fosters a better quality of life for their residents. Thus, it is imperative that we acknowledge the transformative potential of these innovations as we pave the way towards the cities of the future.Keywords: sustainability, smart grids, solar panel, urban planning, environmental concerns
Procedia PDF Downloads 987208 Liquid Food Sterilization Using Pulsed Electric Field
Authors: Tanmaya Pradhan, K. Midhun, M. Joy Thomas
Abstract:
Increasing the shelf life and improving the quality are important objectives for the success of packaged liquid food industry. One of the methods by which this can be achieved is by deactivating the micro-organisms present in the liquid food through pasteurization. Pasteurization is done by heating, but some serious disadvantages such as the reduction in food quality, flavour, taste, colour, etc. were observed because of heat treatment, which leads to the development of newer methods instead of pasteurization such as treatment using UV radiation, high pressure, nuclear irradiation, pulsed electric field, etc. In recent years the use of the pulsed electric field (PEF) for inactivation of the microbial content in the food is gaining popularity. PEF uses a very high electric field for a short time for the inactivation of microorganisms, for which we require a high voltage pulsed power source. Pulsed power sources used for PEF treatments are usually in the range of 5kV to 50kV. Different pulse shapes are used, such as exponentially decaying and square wave pulses. Exponentially decaying pulses are generated by high power switches with only turn-on capacity and, therefore, discharge the total energy stored in the capacitor bank. These pulses have a sudden onset and, therefore, a high rate of rising but have a very slow decay, which yields extra heat, which is ineffective in microbial inactivation. Square pulses can be produced by an incomplete discharge of a capacitor with the help of a switch having both on/off control or by using a pulse forming network. In this work, a pulsed power-based system is designed with the help of high voltage capacitors and solid-state switches (IGBT) for the inactivation of pathogenic micro-organism in liquid food such as fruit juices. The high voltage generator is based on the Marx generator topology, which can produce variable amplitude, frequency, and pulse width according to the requirements. Liquid food is treated in a chamber where pulsed electric field is produced between stainless steel electrodes using the pulsed output voltage of the supply. Preliminary bacterial inactivation tests were performed by subjecting orange juice inoculated with Escherichia Coli bacteria. With the help of the developed pulsed power source and the chamber, the inoculated orange has been PEF treated. The voltage was varied to get a peak electric field up to 15kV/cm. For a total treatment time of 200µs, a 30% reduction in the bacterial count has been observed. The detailed results and analysis will be presented in the final paper.Keywords: Escherichia coli bacteria, high voltage generator, microbial inactivation, pulsed electric field, pulsed forming line, solid-state switch
Procedia PDF Downloads 1867207 Comprehensive Analysis of Power Allocation Algorithms for OFDM Based Communication Systems
Authors: Rakesh Dubey, Vaishali Bahl, Dalveer Kaur
Abstract:
The spiralling urge for high rate data transmission over wireless mediums needs intelligent use of electromagnetic resources considering restrictions like power ingestion, spectrum competence, robustness against multipath propagation and implementation intricacy. Orthogonal frequency division multiplexing (OFDM) is a capable technique for next generation wireless communication systems. For such high rate data transfers there is requirement of proper allocation of resources like power and capacity amongst the sub channels. This paper illustrates various available methods of allocating power and the capacity requirement with the constraint of Shannon limit.Keywords: Additive White Gaussian Noise, Multi-Carrier Modulation, Orthogonal Frequency Division Multiplexing (OFDM), Signal to Noise Ratio (SNR), Water Filling
Procedia PDF Downloads 5577206 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis
Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon
Abstract:
Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.Keywords: electromagnetism, finite element method, sensitivity analysis, submarine power cables
Procedia PDF Downloads 3597205 Compensation for Victims of Crime and Abuse of Power in Nigeria
Authors: Kolawole Oyekan Jamiu
Abstract:
