Search results for: sequential extraction process
15915 Green Synthesis of Silver Nanoparticles Mediated by Plant by-Product Extracts
Authors: Cristian Moisa, Andreea Lupitu, Adriana Csakvari, Dana G. Radu, Leonard Marian Olariu, Georgeta Pop, Dorina Chambre, Lucian Copolovici, Dana Copolovici
Abstract:
Green synthesis of nanoparticles (NPs) represents a promising, accessible, eco-friendly, and safe process with significant applications in biotechnology, pharmaceutical sciences, and farming. The aim of our study was to obtain silver nanoparticles, using plant wastes extracts resulted in the essential oils extraction process: Thymus vulgaris L., Origanum vulgare L., Lavandula angustifolia L., and in hemp processing for seed and fibre, Cannabis sativa. Firstly, we obtained aqueous extracts of thyme, oregano, lavender, and hemp (two monoicous and one dioicous varieties), all harvested in western part of Romania. Then, we determined the chemical composition of the extracts by liquid-chromatography coupled with diode array and mass spectrometer detectors. The compounds identified in the extracts were in agreement with earlier published data, and the determination of the antioxidant activity of the obtained extracts by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays confirmed their antioxidant activity due to their total polyphenolic content evaluated by Folin-Ciocalteu assay. Then, the silver nanoparticles (AgNPs) were successfully biosynthesised, as was demonstrated by UV-VIS, FT-IR spectroscopies, and SEM, by reacting AgNO₃ solution and plant extracts. AgNPs were spherical in shape, with less than 30 nm in diameter, and had a good bactericidal activity against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens).Keywords: plant wastes extracts, chemical composition, high performance liquid chromatography mass spectrometer, HPLC-MS, scanning electron microscopy, SEM, silver nanoparticles
Procedia PDF Downloads 18015914 A Conceptual Design of Freeze Desalination Using Low Cost Refrigeration
Authors: Parul Sahu
Abstract:
In recent years, seawater desalination has been emerged as a potential resource to circumvent water scarcity, especially in coastal regions. Among the various methods, thermal evaporation or distillation and membrane operations like Reverse Osmosis (RO) has been exploited at commercial scale. However, the energy cost and maintenance expenses associated with these processes remain high. In this context Freeze Desalination (FD), subjected to the availability of low cost refrigeration, offers an exciting alternative. Liquefied Natural Gas (LNG) regasification terminals provide an opportunity to utilize the refrigeration available with regasification of LNG. This work presents the conceptualization and development of a process scheme integrating the ice and hydrate based FD to the LNG regasification process. This integration overcomes the high energy demand associated with FD processes by utilizing the refrigeration associated with LNG regasification. An optimal process scheme was obtained by performing process simulation using ASPEN PLUS simulator. The results indicated the new proposed process requires only 1 kWh/m³ of energy with the utilization of maximum refrigeration. In addition, a sensitivity analysis was also performed to study the effect of various process parameters on water recovery and energy consumption for the proposed process. The results show that the energy consumption decreases by 30% with an increase in water recovery from 30% to 60%. However, due to operational limitations associated with ice and hydrate handling in seawater, the water recovery cannot be maximized but optimized. The proposed process can be potentially used to desalinate seawater in integration with LNG regasification terminal.Keywords: freeze desalination, liquefied natural gas regasification, process simulation, refrigeration
Procedia PDF Downloads 13115913 Centralizing the Teaching Process in Intelligent Tutoring System Architectures
Authors: Nikolaj Troels Graf Von Malotky, Robin Nicolay, Alke Martens
Abstract:
There exist a plethora of architectures for ITSs (Intelligent Tutoring Systems). A thorough analysis and comparison of the architectures revealed, that in most cases the architecture extensions are evolutionary grown, reflecting state of the art trends of each decade. However, from the perspective of software engineering, the main aspect of an ITS has not been reflected in any of these architectures, yet. From the perspective of cognitive research, the construction of the teaching process is what makes an ITS 'intelligent' regarding the spectrum of interaction with the students. Thus, in our approach, we focus on a behavior based architecture, which is based on the main teaching processes. To create a new general architecture for ITS, we have to define the prerequisites. This paper analyzes the current state of the existing architectures and derives rules for the behavior of ITS. It is presenting a teaching process for ITSs to be used together with the architecture.Keywords: intelligent tutoring, ITS, tutoring process, system architecture, interaction process
Procedia PDF Downloads 38515912 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform
Authors: S. Hutasavi, D. Chen
Abstract:
The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping
Procedia PDF Downloads 12515911 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach
Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka
Abstract:
Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.Keywords: welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank
Procedia PDF Downloads 16715910 Value in Exchange: The Importance of Users Interaction as the Center of User Experiences
Authors: Ramlan Jantan, Norfadilah Kamaruddin, Shahriman Zainal Abidin
Abstract:
In this era of technology, the co-creation method has become a new development trend. In this light, most design businesses have currently transformed their development strategy from being goods-dominant into service-dominant where more attention is given to the end-users and their roles in the development process. As a result, the conventional development process has been replaced with a more cooperative one. Consequently, numerous studies have been conducted to explore the extension of co-creation method in the design development process and most studies have focused on issues found during the production process. In the meantime, this study aims to investigate potential values established during the pre-production process, which is also known as the ‘circumstances value creation’. User involvement is questioned and crucially debate at the entry level of pre-production process in value in-exchange jointly spheres; thus user experiences took place. Thus, this paper proposed a potential framework of the co-creation method for Malaysian interactive product development. The framework is formulated from both parties involved: the users and designers. The framework will clearly give an explanation of the value of the co-creation method, and it could assist relevant design industries/companies in developing a blueprint for the design process. This paper further contributes to the literature on the co-creation of value and digital ecosystems.Keywords: co-creation method, co-creation framework, co-creation, co-production
Procedia PDF Downloads 17815909 Reduce, Reuse and Recycle: Grand Challenges in Construction Recovery Process
Authors: Abioye A. Oyenuga, Rao Bhamidiarri
Abstract:
Hurling a successful Construction and Demolition Waste (C&DW) recycling operation around the globe is a challenge today, predominantly because secondary materials markets are yet to be integrated. Reducing, Reusing and recycling of (C&DW) have been employed over the years, and various techniques have been investigated. However, the economic and environmental viability of its application seems limited. This paper discusses the costs and benefits in using secondary materials and focus on investigating reuse and recycling process for five major types of construction materials: concrete, metal, wood, cardboard/paper, and plasterboard. Data obtained from demolition specialist and contractors are considered and evaluated. With the date source, the research paper found that construction material recovery process fully incorporate the 3R’s process and shows how energy recovery by means of 3R's principles can be evaluated. This scrutiny leads to the empathy of grand challenges in construction material recovery process. Recommendations to deepen material recovery process are also discussed.Keywords: construction and demolition waste (C&DW), 3R concept, recycling, reuse, waste management, UK
Procedia PDF Downloads 42815908 On a Continuous Formulation of Block Method for Solving First Order Ordinary Differential Equations (ODEs)
Authors: A. M. Sagir
Abstract:
The aim of this paper is to investigate the performance of the developed linear multistep block method for solving first order initial value problem of Ordinary Differential Equations (ODEs). The method calculates the numerical solution at three points simultaneously and produces three new equally spaced solution values within a block. The continuous formulations enable us to differentiate and evaluate at some selected points to obtain three discrete schemes, which were used in block form for parallel or sequential solutions of the problems. A stability analysis and efficiency of the block method are tested on ordinary differential equations involving practical applications, and the results obtained compared favorably with the exact solution. Furthermore, comparison of error analysis has been developed with the help of computer software.Keywords: block method, first order ordinary differential equations, linear multistep, self-starting
Procedia PDF Downloads 30615907 Effect of Extraction Methods on the Fatty Acids and Physicochemical Properties of Serendipity Berry Seed Oil
Authors: Olufunmilola A. Abiodun, Adegbola O. Dauda, Ayobami Ojo, Samson A. Oyeyinka
Abstract:
