Search results for: prenatal stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3981

Search results for: prenatal stress

2931 Applying Personel Resilence and Emotional Agitation in Occupational, Health and Safety Education and Training

Authors: M. Jayandran

Abstract:

Continual professional development is an important concept for safety professionals to strengthen the knowledge base and to achieve the required qualifications or international memberships in a given time. But the main problems which have observed among most of the safety aspirants are as follows: lack of focus, inferiority complex, superiority complex, lack of interest and lethargy, family and off job stress, health issues, usage of drugs and alcohol, and absenteeism. A HSE trainer should be an expert in soft skills and other stress, emotional handling techniques, so as to manage the above aspirants during training. To do this practice, a trainer has to brainstorm himself of few of the soft skills like personnel resilience, mnemonic techniques, mind healing, and subconscious suggestion techniques by integrating with an emotional intelligence quotient of the aspirants. By adopting these techniques, a trainer can successfully deliver the course and influence the different types of audience to achieve success in training.

Keywords: personnel resilience, mnemonic techniques, mind healing, sub conscious suggestion techniques

Procedia PDF Downloads 307
2930 An Increase in Glucose Uptake per se is Insufficient to Induce Oxidative Stress and Vascular Endothelial Cell Dysfunction

Authors: Heba Khader, Victor Solodushko, Brian Fouty

Abstract:

Hyperglycemia is a hallmark of uncontrolled diabetes and causes vascular endothelial dysfunction. An increase in glucose uptake and metabolism by vascular endothelial cells is the presumed trigger for this hyperglycemia-induced dysfunction. Glucose uptake into vascular endothelial cells is mediated largely by Glut-1. Glut-1 is an equilibrative glucose transporter with a Km value of 2 mM. At physiologic glucose concentrations, Glut-1 is almost saturated and, therefore, increasing glucose concentration does not increase glucose uptake unless Glut-1 is upregulated. However, hyperglycemia downregulates Glut-1 and decreases rather than increases glucose uptake in vascular endothelial cells. This apparent discrepancy necessitates further study on the effect of increasing glucose uptake on the oxidative state and function of vascular endothelial cells. To test this, a Tet-on system was generated to conditionally regulate Glut-1 expression in endothelial cells by the addition and removal of doxycycline. Glut-1 overexpression was confirmed by Western blot and radiolabeled glucose uptake measurements. Upregulation of Glut-1 resulted in a 4-fold increase in glucose uptake into endothelial cells as determined by 3H deoxy-D-glucose uptake. Increased glucose uptake through Glut-1 did not induce an oxidative stress nor did it cause endothelial dysfunction in rat pulmonary microvascular endothelial cells determined by monolayer resistance, cell proliferation or advanced glycation end product formation. Increased glucose uptake through Glut-1did not lead to an increase in glucose metabolism, due in part to inhibition of hexokinase in Glut-1 overexpressing cells. In summary, this study demonstrates that increasing glucose uptake and intracellular glucose by overexpression of Glut-1 does not alter the oxidative state of rat pulmonary microvascular endothelial cells or cause endothelial cell dysfunction. These results conflict with the current paradigm that hyperglycemia leads to oxidative stress and endothelial dysfunction in vascular endothelial cells through an increase in glucose uptake.

Keywords: endothelial cells, glucose uptake, Glut1, hyperglycemia

Procedia PDF Downloads 341
2929 Lateral Heterogeneity of 1/Q in Eastern and Southeastern Anatolia

Authors: Ufuk Aydın

Abstract:

The Coda attenuation and frequency dependency of seismic wave are strongly dependent on the effective stresses structures within the upper crust. In this study, the data of three different stations were used to examine the lateral variation of stress. The tectonic structures of these three areas have been examined comparatively using lateral coda tomography. In the study using the single scatter method, the window length selected to be 20 second. Coda values 80 with 94 and frequency dependency values obtained between 0.69 and 1.21. The 1/QC values for the three regions ranged from 0.0012 to 0.017, highlighting the regional differences in the seismotectonic activity of the crust. The lowest absorption values obtained from Erzurum station when the highest absorption values obtained at the Kemaliye station. The low Qc and high frequency dependency values obtained Kemaliye, which indicates that it has highest tectonic activity than other two regions. The seismo-dynamics data obtained from the study found to be in agreement with the tectonic structure of the region.

Keywords: regional coda attenuation, tectonic stress, crustal deformation

Procedia PDF Downloads 184
2928 Influence of Salicylic Acid on Submergence Stress Recovery in Selected Rice Cultivars (Oryza sativa L.)

Authors: Ja’afar U., A. M. Gumi, Salisu N., Obadiah C. D.

Abstract:

Rice is susceptible to flooding due to its semi-aquatic characteristics, which enable it to thrive in wet or submerged environments. The development of aerenchyma allows for oxygen transfer, enabling faster lengthening of submerged shoot organs. Rice's germination and early seedling growth phases are highly intolerant of submersion, resulting in survival in low-oxygen environments. The research involved a study on rice plants treated with salicylic acid at different concentrations. Hypo was used for washing, while a reagent was used for submergence treatment. The plants were waterlogged for 11 days and submerged for 7 days, with control plants receiving distilled water. The study found a significant difference between Jirani Zawara's control and treated plants, with plants treated with 2 g/L of S.A. showing a 6.00 node increase per plant and Faro cultivars having more nodes. The study found significant differences between the control and treated plants, with the Jirani Zawara plant showing longer internode lengths and the Faro cultivar having longer internode lengths, while the B.G. cultivar had the longest. The research found that the Jirani Zawara cultivar treated with 3 g/L of S.A. produced tallest plants, with heights increasing from 14.43 cm to 15.50 cm in Faro cultivar S.A., and the highest height was 16.30 cm. The study reveals that salicylic acid significantly enhances the number of nodes, internode length, plant height, and root length in rice cultivars, thereby improving submerged stress recovery and promoting plant development.