In Nigerian criminal law, a victim of an offence plays little or no role in the prosecution of an offender. The state concentrates only on imposing punishment on the offender while the victims of crime and abuse of power by security agencies are abandoned without any compensation either from the State or the offender. It has been stated that the victim of crime is the forgotten man in our criminal justice system. He sets the criminal law in motion but then goes into oblivion. Our present criminal law does not recognise the right of the victim to take part in the prosecution of the case or his right to compensation. The victim is merely a witness in a state versus case. This paper examines the meaning of the phrase ‘the victims of crime and abuse of power’. It needs to be noted that there is no definition of these two categories of victims in any statute in Nigeria. The paper also considers the United Nations General Assembly Declaration of Basic Principle of Justice for Victims and abuse of power. This declaration was adopted by the United Nations General Assembly on the 25th of November 1985. The declaration contains copious provisions on compensation for the victims of crime and abuse of power. Unfortunately, the declaration is not, in itself a legally binding instrument and has been given little or no attention since the coming into effect in1985. This paper examines the role of the judiciary in ensuring that victims of crime and abuse of power in Nigeria are compensated. While some Judges found it difficult to award damages to victims of abuse of power others have given some landmark rulings and awarded substantial damages. The criminal justice ( victim’s remedies) Bill shall also be examined. The Bill comprises of 74 sections and it spelt out the procedures for compensating the victims of crime and abuse of power in Nigeria. Finally, the paper also examines the practicability of awarding damages to victims of crime whether the offender is convicted or not and in addition, the possibility of granting all equitable remedies available in civil cases to victims of crime and abuse of power so that the victims will be restored to the earlier position before the crime.Keywords: compensation, damages, restitution, victims
Procedia PDF Downloads 7327204 Improving the Dielectric Strength of Transformer Oil for High Health Index: An FEM Based Approach Using Nanofluids
Authors: Fatima Khurshid, Noor Ul Ain, Syed Abdul Rehman Kashif, Zainab Riaz, Abdullah Usman Khan, Muhammad Imran
Abstract:
As the world is moving towards extra-high voltage (EHV) and ultra-high voltage (UHV) power systems, the performance requirements of power transformers are becoming crucial to the system reliability and security. With the transformers being an essential component of a power system, low health index of transformers poses greater risks for safe and reliable operation. Therefore, to meet the rising demands of the power system and transformer performance, researchers are being prompted to provide solutions for enhanced thermal and electrical properties of transformers. This paper proposes an approach to improve the health index of a transformer by using nano-technology in conjunction with bio-degradable oils. Vegetable oils can serve as potential dielectric fluid alternatives to the conventional mineral oils, owing to their numerous inherent benefits; namely, higher fire and flashpoints, and being environment-friendly in nature. Moreover, the addition of nanoparticles in the dielectric fluid further serves to improve the dielectric strength of the insulation medium. In this research, using the finite element method (FEM) in COMSOL Multiphysics environment, and a 2D space dimension, three different oil samples have been modelled, and the electric field distribution is computed for each sample at various electric potentials, i.e., 90 kV, 100 kV, 150 kV, and 200 kV. Furthermore, each sample has been modified with the addition of nanoparticles of different radii (50 nm and 100 nm) and at different interparticle distance (5 mm and 10 mm), considering an instant of time. The nanoparticles used are non-conductive and have been modelled as alumina (Al₂O₃). The geometry has been modelled according to IEC standard 60897, with a standard electrode gap distance of 25 mm. For an input supply voltage of 100 kV, the maximum electric field stresses obtained for the samples of synthetic vegetable oil, olive oil, and mineral oil are 5.08 ×10⁶ V/m, 5.11×10⁶ V/m and 5.62×10⁶ V/m, respectively. It is observed that for the unmodified samples, vegetable oils have a greater dielectric strength as compared to the conventionally used mineral oils because of their higher flash points and higher values of relative permittivity. Also, for the modified samples, the addition of nanoparticles inhibits the streamer propagation inside the dielectric medium and hence, serves to improve the dielectric properties of the medium.Keywords: dielectric strength, finite element method, health index, nanotechnology, streamer propagation