Serendipity berry (Dioscoreophyllum cumminsii diel) is a tropical dioecious rainforest vine and native to tropical Africa. The vine grows during the raining season and is used mainly as sweetener. The sweetener in the berry is known as monellin which is sweeter than sucrose. The sweetener is extracted from the fruits and the seed is discarded. The discarded seeds contain bitter principles but had high yield of oil. Serendipity oil was extracted using three methods (N-hexane, expression and expression/n-hexane). Fatty acids and physicochemical properties of the oil obtained were determined. The oil obtained was clear, liquid and have odour similar to hydrocarbon. The percentage oil yield was 38.59, 12.34 and 49.57% for hexane, expression and expression-hexane method respectively. The seed contained high percentage of oil especially using combination of expression and hexane. Low percentage of oil was obtained using expression method. The refractive index values obtained were 1.443, 1.442 and 1.478 for hexane, expression and expression-hexane methods respectively. Peroxide value obtained for expression-hexane was higher than those for hexane and expression. The viscosities of the oil were 125.8, 128.76 and 126.87 cm³/s for hexane, expression and expression-hexane methods respectively which showed that the oil from expression method was more viscous than the other oils. The major fatty acids in serendipity seed oil were oleic acid (62.81%), linoleic acid (22.65%), linolenic (6.11%), palmitic acid (5.67%), stearic acid (2.21%) in decreasing order. Oleic acid which is monounsaturated fatty acid had the highest value. Total unsaturated fatty acids were 91.574, 92.256 and 90.426% for hexane, expression, and expression-hexane respectively. Combination of expression and hexane for extraction of serendipity oil produced high yield of oil. The oil could be refined for food and non-food application.Keywords: serendipity seed oil, expression method, fatty acid, hexane
Procedia PDF Downloads 27315906 Input-Output Analysis in Laptop Computer Manufacturing
Authors: H. Z. Ulukan, E. Demircioğlu, M. Erol Genevois
Abstract:
The scope of this paper and the aim of proposed model were to apply monetary Input –Output (I-O) analysis to point out the importance of reusing know-how and other requirements in order to reduce the production costs in a manufacturing process for a laptop computer. I-O approach using the monetary input-output model is employed to demonstrate the impacts of different factors in a manufacturing process. A sensitivity analysis showing the correlation between these different factors is also presented. It is expected that the recommended model would have an advantageous effect in the cost minimization process.Keywords: input-output analysis, monetary input-output model, manufacturing process, laptop computer
Procedia PDF Downloads 39115905 An Empirical Exploration of Factors Influencing Lecturers' Acceptance of Open Educational Resources for Enhanced Knowledge Sharing in North-East Nigerian Universities
Authors: Bello, A., Muhammed Ibrahim Abba., Abdullahi, M., Dauda, Sabo, & Shittu, A. T.
Abstract:
This study investigated the Predictors of Lecturers Knowledge Sharing Acceptance on Open Educational Resources (OER) in North-East Nigerian in Universities. The study population comprised of 632 lecturers of Federal Universities in North-east Nigeria. The study sample covered 338 lecturers who were selected purposively from Adamawa, Bauchi and Borno State Federal Universities in Nigeria. The study adopted a prediction correlational research design. The instruments used for data collection was the questionnaire. Experts in the field of educational technology validated the instrument and tested it for reliability checks using Cronbach’s alpha. The constructs on lecturers’ acceptance to share OER yielded a reliability coefficient of; α = .956 for Performance Expectancy, α = .925; for Effort Expectancy, α = .955; for Social Influence, α = .879; for Facilitating Conditions and α = .948 for acceptance to share OER. the researchers contacted the Deanery of faculties of education and enlisted local coordinators to facilitate the data collection process at each university. The data was analysed using multiple sequential regression statistic at a significance level of 0.05 using SPSS version 23.0. The findings of the study revealed that performance expectancy (β = 0.658; t = 16.001; p = 0.000), effort expectancy (β = 0.194; t = 3.802; p = 0.000), social influence (β = 0.306; t = 5.246; p = 0.000), collectively indicated that the variables have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. However, the finding revealed that facilitating conditions (β = .053; t = .899; p = 0.369), does not have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. Based on these findings, the study recommends among others that the university management should consider adjusting OER policy to be centered around actualizing lecturers career progression.Keywords: acceptance, lecturers, open educational resources, knowledge sharing
Procedia PDF Downloads 7315904 The Effects of Transformational Leadership on Process Innovation through Knowledge Sharing
Authors: Sawsan J. Al-Husseini, Talib A. Dosa
Abstract:
Transformational leadership has been identified as the most important factor affecting innovation and knowledge sharing; it leads to increased goal-directed behavior exhibited by followers and thus to enhanced performance and innovation for the organization. However, there is a lack of models linking transformational leadership, knowledge sharing, and process innovation within higher education (HE) institutions in general within developing countries, particularly in Iraq. This research aims to examine the mediating role of knowledge sharing in the transformational leadership and process innovation relationship. A quantitative approach was taken and 254 usable questionnaires were collected from public HE institutions in Iraq. Structural equation modelling with AMOS 22 was used to analyze the causal relationships among factors. The research found that knowledge sharing plays a pivotal role in the relationship between transformational leadership and process innovation, and that transformational leadership would be ideal in an educational context, promoting knowledge sharing activities and influencing process innovation in the public HE in Iraq. The research has developed some guidelines for researchers as well as leaders and provided evidence to support the use of TL to increase process innovation within HE environment in developing countries, particularly in Iraq.Keywords: transformational leadership, knowledge sharing, process innovation, structural equation modelling, developing countries
Procedia PDF Downloads 33615903 Short Text Classification for Saudi Tweets
Authors: Asma A. Alsufyani, Maram A. Alharthi, Maha J. Althobaiti, Manal S. Alharthi, Huda Rizq
Abstract:
Twitter is one of the most popular microblogging sites that allows users to publish short text messages called 'tweets'. Increasing the number of accounts to follow (followings) increases the number of tweets that will be displayed from different topics in an unclassified manner in the timeline of the user. Therefore, it can be a vital solution for many Twitter users to have their tweets in a timeline classified into general categories to save the user’s time and to provide easy and quick access to tweets based on topics. In this paper, we developed a classifier for timeline tweets trained on a dataset consisting of 3600 tweets in total, which were collected from Saudi Twitter and annotated manually. We experimented with the well-known Bag-of-Words approach to text classification, and we used support vector machines (SVM) in the training process. The trained classifier performed well on a test dataset, with an average F1-measure equal to 92.3%. The classifier has been integrated into an application, which practically proved the classifier’s ability to classify timeline tweets of the user.Keywords: corpus creation, feature extraction, machine learning, short text classification, social media, support vector machine, Twitter
Procedia PDF Downloads 15515902 A Clustering Algorithm for Massive Texts
Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen
Abstract:
Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process
Procedia PDF Downloads 43515901 Valorization of Gypsum as Industrial Waste
Authors: Hasna Soli
Abstract:
The main objective of this work is the extraction of sulfur from gypsum here is industrial waste. Indeed the sulfuric acid production, passing through the following process; melting sulfur, filtration of the liquid sulfur, sulfur combustion to produce SO₂, conversion of SO₂ to SO₃ and SO₃ absorption in water to produce H₂SO₄ product as waste CaSO₄ the anhydrous calcium sulfate. The main objectives of this work are improving the industrial practices and to find other ways to manage these solid wastes. It should also assess the consequences of treatment in terms of training and become byproducts. Firstly there will be a characterization of this type of waste by an X-ray diffraction; to obtain phase solid compositions and chemical analysis; gravimetrically and atomic absorption spectrometry or by ICP. The samples are mineralized in suitable acidic or basic solutions. The elements analyzed are CaO, Sulfide (SO₃), Al₂O₃, Fe₂O₃, MgO, SiO₂. Then an analysis by EDS energy dispersive spectrometry using an Oxford EDX probe and differential thermal and gravimetric analyzes. Gypsum’s valuation will be performed. Indeed, the CaSO₄ will be reused to produce sulfuric acid, which will be reintroduced into the production line. The second approach explored in this work is the thermal utilization of solid waste to remove sulfur as a dilute sulfuric acid solution.Keywords: environment, gypsum, sulfur, waste
Procedia PDF Downloads 29515900 Spray Nebulisation Drying: Alternative Method to Produce Microparticulated Proteins
Authors: Josef Drahorad, Milos Beran, Ondrej Vltavsky, Marian Urban, Martin Fronek, Jiri Sova
Abstract:
Engineering efforts of researchers of the Food research institute Prague and the Czech Technical University in spray drying technologies led to the introduction of a demonstrator ATOMIZER and a new technology of Carbon Dioxide-Assisted Spray Nebulization Drying (CASND). The equipment combines the spray drying technology, when the liquid to be dried is atomized by a rotary atomizer, with Carbon Dioxide Assisted Nebulization - Bubble Dryer (CAN-BD) process in an original way. A solution, emulsion or suspension is saturated by carbon dioxide at pressure up to 80 bar before the drying process. The atomization process takes place in two steps. In the first step, primary droplets are produced at the outlet of the rotary atomizer of special construction. In the second step, the primary droplets are divided in secondary droplets by the CO2 expansion from the inside of primary droplets. The secondary droplets, usually in the form of microbubbles, are rapidly dried by warm air stream at temperatures up to 60ºC and solid particles are formed in a drying chamber. Powder particles are separated from the drying air stream in a high efficiency fine powder separator. The product is frequently in the form of submicron