Keywords: rice, submergence, stress, salicylic acid

Procedia PDF Downloads 16
2927 Concrete Cracking Simulation Using Vector Form Intrinsic Finite Element Method

Authors: R. Z. Wang, B. C. Lin, C. H. Huang

Abstract:

This study proposes a new method to simulate the crack propagation under mode-I loading using Vector Form Intrinsic Finite Element (VFIFE) method. A new idea which is expected to combine both VFIFE and J-integral is proposed to calculate the stress density factor as the crack critical in elastic crack. The procedure of implement the cohesive crack propagation in VFIFE based on the fictitious crack model is also proposed. In VFIFIE, the structure deformation is described by numbers of particles instead of elements. The strain energy density and the derivatives of the displacement vector of every particle is introduced to calculate the J-integral as the integral path is discrete by particles. The particle on the crack tip separated into two particles once the stress on the crack tip satisfied with the crack critical and then the crack tip propagates to the next particle. The internal force and the cohesive force is applied to the particles.

Keywords: VFIFE, crack propagation, fictitious crack model, crack critical

Procedia PDF Downloads 335
2926 Breaking Stress Criterion that Changes Everything We Know About Materials Failure

Authors: Ali Nour El Hajj

Abstract:

Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials.

Keywords: failure criteria, strength theory, failure mechanics, materials mechanics, rock mechanics, concrete strength, finite-element analysis, mechanical engineering, aeronautical engineering, civil engineering

Procedia PDF Downloads 81
2925 The Role of Time-Dependent Treatment of Exogenous Salicylic Acid on Endogenous Phytohormone Levels under Salinity Stress

Authors: Hülya Torun, Ondřej Novák, Jaromír Mikulík, Miroslav Strnad, Faik A. Ayaz

Abstract:

World climate is changing. Millions of people in the world still face chronic undernourishment for conducting a healthy life and the world’s population is growing steadily. To meet this growing demand, agriculture and food systems must adapt to the adverse effects of climate change and become more resilient, productive and sustainable. From this perspective, to determine tolerant cultivars for undesirable environmental conditions will be necessary food production for sustainable development. Among abiotic stresses, soil salinity is one of the most detrimental global fact restricting plant sources. Development of salt-tolerant lines is required in order to increase the crop productivity and quality in salt-treated lands. Therefore, the objective of this study was to investigate the morphological and physiological responses of barley cultivars accessions to salinity stress by NaCl. For this purpose, it was aimed to determine the crosstalk between some endogenous phytohormones and exogenous salicylic acid (SA) in two different vegetative parts (leaves and roots) of barley (Hordeum vulgare L.; Poaceae; 2n=14; Ince-04) which is detected salt-tolerant. The effects of SA on growth parameters, leaf relative water content (RWC), endogenous phytohormones; including indole-3-acetic acid (IAA), cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA) and ethylene were investigated in barley cultivars under salinity stress. SA was applied to 17-day-old seedlings of barley in two different ways including before (pre-treated for 24 h) and simultaneously with NaCl stress treatment. NaCl (0, 150, 300 mM) exposure in the hydrophonic system was associated with a rapid decrease in growth parameters and RWC, which is an indicator of plant water status, resulted in a strong up-regulation of ABA as a stress indicator. Roots were more dramatically affected than leaves. Water conservation in 150 mM NaCl treated-barley plants did not change, but decreased in 300 mM NaCl treated plants. Pre- and simultaneously treatment of SA did not significantly alter growth parameters and RWC. ABA, JA and ethylene are known to be related with stress. In the present work, ethylene also increased, similarly to ABA, but not with the same intensity. While ABA and ethylene increased by the increment of salt concentrations, JA levels rapidly decreased especially in roots. Both pre- and simultaneously SA applications alleviated salt-induced decreases in 300 mM NaCl resulted in the increment of ABA levels. CKs and IAA are related to cell growth and development. At high salinity (300 mM NaCl), CKs (cZ+cZR) contents increased in both vegetative organs while IAA levels stayed at the same level with control groups. However, IAA increased and cZ+cZR rapidly decreased in leaves of barley plants with SA treatments before salt applications (in pre- SA treated groups). Simultaneously application of SA decreased CKs levels in both leaves and roots of the cultivar. Due to increasing concentrations of NaCl in association with decreasing ABA, JA and ethylene content and increments in CKs and IAA were recorded with SA treatments. As results of the study, in view of all the phytohormones that we tested, exogenous SA induced greater tolerance to salinity particularly when applied before salinity stress.

Keywords: Barley, Hordeum vulgare, phytohormones, salicylic acid, salinity

Procedia PDF Downloads 229
2924 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test

Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni

Abstract:

A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.