Procedia PDF Downloads 1437203 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach
Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez
Abstract:
The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling
Procedia PDF Downloads 427202 Environmental Impact of Pallets in the Supply Chain: Including Logistics and Material Durability in a Life Cycle Assessment Approach
Authors: Joana Almeida, Kendall Reid, Jonas Bengtsson
Abstract:
Pallets are devices that are used for moving and storing freight and are nearly omnipresent in supply chains. The market is dominated by timber pallets, with plastic being a common alternative. Either option underpins the use of important resources (oil, land, timber), the emission of greenhouse gases and additional waste generation in most supply chains. This study uses a dynamic approach to the life cycle assessment (LCA) of pallets. It demonstrates that what ultimately defines the environmental burden of pallets in the supply chain is how often the length of its lifespan, which depends on the durability of the material and on how pallets are utilized. This study proposes a life cycle assessment (LCA) of pallets in supply chains supported by an algorithm that estimates pallet durability in function of material resilience and of logistics. The LCA runs from cradle-to-grave, including raw material provision, manufacture, transport and end of life. The scope is representative of timber and plastic pallets in the Australian and South-East Asia markets. The materials included in this analysis are: -tropical mixed hardwood, unsustainably harvested in SE Asia; -certified softwood, sustainably harvested; -conventional plastic, a mix of virgin and scrap plastic; -recycled plastic pallets, 100% mixed plastic scrap, which are being pioneered by Re > Pal. The logistical model purports that more complex supply chains and rougher handling subject pallets to higher stress loads. More stress shortens the lifespan of pallets in function of their composition. Timber pallets can be repaired, extending their lifespan, while plastic pallets cannot. At the factory gate, softwood pallets have the lowest carbon footprint. Re > pal follows closely due to its burden-free feedstock. Tropical mixed hardwood and plastic pallets have the highest footprints. Harvesting tropical mixed hardwood in SE Asia often leads to deforestation, leading to emissions from land use change. The higher footprint of plastic pallets is due to the production of virgin plastic. Our findings show that manufacture alone does not determine the sustainability of pallets. Even though certified softwood pallets have lower carbon footprint and their lifespan can be extended by repair, the need for re-supply of materials and disposal of waste timber offsets this advantage. It also leads to most waste being generated among all pallets. In a supply chain context, Re > Pal pallets have the lowest footprint due to lower replacement and disposal needs. In addition, Re > Pal are nearly ‘waste neutral’, because the waste that is generated throughout their life cycle is almost totally offset by the scrap uptake for production. The absolute results of this study can be confirmed by progressing the logistics model, improving data quality, expanding the range of materials and utilization practices. Still, this LCA demonstrates that considering logistics, raw materials and material durability is central for sustainable decision-making on pallet purchasing, management and disposal.Keywords: carbon footprint, life cycle assessment, recycled plastic, waste
Procedia PDF Downloads 2267201 Evaluation of PV Orientation Effect on Mismatch between Consumption Load and PV Power Profiles
Authors: Iyad M. Muslih, Yehya Abdellatif, Sara Qutishat
Abstract:
Renewable energy and in particular solar photovoltaic energy is emerging as a reasonable power generation source. The intermittent and unpredictable nature of solar energy can represent a serious challenge to the utility grids, specifically at relatively high penetration. To minimize the impact of PV power systems on the grid, self-consumption is encouraged. Self-consumption can be improved by matching the PV power generation with the electrical load consumption profile. This study will focus in studying different load profiles and comparing them to typical solar PV power generation at the selected sites with the purpose of analyzing the mismatch in consumption load profile for different users; residential, commercial, and industrial versus the solar photovoltaic output generation. The PV array orientation can