hollow spheres. The CASND technology has been used to produce microparticulated protein concentrates for human nutrition from alternative plant sources - hemp and canola seed filtration cakes. Alkali extraction was used to extract the proteins from the filtration cakes. The protein solutions after the alkali extractions were dried with the demonstrator ATOMIZER. Aerosol particle size distribution and concentration in the draying chamber were determined by two different on-line aerosol spectrometers SMPS (Scanning Mobility Particle Sizer) and APS (Aerodynamic Particle Sizer). The protein powders were in form of hollow spheres with average particle diameter about 600 nm. The particles were characterized by the SEM method. The functional properties of the microparticulated protein concentrates were compared with the same protein concentrates dried by the conventional spray drying process. Microparticulated protein has been proven to have improved foaming and emulsifying properties, water and oil absorption capacities and formed long-term stable water dispersions. This work was supported by the research grants TH03010019 of the Technology Agency of the Czech Republic.Keywords: carbon dioxide-assisted spray nebulization drying, canola seed, hemp seed, microparticulated proteins
Procedia PDF Downloads 16915899 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water
Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta
Abstract:
The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute
Procedia PDF Downloads 11815898 The Lethal Autonomy and Military Targeting Process
Authors: Serdal Akyüz, Halit Turan, Mehmet Öztürk
Abstract:
The future security environment will have new battlefield and enemies. The boundaries of battlefield and the identity of enemies cannot be noticed easily. The politicians may not want to lose their soldiers in very risky operations. This approach will pave the way for smart machines like war robots and new drones. These machines will have the decision-making ability and act simultaneously. This ability can change the military targeting process. Military targeting process (MTP) benefits from a wide scope of lethal and non-lethal weapons to reach an intended end-state. This process is now managed by people but in the future smart machines can do it by themselves. At first sight, this development seems useful for humanity owing to decrease the casualties in war. Using robots -which can decide, detect, deliver and asses without human support- for homeland security and against terrorist has very crucial risks and threats. Besides, it can decrease the havoc but also increase the collateral damages. This paper examines the current use of smart war machines, military targeting process and presents a new approach to MTP from lethal autonomy concept's point of view.Keywords: the autonomous weapon systems, the lethal autonomy, military targeting process (MTP)
Procedia PDF Downloads 42815897 Deproteination and Demineralization of Shrimp Waste Using Lactic Acid Bacteria for the Production of Crude Chitin and Chitosan
Authors: Farramae Francisco, Rhoda Mae Simora, Sharon Nunal
Abstract:
Deproteination and demineralization efficiencies of shrimp waste using two Lactobacillus species treated with different carbohydrate sources for chitin production, its chemical conversion to chitosan and the quality of chitin and chitosan produced were determined. Using 5% glucose and 5% cassava starch as carbohydrate sources, pH slightly increased from the initial pH of 6.0 to 6.8 and 7.2, respectively after 24 h and maintained their pH at 6.7 to 7.3 throughout the treatment period. Demineralization (%) in 5 % glucose and 5 % cassava was highest during the first day of treatment which was 82% and 83%, respectively. Deproteination (%) was highest in 5% cassava starch on the 3rd day of treatment at 84.4%. The obtained chitin from 5% cassava and 5% glucose had a residual ash and protein below 1% and solubility of 59% and 44.3%, respectively. Chitosan produced from 5% cassava and 5% glucose had protein content below 0.05%; residual ash was 1.1% and 0.8%, respectively. Chitosan solubility and degree of deacetylation were 56% and 33% in 5% glucose and 48% and 29% in 5% cassava, respectively. The advantage this alternative technology offers over that of chemical extraction is large reduction in chemicals needed thus less effluent production and generation of a protein-rich liquor, although the demineralization process should be improved to achieve greater degree of deacetylation.Keywords: alternative carbon source, bioprocessing, lactic acid bacteria, waste utilization
Procedia PDF Downloads 48515896 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System
Authors: A. Chávez, A. Rodríguez, F. Pinzón
Abstract:
Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.Keywords: sludge, landfill, leachate, SBR
Procedia PDF Downloads 27215895 Using Gaussian Process in Wind Power Forecasting
Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui
Abstract:
The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.Keywords: wind power, Gaussien process, modelling, forecasting
Procedia PDF Downloads 41815894 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm
Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder
Abstract:
Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA Data Envelopment Analysis is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding
Procedia PDF Downloads 63915893 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications
Authors: W. Schellong
Abstract:
Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control
Procedia PDF Downloads 21015892 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 15515891 A Review of the Run to Run (R to R) Control in the Manufacturing Processes
Authors: Khalil Aghapouramin, Mostafa Ranjbar
Abstract:
Run- to- Run (R2 R) control was developed in order to monitor and control different semiconductor manufacturing processes based upon the fundamental engineering frameworks. This technology allows rectification in the optimum direction. This control always had a significant potency in which was appeared in a variety of processes. The term run to run refers to the case where the act of control would take with the aim of getting batches of silicon wafers which produced in a manufacturing process. In the present work, a brief review about run-to-run control investigated which mainly is effective in the manufacturing process.Keywords: Run-to-Run (R2R) control, manufacturing, process in engineering, manufacturing controls
Procedia PDF Downloads 49415890 Rapid Identification and Diagnosis of the Pathogenic Leptospiras through Comparison among Culture, PCR and Real Time PCR Techniques from Samples of Human and Mouse Feces
Authors: S. Rostampour Yasouri, M. Ghane, M. Doudi
Abstract:
Leptospirosis is one of the most significant infectious and zoonotic diseases along with global spreading. This disease is causative agent of economoic losses and human fatalities in various countries, including Northern provinces of Iran. The aim of this research is to identify and compare the rapid diagnostic techniques of pathogenic leptospiras, considering the multifacetedness of the disease from a clinical manifestation and premature death of patients. In the spring and summer of 2020-2022, 25 fecal samples were collected from suspected leptospirosis patients and 25 Fecal samples from mice residing in the rice fields and factories in Tonekabon city. Samples were prepared by centrifugation and passing through membrane filters. Culture technique was used in liquid and solid EMJH media during one month of incubation at 30°C. Then, the media were examined microscopically. DNA extraction was conducted by extraction Kit. Diagnosis of leptospiras was enforced by PCR and Real time PCR (SYBR Green) techniques using lipL32 specific primer. Out of the patients, 11 samples (44%) and 8 samples (32%) were determined to be pathogenic Leptospira by Real time PCR and PCR technique, respectively. Out of the mice, 9 Samples (36%) and 3 samples (12%) were determined to be pathogenic Leptospira by the mentioned techniques, respectively. Although the culture technique is considered to be the gold standard technique, but due to the slow growth of pathogenic Leptospira and lack of colony formation of some species, it is not a fast technique. Real time PCR allowed rapid diagnosis with much higher accuracy compared to PCR because PCR could not completely identify samples with lower microbial load.Keywords: culture, pathogenic leptospiras, PCR, real time PCR
Procedia PDF Downloads 8515889 Uncovering the Complex Structure of Building Design Process Based on Royal Institute of British Architects Plan of Work
Authors: Fawaz A. Binsarra, Halim Boussabaine
Abstract:
The notion of complexity science has been attracting the interest of researchers and professionals due to the need of enhancing the efficiency of understanding complex systems dynamic and structure of interactions. In addition, complexity analysis has been used as an approach to investigate complex systems that contains a large number of components interacts with each other to accomplish specific outcomes and emerges specific behavior. The design process is considered as a complex action that involves large number interacted components, which are ranked as design tasks, design team, and the components of the design process. Those three main aspects of the building design process consist of several components that interact with each other as a dynamic system with complex information flow. In this paper, the goal is to uncover the complex structure of information interactions in building design process. The Investigating of Royal Institute of British Architects Plan Of Work 2013 information interactions as a case study to uncover the structure and building design process complexity using network analysis software to model the information interaction will significantly enhance the efficiency of the building design process outcomes.Keywords: complexity, process, building desgin, Riba, design complexity, network, network analysis
Procedia PDF Downloads 52715888 A Robust Spatial Feature Extraction Method for Facial Expression Recognition
Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda
Abstract:
This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure
Procedia PDF Downloads 42515887 The Process of Crisis: Model of Its Development in the Organization
Authors: M. Mikušová
Abstract:
The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.Keywords: crisis, management, model, organization
Procedia PDF Downloads 29115886 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 575