Keywords: deflection, FE analysis, shaft, stress, three-point bending

Procedia PDF Downloads 161
2923 Failure of Cable Reel Flat Spring of Crane: Beyond Fatigue Life Use

Authors: Urbi Pal, Piyas Palit, Jitendra Mathur, Abhay Chaturvedi, Sandip Bhattacharya

Abstract:

The hot rolled slab lifting crane cable reel drum (CRD) failed due to failure of cable reel flat spring which are inside the cassette of CRD. CRD is used for the movement of tong cable. Stereoscopic observation revealed beach marks and Scanning Electron Microscopy showed striations confirming fatigue mode of failure. Chemical composition should be spring steel (Cr-Mo-V) as per IS 3431:1982 instead of C-Mn steel. To find out the reason of fatigue failure, the theoretical fatigue life of flat spiral spring has been calculated. The calculation of number of fatigue cycles included bending moment, maximum stress on the spring, ultimate tensile strength and alternative stress. The bending moment determination has been taken account with various parameters like Young’s Modulus, width, thickness, outer diameter, arbor diameter, pay out the length and angular deflection in rotations. With all the required data, the calculated fatigue life turned to be 10000 cycles, but the spring served 15000 cycles which clearly indicated beyond fatigue life usage. Different UTS values have been plotted with respect to the number of fatigue cycles and clearly showed that the increase in UTS by 40% increases fatigue life by 50%. The significance of higher UTS lied here, and higher UTS depends on modified chemistry with proper tempered martensite microstructure. This kind of failure can be easily avoided by changing the crane spring maintenance schedule from 2 years to 1.5 years considering 600 cycles per month. The plant has changed changing the schedule of cable reel spring and procured new flat reel spring made of 50CrV2 steel.

Keywords: cable reel spring, fatigue life, stress, spring steel

Procedia PDF Downloads 156
2922 Regulation of the Regeneration of Epidermal Langerhans Cells by Stress Hormone

Authors: Junichi Hosoi

Abstract:

Epidermal Langerhans cells reside in upper layer of epidermis and play a role in immune surveillance. The finding of the close association of nerve endings to Langerhans cells triggered the research on systemic regulation of Langerhans cells. They disappear from epidermis after exposure to environmental and internal stimuli and reappear about a week later. Myeloid progenitor cells are assumed to be one of the sources of Langerhans cells. We examined the effects of cortisol on the reappearance of Langerhans cells in vitro. Cord-blood derived CD34-positive cells were cultured in the medium supplemented with stem cell factor/Flt3 ligand/granulocyte macrophage-colony stimulating factor/tumor necrosis factor alpha/bone morphologic protein 7/transforming growth factor beta in the presence or absence of cortisol. Cells were analyzed by flow cytometry for CD1a (cluster differentiation 1a), a marker of Langerhans cells and dermal dendritic cells, and CD39 (cluster differentiation factor 39), extracellular adenosine triphosphatase. Both CD1a-positive cells and CD39-positive cells were decreased by treatment with cortisol (suppression by 35% and 22% compared to no stress hormone, respectively). Differentiated Langerhans cells are attracted to epidermis by chemokines that are secreted from keratinocytes. Epidermal keratinocytes were cultured in the presence or absence of cortisol and analyzed for the expression of CCL2 (C-C motif chemokine ligand 2) and CCL20 (C-C motif chemokine ligand 20), which are typical attractants of Langerhans cells, by quantitative reverse transcriptase polymerase chain reaction. The expression of both chemokines, CCL2 and CCL20, were suppressed by treatment with cortisol (suppression by 38% and 48% compared to no stress hormone, respectively). We examined the possible regulation of the suppression by cortisol with plant extracts. The extracts of Ganoderma lucidum and Iris protected the suppression of the differentiation to CD39-positive cells and also the suppression of the gene expression of LC-chemoattractants. These results suggest that cortisol, which is either systemic or locally produced, blocks the supply of epidermal Langerhans cells at 2 steps, differentiation from the precursor and attraction to epidermis. The suppression is possibly blocked by some plant extracts.

Keywords: Langerhans cell, stress, CD39, chemokine

Procedia PDF Downloads 186
2921 Neuroprotective Effects of Dehydroepiandrosterone (DHEA) in Rat Model of Alzheimer’s Disease

Authors: Hanan F. Aly, Fateheya M. Metwally, Hanaa H. Ahmed

Abstract:

The current study is undertaken to elucidate a possible neuroprotective role of dehydroepiandrosterone (DHEA) against the development of Alzheimer’s disease in experimental rat model. Alzheimer’s disease was produced in young female ovariectomized rats by intraperitoneal administration of AlCl3 (4.2 mg/kg body weight) daily for 12 weeks. Half of these animals also received orally DHEA (250 mg/kg body weight, three times weekly) for 18 weeks. Control groups of animals received either DHAE alone, or no DHEA, or were not ovariectomized. After such treatment the animals were analyzed for oxidative stress biomarkers such as hydrogen peroxide, nitric oxide and malondialdehyde, total antioxidant capacity, reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase activities, antiapoptotic marker Bcl-2 and brain derived neurotrophic factor. Also, brain cholinergic markers (acetylcholinesterase and acetylcholine) were determined. The results revealed significant increase in oxidative stress parameters associated with significant decrease in the antioxidant enzyme activities in Al-intoxicated ovariectomized rats. Significant depletion in brain Bcl-2 and brain-derived neurotrophic factor levels were also detected. Moreover, significant elevations in brain acetylcholinesterase activity accompanied with significant reduction in acetylcholine level were recorded. Significant amelioration in all investigated parameters was detected as a result of treatment of Al-intoxicated ovariectomized rats with DHEA. These results were confirmed by histological examination of brain sections. These results clearly indicate a neuroprotective effect of DHEA against Alzheimer’s disease.