be adjusted to reduce the mismatch effects. The orientation shift produces a corresponding shift in the energy production curve. This shift has a little effect on the mismatch for residential loads due to the fact the peak load occurs at night due to lighting loads. This minor gain does not justify the power production loss associated with the orientation shift. The orientation shift for both commercial and industrial cases lead to valuable decrease in the mismatch effects. Such a design is worth considering for reducing grid penetration. Furthermore, the proposed orientation shift yielded better results during the summer time due to the extended daylight hours.Keywords: grid impact, HOMER, power mismatch, solar PV energy
Procedia PDF Downloads 6067200 Synchronous Reference Frame and Instantaneous P-Q Theory Based Control of Unified Power Quality Conditioner for Power Quality Improvement of Distribution System
Authors: Ambachew Simreteab Gebremedhn
Abstract:
Context: The paper explores the use of synchronous reference frame theory (SRFT) and instantaneous reactive power theory (IRPT) based control of Unified Power Quality Conditioner (UPQC) for improving power quality in distribution systems. Research Aim: To investigate the performance of different control configurations of UPQC using SRFT and IRPT for mitigating power quality issues in distribution systems. Methodology: The study compares three control techniques (SRFT-IRPT, SRFT-SRFT, IRPT-IRPT) implemented in series and shunt active filters of UPQC. Data is collected under various control algorithms to analyze UPQC performance. Findings: Results indicate the effectiveness of SRFT and IRPT based control techniques in addressing power quality problems such as voltage sags, swells, unbalance, harmonics, and current harmonics in distribution systems. Theoretical Importance: The study provides insights into the application of SRFT and IRPT in improving power quality, specifically in mitigating unbalanced voltage sags, where conventional methods fall short. Data Collection: Data is collected under various control algorithms using simulation in MATLAB Simulink and real-time operation executed with experimental results obtained using RT-LAB. Analysis Procedures: Performance analysis of UPQC under different control algorithms is conducted to evaluate the effectiveness of SRFT and IRPT based control techniques in mitigating power quality issues. Questions Addressed: How do SRFT and IRPT based control techniques compare in improving power quality in distribution systems? What is the impact of using different control configurations on the performance of UPQC? Conclusion: The study demonstrates the efficacy of SRFT and IRPT based control of UPQC in mitigating power quality issues in distribution systems, highlighting their potential for enhancing voltage and current quality.Keywords: power quality, UPQC, shunt active filter, series active filter, non-linear load, RT-LAB, MATLAB
Procedia PDF Downloads 207199 Food Traceability System: Current State and Future Needs of the Nigerian Poultry and Poultry Product Supply Chain
Authors: Hadiza Kabir Bako, Munir Abba Dandago
Abstract:
The fright of food-borne diseases as a result of animal health across the globe is creating the need for origin confirmation, safety of food and method of identification of food produce within the supply chain. In this paper, we investigated two commercial and one backyard poultry farm; live poultry, poultry meat and egg. We propose various implementation options for the poultry traceability system with respect to trace and track, and food recall and withdrawal requirements. With the intention that farmers, Investors or Regulatory agencies would find it useful for the Nigerian poultry sector and we highlight the future needs and challenges that lie ahead in the two most significant system of poultry production in Nigeria: the commercial poultry and backyard breeding.Keywords: farm, food safety, food traceability, poultry
Procedia PDF Downloads 1997198 Security Over OFDM Fading Channels with Friendly Jammer
Authors: Munnujahan Ara
Abstract:
In this paper, we investigate the effect of friendly jamming power allocation strategies on the achievable average secrecy rate over a bank of parallel fading wiretap channels. We investigate the achievable average secrecy rate in parallel fading wiretap channels subject to Rayleigh and Rician fading. The achievable average secrecy rate, due to the presence of a line-of-sight component in the jammer channel is also evaluated. Moreover, we study the detrimental effect of correlation across the parallel sub-channels, and evaluate the corresponding decrease in the achievable average secrecy rate for the various fading configurations. We also investigate the tradeoff between the transmission power and the jamming power for a fixed total power budget. Our results, which are applicable to current orthogonal frequency division multiplexing (OFDM) communications systems, shed further light on the achievable average secrecy rates over a bank of parallel fading channels in the presence of friendly jammers.Keywords: fading parallel channels, wire-tap channel, OFDM, secrecy capacity, power allocation