Keywords: Alzheimer’s disease, oxidative stress, apoptosis, dehydroepiandrosterone

Procedia PDF Downloads 324
2920 Challenge Appraisal Job, Hindrance Appraisal Job, and Negative Work-Life Interaction with the Mediating Role of Distress: A Survey on Sabah Public Secondary School Teachers

Authors: Pan Lee Ching, Chua Bee Seok

Abstract:

The experience of negative work-life interaction often confronted with work related stress includes workload. The appraisal of challenge and hindrance jobs depend on the type of workload to stimulate stress response. Nevertheless, the effects of challenge and hindrance jobs on distress and negative work-life interaction are scarcely explored. Thus, research objective was to examine the relationship among challenge appraisal job (qualitative workload), hindrance appraisal job (quantitative workload), and negative work-life interaction with the mediating role of distress. A survey with random sampling method was performed on current serving public secondary school teachers in Sabah. Collected data showed 447 respondents completed three questionnaires, namely Challenge-hindrance Appraisal Scale, Stress Professional Positive and Negative Questionnaire, and Survey Work-home Interaction-Nijmegan. Partial Least Square-Structural Equation Modeling (PLS-SEM) was used to analyse mediation effect. Results showed distress fully mediates the relationship between challenge appraisal job (qualitative workload) and negative work-life interaction. The indirect effect was significant and negative. While distress partially mediates the relationship between hindrance appraisal job (quantitative workload) and negative work-life interaction. The indirect effect was significant and positive. The study implied that challenge appraisal job could be a positive resource for teacher to facilitate work and life, whereas hindrance appraisal job could disengage the facilitation. Hence, strengthen challenge appraisal job and control hindrance appraisal job could curb distress at work and underpin life interaction among the teachers.

Keywords: challenge-hindrance job, distress, work-life, workload

Procedia PDF Downloads 193
2919 The Effect of Santolina Plant Extract on Nitro-Oxidative Stress

Authors: Sabrina Sebbane, Alina Elena Parvu

Abstract:

Introduction: Santolina rosmarinifolia is a plant of the Santolina genus, a family made of medicinal plants widely used. Some of the Santolina species have been proven to have potent anti-inflammatory and anti-oxidant effects. However, no in vivo study has been made to demonstrate this in Santolina rosmarinifolia. The aim of our study is to experimentally evaluate the potential anti-inflammatory and anti-oxidant effects of Santolina rosmarinifolia plant extracts on acute inflammation in rats. These effects are defined by measuring the modifications on nitric oxide, reactive oxygen species and anti-oxidant response in serum. Materials and Methods: Rats were divided into 5 groups (n=6). Three groups were given Santolina rosmarinifolia extract by gavage in different concentrations(100%, 50%, 25%) for a week. Inflammation was induced by i.m injection of turpentine oil on the 8th day. One group was only given turpentine oil and the fifth group acted as control and was given only saline solution. Blood was collected and serum separated. Global tests were used to measure the oxidative stress, total oxidative status (TOS), total antioxidant reactivity (TAR) and the modified method of Griess assay to measure NO synthesis. Malondilaldehyde (MDA) and thiols levels were also assessed. Results: Santolina rosmarinifolia did not significantly change the TOS levels (p > 0.05). Santolina rosmarinifolia 25% and 50% decreased significantly the TAR levels (p < 0.001). Santolina 100% didn't have a significant effect on TAR (p > 0.05). All concentrations of Santolina rosmarinifolia increased the oxidative stress index (OSI) significantly(p < 0.05). Santolina rosmarinifolia 100% significantly decreased NO synthesis (p value < 0.05). In the diluted Santolina groups, no significant effect on NO synthesis was observed. In the groups treated with Santolina 100% and Santolina rosmarinifolia 50%, thiols concentration were significantly higher compared to the inflammation group (p < 0.02). A higher stimulatory effect was found in the Santolina 25% group (p value < 0.05). MDA levels were not significantly modified by the administration of Santolina rosmarinifolia (p > 0.05). Conclusion: All three solutions of Santolina rosmarinifolia had no important effect on oxidant production. However, Santolina rosmarinifolia solutions had a positive effect by increasing the thiols concentration in the serum of the models. The sum of all the effects produced by the administration of Santolina did not show a significant decrease of nitro-oxidative stress. Further experiments including smaller concentrations of Santolina rosmarinifolia will be made. Santolina rosmarinifolia should also be tested as a curative treatment.

Keywords: inflammation, MDA, nitric oxide, santolina rosmarinifolia, thiols, TAR, TOS

Procedia PDF Downloads 260
2918 Examining the Effects of Production Method on Aluminium A356 Alloy and A356-10%SiCp Composite for Hydro Turbine Bucket Application

Authors: Williams S. Ebhota, Freddie L. Inambao

Abstract:

This study investigates the use of centrifugal casting method to fabricate functionally graded aluminium A356 Alloy and A356-10%SiCp composite for hydro turbine bucket application. The study includes the design and fabrication of a permanent mould. The mould was put into use and the buckets of A356 Alloy and A356-10%SiCp composite were cast, cut and machined into specimens. Some specimens were given T6 heat treatment and the specimens were prepared for different examinations accordingly. The SiCp particles were found to be more at inner periphery of the bucket. The maximum hardness of As-Cast A356 and A356-10%SiCp composite was recorded at the inner periphery to be 60 BRN and 95BRN, respectively. And these values were appreciated to 98BRN and 122BRN for A356 alloy and A356-10%SiCp composite, respectively. It was observed that the ultimate tensile stress and yield tensile stress prediction curves show the same trend.

Keywords: A356 alloy, A356-10%SiCp composite, centrifugal casting, Pelton bucket, turbine blade

Procedia PDF Downloads 280
2917 Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods

Authors: Mohammadreza Vafaei, Amirali Moradi, Sophia C. Alih

Abstract:

The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method.

Keywords: allowable stress design, load resistant factor design, nonlinear time history analysis, seismic vulnerability, steel structures

Procedia PDF Downloads 270
2916 Mechanical Behavior of CFTR Column Joint under Pull out Testing

Authors: Nasruddin Junus

Abstract:

CFTR column is one of the improvements CFT columns by inserting reinforcing steel bars into infill concrete. The presence of inserting reinforcing steel bars is increasing the excellent structural performance of the CFT column, especially on the fire-resisting performance. Investigation on the mechanical behavior of CFTR column connection is summarized in the three parts; column to column joint, column to beam connection, and column base. Experiment that reported in this paper is concerned on the mechanical behavior of CFTR column joint under pull out testing, especially on its stress transfer mechanism. A number series of the pull out test on the CFT with inserting reinforcing steel bar are conducted. Ten test specimens are designed, constructed, and tested to examine experimentally the effect of the size of square steel tube, size of the bearing plate, length of embedment steel bars, kind of steel bars, and the numbers of rib plate.

Keywords: CFTR column, pull out, stress, transfer mechanism

Procedia PDF Downloads 290
2915 Evaluation of Critical State Behavior of Granular Soil in Confined Compression Tests

Authors: Rabia Chaudhry, Andrew Dawson

Abstract:

Identification of steady/critical state of coarse granular soil is challenging at conventional pressures. This study examines the drained and undrained triaxial tests for large strains on loose to dense, uniformly graded, Leighton Buzzard Fraction A sand. The triaxial tests are conducted under controlled test conditions. The comparison of soil behavior on shear strength characteristics at different effective stresses has been studied at the medium to large strains levels and the uniqueness of the critical state was discussed. The test results showed that there were two steady/critical state lines for drained and undrained conditions at confining pressures less than 1000 kPa. A critical state friction angle is not constant and the overall scatter in the steady/critical state line for the tested sand is ±0.01 in terms of void ratio at stress levels less than 1000 kPa.

Keywords: critical state, stress strain behavior, fabric/structure, triaxial tests

Procedia PDF Downloads 412
2914 Evolution of Mineral Nutrition in Two Species of Atriplex (halimus and canescens) under Salt Stress

Authors: Z. Mahi, L. Marousset, C. Roudaut, M. Belkhodja, R. Lemoine

Abstract:

The strong accumulation of salts in the soil as well as in irrigation water greatly disrupts the growth and development of almost all plants. The study of these disturbances in halophytes helps provide better guidance on the deteriorating effect of salinity. Evaluation of salt stress in two species of Atriplex (halimus and canescens) through the study of mineral nutrition (dosage of sodium and potassium) shows a variability of responses. The results show that the Na+ ion accumulates in the three organs whatever the applied concentration. This accumulation increases with the high salt concentrations in halimus whereas in canescens, 600 mM treatment shows a reduction of the amount of this element. A decrease in the amount of potassium is observed for all organs except halimus rods 100 mM. Unlike halimus, canescens K + accumulates in high concentrations of salt at the roots and leaves. The ratio Na+/K+ decreases the salt by halimus against it increases in levels canescens roots and treated with high concentrations of NaCl (600 mM) leaves.

Keywords: Atriplex, canescens, halimus, Na +, K +, Na Cl, tolerance

Procedia PDF Downloads 359
2913 A Finite Element Method Simulation for Rocket Motor Material Selection

Authors: T. Kritsana, P. Sawitri, P. Teeratas

Abstract:

This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa. The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.