Procedia PDF Downloads 5077197 Sustainability Management Control Adoption and Sustainable Performance of Healthcare Supply Chains in Times of Crisis
Authors: Edward Nartey
Abstract:
Although sustainability management control (SMC) systems provide information that enhances corporate sustainability decisions, reviews on the SMC implications for sustainable supply chains (SCs) demonstrate a wide research gap, particularly the sustainability performance of healthcare SCs in unusual times. This study provides preliminary empirical evidence on the level of SMC adoption and the decision-making implications for the Tripple Bottom Line (TBL) principles of SC sustainability of Ghanaian public healthcare institutions (PHIs). Using a sample of 226 public health managers, the results show that sustainable formal control has a positive and significant impact on economic sustainability but an insignificant effect on social and environmental sustainability. In addition, a positive relationship was established between informal controls and economic and environmental sustainability but an insignificant relationship with social sustainability. Although the findings highlight the prevalence of the SMC system being prioritized over regular MCS in crisis situations, the MCSs are inadequate in promoting PHIs' sustainable behaviours in SCs. It also provides little empirical evidence on the effective enhancement of the TBL principle of SC sustainability perhaps because the SMC is in misalignment with the TBL principle in crisis situations. Thus, in crisis situations, PHIs need to redesign their MCSs to support the integration of sustainability issues in SCs.Keywords: sustainability management control, informal control, formal control, sustainable supply chain performance
Procedia PDF Downloads 667196 Optimal Capacitor Placement in Distribution Using Cuckoo Optimization Algorithm
Authors: Ali Ravangard, S. Mohammadi
Abstract:
Shunt Capacitors have several uses in the electric power systems. They are utilized as sources of reactive power by connecting them in line-to-neutral. Electric utilities have also connected capacitors in series with long lines in order to reduce its impedance. This is particularly common in the transmission level, where the lines have length in several hundreds of kilometers. However, this post will generally discuss shunt capacitors. In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. For solving the problem, a new enhanced cuckoo optimization algorithm is presented.The proposed method is tested on distribution test system and the results show that the algorithm suitable for practical implementation on real systems with any size.Keywords: capacitor placement, power losses, voltage stability, radial distribution systems
Procedia PDF Downloads 3797195 Estimation of Microbial-N Supply to Small Intestine in Angora Goats Fed by Different Roughage Sources
Authors: Nurcan Cetinkaya
Abstract:
The aim of the study was to estimate the microbial-N flow to small intestine based on daily urinary purine derivatives(PD) mainly xanthine, hypoxanthine, uric acid and allantoin excretion in Angora goats fed by grass hay and concentrate (Period I); barley straw and concentrate (Period II). Daily urine samples were collected during last 3 days of each period from 10 individually penned Angora bucks( LW 30-35 Kg, 2-3 years old) receiving ad libitum grass hay or barley straw and 300 g/d concentrate. Fresh water was always available. 4N H2SO4 was added to collected daily urine .samples to keep pH under 3 to avoid of uric acid precipitation. Diluted urine samples were stored at -20°C until analysis. Urine samples were analyzed for xanthine, hypoxanthine, uric acid, allantoin and creatinine by High-Performance Liquid Chromatographic Method (HPLC). Urine was diluted 1:15 in ratio with water and duplicate samples were prepared for HPLC analysis. Calculated mean levels (n=60) for urinary xanthine, hypoxanthine, uric acid, allantoin, total PD and creatinine excretion were 0.39±0.02 , 0.26±0.03, 0.59±0.06, 5.91±0.50, 7.15±0.57 and 3.75±0.40 mmol/L for Period I respectively; 0.35±0.03, 0.21±0.02, 0.55±0.05, 5.60±0.47, 6.71±0.46 and 3.73±0.41 mmol/L for Period II respectively.Mean values of Period I and II were significantly different (P< 0.05) except creatinine excretion. Estimated mean microbial-N supply to the small intestine for Period I and II in Angora goats were 5.72±0.46 and 5.41±0.61 g N/d respectively. The effects of grass hay and barley straw feeding on microbial-N supply to small intestine were found significantly different (P< 0.05). In conclusion, grass hay showed a better effect on the ruminal microbial protein synthesis compared to barley straw, therefore; grass hay is suggested as roughage source in Angora goat feeding.Keywords: angora goat, HPLC method, microbial-N supply to small intestine, urinary purine derivatives