Keywords: rocket motor case, finite element method, principal stress, simulation

Procedia PDF Downloads 450
2912 Hybrid Polymer Microfluidic Platform for Studying Endothelial Cell Response to Micro Mechanical Environment

Authors: Mitesh Rathod, Jungho Ahn, Noo Li Jeon, Junghoon Lee

Abstract:

Endothelial cells respond to cues from both biochemical as well as micro mechanical environment. Significant effort has been directed to understand the effects of biochemical signaling, however, relatively little is known about regulation of endothelial cell biology by the micro mechanical environment. Numerous studies have been performed to understand how physical forces regulate endothelial cell behavior. In this regard, past studies have majorly focused on exploring how fluid shear stress governs endothelial cell behavior. Parallel plate flow chambers and rectangular microchannels are routinely employed for applying fluid shear force on endothelial cells. However, these studies fall short in mimicking the in vivo like micro environment from topological aspects. Few studies have only used circular microchannels to replicate in vivo like condition. Seldom efforts have been directed to elucidate the combined effect of topology, substrate rigidity and fluid shear stress on endothelial cell response. In this regard, we demonstrate a facile fabrication process to develop a hybrid polydimethylsiloxane microfluidic platform to study endothelial cell biology. On a single chip microchannels with different cross sections i.e., circular, rectangular and square have been fabricated. In addition, our fabrication approach allows variation in the substrate rigidity along the channel length. Two different variants of polydimethylsiloxane, namely Sylgard 184 and Sylgard 527, were utilized to achieve the variation in rigidity. Moreover, our approach also enables in creating Y bifurcation circular microchannels. Our microfluidic platform thus facilitates for conducting studies pertaining to endothelial cell morphology with respect to change in topology, substrate rigidity and fluid flow on a single chip. The hybrid platform was tested by culturing Human Umbilical Vein Endothelial Cells in circular microchannels with varying substrate rigidity, and exposed to fluid shear stress of 12 dynes/cm² and static conditions. Results indicate the cell area response to flow induced shear stress was governed by the underlying substrate mechanics.

Keywords: hybrid, microfluidic platform, PDMS, shear flow, substrate rigidity

Procedia PDF Downloads 277
2911 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration

Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas

Abstract:

Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.

Keywords: dough, experimental, numerical, rupture

Procedia PDF Downloads 122
2910 Perinatal and Postnatal Counseling as Determinants of Early Newborn Sepsis in Rural Bangladesh

Authors: Sajia Islam, T. Tahsina, S. Raihana, M. M. Rahman, Q. S. Rahman, T. M. Huda, S. E. Arifeen, M. J. Dibley

Abstract:

Early neonatal sepsis accounts for more than two-thirds of all deaths in the first year of life. This study assessed the counseling during antenatal, perinatal, post natal periods and its association with possible sepsis in rural Bangladesh. Method: Data were collected from a large community-based trial in Bangladesh where pregnant women were enrolled from 2013-2015 covering 29,497 newborns. Sepsis was defined using neonatal danger signs reported by 'The Young-Infants Clinical Science Study Group. 'Result: Signs of sepsis was found among 15% of the neonates. Neonatal sepsis was higher among those who did not receive advice on TT vaccinations (15.4% vs. 11%, p < 0.05) and danger signs (14.8% vs. 12.8%, p < 0.05) during pregnancy. Advice on delivering in well-lit place was significantly associated with lower incidence of sepsis (12.7% vs. 14.8% p < 0.05). Sepsis was lower among neonates whose mothers were counseled on immediate newborn care for bathing after 3 days of delivery (13.4% vs. 15.2% p=0), breastfeeding within 1hr of birth (13.82 % vs. 15.28% p=0), apply nothing on the cord (11.54 vs. 15.06 p=0), immediate drying of child (12.62% vs. 14.89%, p=0). Neonatal sepsis was lower among children whose mothers received 2-4 advice [OR=0.91(95% CI: 0.85-0.97)] compared to neonates whose mothers received only 1 or none. Overall, children to mothers who received ≥ 5 advice had lowest incidence of sepsis [OR=0.83 (95% CI: 0.71-0.97)] Conclusion: Advice on antenatal, prenatal and post natal is significantly reduced with early newborn sepsis. Further research is required to identify specific type of counseling messages that translate into practices and reduce pathways towards early-newborn morbidities.

Keywords: ante natal care, counseling, neonatal sepsis, post natal care

Procedia PDF Downloads 279
2909 For Post-traumatic Stress Disorder Counselors in China, the United States, and around the Globe, Cultural Beliefs Offer Challenges and Opportunities

Authors: Anne Giles

Abstract:

Trauma is generally defined as an experience, or multiple experiences, overwhelming a person's ability to cope. Over time, many people recover from the neurobiological, physical, and emotional effects of trauma on their own. For some people, however, troubling symptoms develop over time that can result in distress and disability. This cluster of symptoms is classified as Post-traumatic Stress Disorder (PTSD). People who meet the criteria for PTSD and other trauma-related disorder diagnoses often hold a set of understandable but unfounded beliefs about traumatic events that cause undue suffering. Becoming aware of unhelpful beliefs—termed "cognitive distortions"—and challenging them is the realm of Cognitive Behavior Therapy (CBT). A form of CBT found by researchers to be especially effective for PTSD is Cognitive Processing Therapy (CPT). Through the compassionate use of CPT, people identify, examine, challenge, and relinquish unhelpful beliefs, thereby reducing symptoms and suffering. Widely-held cultural beliefs can interfere with the progress of recovery from trauma-related disorders. Although highly revered, largely unquestioned, and often stabilizing, cultural beliefs can be founded in simplistic, dichotomous thinking, i.e., things are all right, or all wrong, all good, or all bad. The reality, however, is nuanced and complex. After studying examples of cultural beliefs from China and the United States and how these might interfere with trauma recovery, trauma counselors can help clients derive criteria for preserving helpful beliefs, discover, examine, and jettison unhelpful beliefs, reduce trauma symptoms, and live their lives more freely and fully.