Procedia PDF Downloads 2287194 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System
Authors: N. Chayaopas, W. Assawinchaichote
Abstract:
In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system
Procedia PDF Downloads 3527193 Stakeholder Mapping and Requirements Identification for Improving Traceability in the Halal Food Supply Chain
Authors: Laila A. H. F. Dashti, Tom Jackson, Andrew West, Lisa Jackson
Abstract:
Traceability systems are important in the agri-food and halal food sectors for monitoring ingredient movements, tracking sources, and ensuring food integrity. However, designing a traceability system for the halal food supply chain is challenging due to diverse stakeholder requirements and complex needs. Existing literature on stakeholder mapping and identifying requirements for halal food supply chains is limited. To address this gap, a pilot study was conducted to identify the objectives, requirements, and recommendations of stakeholders in the Kuwaiti halal food industry. The study collected data through semi-structured interviews with an international halal food manufacturer based in Kuwait. The aim was to gain a deep understanding of stakeholders' objectives, requirements, processes, and concerns related to the design of a traceability system in the country's halal food sector. Traceability systems are being developed and tested in the agri-food and halal food sectors due to their ability to monitor ingredient movements, track sources, and detect potential issues related to food integrity. Designing a traceability system for the halal food supply chain poses significant challenges due to diverse stakeholder requirements and the complexity of their needs (including varying food ingredients, different sources, destinations, supplier processes, certifications, etc.). Achieving a halal food traceability solution tailored to stakeholders' requirements within the supply chain necessitates prior knowledge of these needs. Although attempts have been made to address design-related issues in traceability systems, literature on stakeholder mapping and identification of requirements specific to halal food supply chains is scarce. Thus, this pilot study aims to identify the objectives, requirements, and recommendations of stakeholders in the halal food industry. The paper presents insights gained from the pilot study, which utilized semi-structured interviews to collect data from a Kuwait-based international halal food manufacturer. The objective was to gain an in-depth understanding of stakeholders' objectives, requirements, processes, and concerns pertaining to the design of a traceability system in Kuwait's halal food sector. The stakeholder mapping results revealed that government entities, food manufacturers, retailers, and suppliers are key stakeholders in Kuwait's halal food supply chain. Lessons learned from this pilot study regarding requirement capture for traceability systems include the need to streamline communication, focus on communication at each level of the supply chain, leverage innovative technologies to enhance process structuring and operations and reduce halal certification costs. The findings also emphasized the limitations of existing traceability solutions, such as limited cooperation and collaboration among stakeholders, high costs of implementing traceability systems without government support, lack of clarity regarding product routes, and disrupted communication channels between stakeholders. These findings contribute to a broader research program aimed at developing a stakeholder requirements framework that utilizes "business process modelling" to establish a unified model for traceable stakeholder requirements.Keywords: supply chain, traceability system, halal food, stakeholders’ requirements
Procedia PDF Downloads 1227192 On the Market Prospects of Long-Term Electricity Storages
Authors: Reinhard Haas, Amela Ajanovic
Abstract:
In recent years especially electricity generation from intermittent sources like wind and solar has increased remarkably. To balance electricity supply over time calls for storages has been launched. Because intermittency also exists over longer periods – months, years, especially the need for long-term electricity storages is discussed. The major conclusions of our analysis are: (i) Despite many calls for a prophylactic construction of new storage capacities with respect to all centralized long-term storage technologies the future perspectives will be much less promising than currently indicated in several papers and discussions; (ii) new long term hydro storages will not become economically attractive in general in the next decades; however, daily storages will remain the cheapest option and the most likely to be competitive; (iii) For PtG-technologies it will also become very hard to compete in the electricity markets despite a high technological learning potential. Yet, for hydrogen and methane there are prospects for use in the transport sector.Keywords: storages, electricity markets, power-to-gas, hydro pump storages, economics
Procedia PDF Downloads 4877191 On the Added Value of Probabilistic Forecasts Applied to the Optimal Scheduling of a PV Power Plant with Batteries in French Guiana
Authors: Rafael Alvarenga, Hubert Herbaux, Laurent Linguet
Abstract:
The uncertainty concerning the power production of intermittent renewable energy is one of the main barriers to the integration of such assets into the power grid. Efforts have thus been made to develop methods to quantify this uncertainty, allowing producers to ensure more reliable and profitable engagements related to their future power delivery. Even though a diversity of probabilistic approaches was proposed in the literature giving promising results, the added value of adopting such methods for scheduling intermittent power plants is still unclear. In this study, the profits obtained by a decision-making model used to optimally schedule an existing PV power plant connected to batteries are compared when the model is fed with deterministic and probabilistic forecasts generated with two of the most recent methods proposed in the literature. Moreover, deterministic forecasts with different accuracy levels were used in the experiments, testing the utility and the capability of probabilistic methods of modeling the progressively increasing uncertainty. Even though probabilistic approaches are unquestionably developed in the recent literature, the results obtained through a study case show that deterministic forecasts still provide the best performance if accurate, ensuring a gain of 14% on final profits compared to the average performance of probabilistic models conditioned to the same forecasts. When the accuracy of deterministic forecasts progressively decreases, probabilistic approaches start to become competitive options until they completely outperform deterministic forecasts when these are very inaccurate, generating 73% more profits in the case considered compared to the deterministic approach.Keywords: PV power forecasting, uncertainty quantification, optimal scheduling, power systems
Procedia PDF Downloads 917190 The Importance of Training in Supply Chain Management on Personnel Differentiation and Business Performance
Authors: Arawati Agus, Rahmah Ismail
Abstract:
An effective training has been increasingly recognized as critical factors in enhancing the skills and knowledge of employee or personnel in the organization. More and more manufacturing companies in Malaysia are increasingly incorporating training as an important element in supply chain management (SCM) to improve their employee skills and knowledge and ultimately organizational performances. In order to understand the connection of training in SCM and the performance of an organization, this paper considers of many arguments from various research papers. This paper presents the findings of a research which examines the relationship between training in SCM, personnel differentiation and business performance of manufacturing companies in Malaysia. The study measures perception of senior management regarding the incorporation of training in SCM and the level of personnel differentiation and business performance measurements in their companies. The associations between training in SCM, personnel differentiation and business performance dimensions are analyzed through methods such as Pearson’s correlations and Smart partial least squares (smart PLS) using 126 respondents’ data. The correlation results demonstrate that training in SCM has significant correlations with personnel differentiation determinants (comprises of variables namely employee differentiation and service differentiation). The findings also suggest that training in SCM has significant correlations with business performance determinants (comprises of indicators, namely market