Keywords: cognitive processing therapy (CPT), cultural beliefs, post-traumatic stress disorder (PTSD), trauma recovery

Procedia PDF Downloads 251
2908 Plausible Influence of Hydroxycitric Acid and Garcinol in Garcinia indica Fruit Extract in High Fat Diet Induced Type 2 Diabetes Mellitus

Authors: Hannah Rachel Vasanthi, Paomipem Phazang, Veereshkumar, Sali, Ramesh Parjapath, Sangeetha Marimuthu Kannan

Abstract:

Garcinia indica (G. indica) fruit rind extract commonly used in South Indian culinary and Indian System of medicines is reported to exhibit various biological activities. The present study envisages the influence of the phytoconstituents in G. indica extract (Vrikshamla capsules- a herbal supplement) on diabetic condition. The condition of type 2 diabetes was triggered in experimental animals by feeding high fat diet for 8 weeks followed by a sub-diabetogenic dose of 35mg/kg bw of streptozotocin intraperitoneally. Oral supplementation of the extract at two doses (100 and 200 mg/kg body weight) for 14 days reduced hyperglycemia, hypercholesterolemia and dyslipidemia (p< 0.001). Pathophysiological changes of obesity and diabetes associated complications majorly mediated by oxidative stress were analyzed by measuring the markers of oxidative stress such as lipid peroxidation, enzymatic (SOD, Catalase, GPx) and non-enzymatic markers (GSH). Conspicuous changes markers were noticed in diabetic condition which was reverted by the G. indica extract. Screening the extract by AccuTOF-DART (MS) revealed the presence of hydroxycitric acid and garcinol in abundant quantity which probably has influenced the biological activity. This was also corroborated through docking studies of hydroxycitric acid and garcinol both individually and synergistically with the antioxidant proteins. Altogether, hydroxycitric acid and garcinol present in G. indica fruit extract alleviates the pathophysiological conditions such as hyperglycemia, dyslipidemia, insulin resistance and oxidative stress mediated by diabesity.

Keywords: antioxidants , diabesity, hydroxycitric acid, garcinol, Garcinia indica, sreptozotocin

Procedia PDF Downloads 266
2907 Trauma Informed Healthy Lifestyle Program for Young Adults

Authors: Alicia Carranza, Hildemar Dos Santos, W. Lawrence Beeson, R. Patti Herring, Kimberly R. Freeman, Adam Arechiga

Abstract:

Early exposure to trauma can impact health-related behaviors later in life, which poses a considerable challenge for young adults transitioning into independence when they are lacking the necessary skills and support to live a healthy life. The study will be a non-experimental, mixed methods pre- and post-test (where subjects will serve as their own controls) to determine the impact of an eight-week trauma-informed healthy lifestyle program on self-efficacy for adopting health-promoting behaviors and health outcomes among young adults. Forty-two adults, ages 18-24 who are living in Orange County, CA will be recruited to participate in the eight-week trauma-informed healthy living program. Baseline and post-intervention assessments will be conducted to assess changes in self-efficacy for nutrition and physical exercise, sleep quality and quantity, body mass index (kg/m2), and coping skills used by comparing pre- to post-intervention. Some of the planned activities include cooking demonstrations, mindful eating activities and media literacy using Instagram. Frequencies analyses, paired t-test, and multiple regression will be used to determine if there was a change in coping skills. The results of this study can serve to assess the potential for mitigating the effects of Adverse Childhood Experiences (ACEs), or other toxic stress, experienced during adolescence across the lifespan. Young adults who learn how to cope with stress in a healthy way and engage in a healthy lifestyle can be better prepared to role model that behavior to their children.

Keywords: nutrition, healthy lifestyle, trauma-informed, stress management

Procedia PDF Downloads 106
2906 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load

Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir

Abstract:

Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.

Keywords: airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy

Procedia PDF Downloads 189
2905 Antioxidant Status in Synovial Fluid from Osteoarthritis Patients: A Pilot Study in Indian Demography

Authors: S. Koppikar, P. Kulkarni, D. Ingale , N. Wagh, S. Deshpande, A. Mahajan, A. Harsulkar

Abstract:

Crucial role of reactive oxygen species (ROS) in the progression Osteoarthritis (OA) pathogenesis has been endorsed several times though its exact mechanism remains unclear. Oxidative stress is known to instigate classical stress factors such as cytokines, chemokines and ROS, which hampers cartilage remodelling process and ultimately results in worsening the disease. Synovial fluid (SF) is a biological communicator between cartilage and synovium that accumulates redox and biochemical signalling mediators. The present work attempts to measure several oxidative stress markers in the synovial fluid obtained from knee OA patients with varying degree of disease severity. Thirty OA and five Meniscal-tear (MT) patients were graded using Kellgren-Lawrence scale and assessed for Nitric oxide (NO), Nitrate-Nitrite (NN), 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Potential (FRAP), Catalase (CAT), Superoxide dismutase (SOD) and Malondialdehyde (MDA) levels for comparison. Out of various oxidative markers studied, NO and SOD showed significant difference between moderate and severe OA (p= 0.007 and p= 0.08, respectively), whereas CAT demonstrated significant difference between MT and mild group (p= 0.07). Interestingly, NN revealed statistically positive correlation with OA severity (p= 0.001 and p= 0.003). MDA, a lipid peroxidation by-product was estimated maximum in early OA when compared to MT (p= 0.06). However, FRAP did not show any correlation with OA severity or MT control. NO is an essential bio-regulatory molecule essential for several physiological processes, and inflammatory conditions. However, due to its short life, exact estimation of NO becomes difficult. NO and its measurable stable products are still it is considered as one of the important biomarker of oxidative damage. Levels of NO and nitrite-nitrate in SF of patients with OA indicated its involvement in the disease progression. When SF groups were compared, a significant correlation among moderate, mild and MT groups was established. To summarize, present data illustrated higher levels of NO, SOD, CAT, DPPH and MDA in early OA in comparison with MT, as a control group. NN had emerged as a prognostic bio marker in knee OA patients, which may act as futuristic targets in OA treatment.