share, profitability, ROA and ROS). Specifically, both personnel differentiation and business performance have high correlations with training in SCM, namely ‘Employee training on production skills’, ‘On the job production employee training’ and ‘Management training on supply chain effectiveness’ and ‘Employee training on supply chain technologies’. The smart PLS result also reveals that training in SCM exhibits significant impact on both personnel differentiation (directly) and business performance (indirectly mediated by personnel differentiation). The findings of the study provide a demonstration of the importance of training in SCM in enhancing competitive performances in Malaysian manufacturing companies.Keywords: training in SCM, personnel differentiation, business performance, Pearson’s correlation, Smart PLS
Procedia PDF Downloads 3287189 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.Keywords: incremental conductance algorithm, perturb and observe algorithm, photovoltaic system, simulation results
Procedia PDF Downloads 5617188 Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant
Authors: Ebuwa Osagie, Chet Biliyok, Yeung Hoi
Abstract:
Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies.Keywords: natural gas-fired, power plant, MEA, CO2 capture, modelling, simulation
Procedia PDF Downloads 4537187 A Ku/K Band Power Amplifier for Wireless Communication and Radar Systems
Authors: Meng-Jie Hsiao, Cam Nguyen
Abstract:
Wide-band devices in Ku band (12-18 GHz) and K band (18-27 GHz) have received significant attention for high-data-rate communications and high-resolution sensing. Especially, devices operating around 24 GHz is attractive due to the 24-GHz unlicensed applications. One of the most important components in RF systems is power amplifier (PA). Various PAs have been developed in the Ku and K bands on GaAs, InP, and silicon (Si) processes. Although the PAs using GaAs or InP process could have better power handling and efficiency than those realized on Si, it is very hard to integrate the entire system on the same substrate for GaAs or InP. Si, on the other hand, facilitates single-chip systems. Hence, good PAs on Si substrate are desirable. Especially, Si-based PA having good linearity is necessary for next generation communication protocols implemented on Si. We report a 16.5 to 25.5 GHz Si-based PA having flat saturated power of 19.5 ± 1.5 dBm, output 1-dB power compression (OP1dB) of 16.5 ± 1.5 dBm, and 15-23 % power added efficiency (PAE). The PA consists of a drive amplifier, two main amplifiers, and lump-element Wilkinson power divider and combiner designed and fabricated in TowerJazz 0.18µm SiGe BiCMOS process having unity power gain frequency (fMAX) of more than 250 GHz. The PA is realized as a cascode amplifier implementing both heterojunction bipolar transistor (HBT) and n-channel metal–oxide–semiconductor field-effect transistor (NMOS) devices for gain, frequency response, and linearity consideration. Particularly, a body-floating technique is utilized for the NMOS devices to improve the voltage swing and eliminate parasitic capacitances. The developed PA has measured flat gain of 20 ± 1.5 dB across 16.5-25.5 GHz. At 24 GHz, the saturated power, OP1dB, and maximum PAE are 20.8 dBm, 18.1 dBm, and 23%, respectively. Its high performance makes it attractive for use in Ku/K-band, especially 24 GHz, communication and radar systems. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Keywords: power amplifiers, amplifiers, communication systems, radar systems
Procedia PDF Downloads 1177186 The Response of LCC to DC System Faults and HVDC Re-Establishment
Authors: Mesbah Tarek, Kelaiaia Samia, Chiheb Sofien, Kelaiaia Mounia Samira, Labar Hocine
Abstract:
As every power systems short circuit failure can occur for HVDC at the DC link. So, the power devices should be protected against over heath produced by this over-current. This can be achieved through the power switchers or fast breaker. After short circuit the system is unable to restart, only after a time delay, because of the potential distribution along the DC link line. An appropriate fast and safety control is proposed and tested successfully. The detailed development and discussion of these faults is presented in this paper.Keywords: HVDC, DC link, switchers, short circuit, faults
Procedia PDF Downloads 5807185 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry
Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 167184 Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model
Authors: Jiachen Wang, Dongxu Ji
Abstract:
Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios.Keywords: geothermal power generation, optimization, energy model, thermodynamics
Procedia PDF Downloads 71