Keywords: antioxidant, knee osteoarthritis, oxidative stress, synovial fluid

Procedia PDF Downloads 477
2904 Consequences of Employees' Perception of Political Behavior in Kuwaiti Business Organizations

Authors: Ali Muhammad

Abstract:

The purpose of this study is to examine the effect of employees’ perception of political behavior on their behavior and attitudes. The model tested in this study suggests that employees’ perception of political behavior in their organizations leads to lower levels of job satisfaction, and organizational commitment, and higher levels of work-related stress, and intentions to leave the organization. A sample of 182 employees working in six Kuwaiti business organizations were surveyed using a questionnaire, and data was analyzed using correlation analysis, regression analysis, and non-parametric tests. Results reveal that employees’ perception of political behavior is negatively associated with job satisfaction and organizational commitment, and positively associated with work-related stress and employees’ intentions to leave the organization. The results of the current study are discussed and are compared to the results of previous studies in this area. Finally, the directions for future research are suggested.

Keywords: perceptions of political behavior, organizational commitment, job satisfaction, intention to leave

Procedia PDF Downloads 353
2903 Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests

Authors: Henry Munoz, Muhammad Mohsan, Takashi Kiyota

Abstract:

Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab.

Keywords: liquefaction, shear modulus degradation, shaking table, earthquake

Procedia PDF Downloads 387
2902 Effects and Mechanisms of an Online Short-Term Audio-Based Mindfulness Intervention on Wellbeing in Community Settings and How Stress and Negative Affect Influence the Therapy Effects: Parallel Process Latent Growth Curve Modeling of a Randomized Control

Authors: Man Ying Kang, Joshua Kin Man Nan

Abstract:

The prolonged pandemic has posed alarming public health challenges to various parts of the world, and face-to-face mental health treatment is largely discounted for the control of virus transmission, online psychological services and self-help mental health kits have become essential. Online self-help mindfulness-based interventions have proved their effects on fostering mental health for different populations over the globe. This paper was to test the effectiveness of an online short-term audio-based mindfulness (SAM) program in enhancing wellbeing, dispositional mindfulness, and reducing stress and negative affect in community settings in China, and to explore possible mechanisms of how dispositional mindfulness, stress, and negative affect influenced the intervention effects on wellbeing. Community-dwelling adults were recruited via online social networking sites (e.g., QQ, WeChat, and Weibo). Participants (n=100) were randomized into the mindfulness group (n=50) and a waitlist control group (n=50). In the mindfulness group, participants were advised to spend 10–20 minutes listening to the audio content, including mindful-form practices (e.g., eating, sitting, walking, or breathing). Then practice daily mindfulness exercises for 3 weeks (a total of 21 sessions), whereas those in the control group received the same intervention after data collection in the mindfulness group. Participants in the mindfulness group needed to fill in the World Health Organization Five Well-Being Index (WHO), Positive and Negative Affect Schedule (PANAS), Perceived Stress Scale (PSS), and Freiburg Mindfulness Inventory (FMI) four times: at baseline (T0) and at 1 (T1), 2 (T2), and 3 (T3) weeks while those in the waitlist control group only needed to fill in the same scales at pre- and post-interventions. Repeated-measure analysis of variance, paired sample t-test, and independent sample t-test was used to analyze the variable outcomes of the two groups. The parallel process latent growth curve modeling analysis was used to explore the longitudinal moderated mediation effects. The dependent variable was WHO slope from T0 to T3, the independent variable was Group (1=SAM, 2=Control), the mediator was FMI slope from T0 to T3, and the moderator was T0NA and T0PSS separately. The different levels of moderator effects on WHO slope was explored, including low T0NA or T0PSS (Mean-SD), medium T0NA or T0PSS (Mean), and high T0NA or T0PSS (Mean+SD). The results found that SAM significantly improved and predicted higher levels of WHO slope and FMI slope, as well as significantly reduced NA and PSS. FMI slope positively predict WHO slope. FMI slope partially mediated the relationship between SAM and WHO slope. Baseline NA and PSS as the moderators were found to be significant between SAM and WHO slope and between SAM and FMI slope, respectively. The conclusion was that SAM was effective in promoting levels of mental wellbeing, positive affect, and dispositional mindfulness as well as reducing negative affect and stress in community settings in China. SAM improved wellbeing faster through the faster enhancement of dispositional mindfulness. Participants with medium-to-high negative affect and stress buffered the therapy effects of SAM on wellbeing improvement speed.

Keywords: mindfulness, negative affect, stress, wellbeing, randomized control trial

Procedia PDF Downloads 111