Search results for: optical fiber glass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3516

Search results for: optical fiber glass

2466 Recovery of Copper and Gold by Delamination of Printed Circuit Boards Followed by Leaching and Solvent Extraction Process

Authors: Kamalesh Kumar Singh

Abstract:

Due to increasing trends of electronic waste, specially the ICT related gadgets, their green recycling is still a greater challenge. This article presents a two-stage, eco-friendly hydrometallurgical route for the recovery of gold from the delaminated metallic layers of waste mobile phone Printed Circuit Boards (PCBs). Initially, mobile phone PCBs are downsized (1x1 cm²) and treated with an organic solvent dimethylacetamide (DMA) for the separation of metallic fraction from non-metallic glass fiber. In the first stage, liberated metallic sheets are used for the selective dissolution of copper in an aqueous leaching reagent. Influence of various parameters such as type of leaching reagent, the concentration of the solution, temperature, time and pulp density are optimized for the effective leaching (almost 100%) of copper. Results have shown that 3M nitric acid is a suitable reagent for copper leaching at room temperature and considering chemical features, gold remained in solid residue. In the second stage, the separated residue is used for the recovery of gold by using sulphuric acid with a combination of halide salt. In this halide leaching, Cl₂ or Br₂ is generated as an in-situ oxidant to improve the leaching of gold. Results have shown that almost 92 % of gold is recovered at the optimized parameters.

Keywords: printed circuit boards, delamination, leaching, solvent extraction, recovery

Procedia PDF Downloads 42
2465 An Improved Visible Range Absorption Spectroscopy on Soil Macronutrient

Authors: Suhaila Isaak, Yusmeeraz Yusof, Khairunnisa Mohd Yusof, Ahmad Safuan Abdul Rashid

Abstract:

Soil fertility is commonly evaluated by soil macronutrients such as nitrate, potassium, and phosphorus contents. Optical spectroscopy is an emerging technology which is rapid and simple has been widely used in agriculture to measure soil fertility. For visible and near infrared absorption spectroscopy, the absorbed light level in is useful for soil macro-nutrient measurement. This is because the absorption of light in a soil sample influences sensitivity of the measurement. This paper reports the performance of visible and near infrared absorption spectroscopy in the 400–1400 nm wavelength range using light-emitting diode as the excitation light source to predict the soil macronutrient content of nitrate, potassium, and phosphorus. The experimental results show an improved linear regression analysis of various soil specimens based on the Beer–Lambert law to determine sensitivity of soil spectroscopy by evaluating the absorption of characteristic peaks emitted from a light-emitting diode and detected by high sensitivity optical spectrometer. This would denote in developing a simple and low-cost soil spectroscopy with light-emitting diode for future implementation.

Keywords: macronutrients absorption, optical spectroscopy, soil, absorption

Procedia PDF Downloads 280
2464 Evaluation of a Risk Assessment Method for Fiber Emissions from Sprayed Asbestos-Containing Materials

Authors: Yukinori Fuse, Masato Kawaguchi

Abstract:

A quantitative risk assessment method was developed for fiber emissions from sprayed asbestos-containing materials (ACMs). In Japan, instead of being quantitative, these risk assessments have relied on the subjective judgment of skilled engineers, which may vary from one person to another. Therefore, this closed sampling method aims at avoiding any potential variability between assessments. This method was used to assess emissions from ACM sprayed in eleven buildings and the obtained results were compared with the subjective judgments of a skilled engineer. An approximate correlation tendency was found between both approaches. In spite of existing uncertainties, the closed sampling method is useful for public health protection. We firmly believe that this method may find application in the management and renovation decisions of buildings using friable and sprayed ACM.

Keywords: asbestos, renovation, risk assessment, maintenance

Procedia PDF Downloads 368
2463 Method Validation for Determining Platinum and Palladium in Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry

Authors: Marin Senila, Oana Cadar, Thorsten Janisch, Patrick Lacroix-Desmazes

Abstract:

The study presents the analytical capability and validation of a method based on microwave-assisted acid digestion for quantitative determination of platinum and palladium in catalysts using inductively coupled plasma optical emission spectrometry (ICP-OES). In order to validate the method, the main figures of merit such as limit of detection and limit of quantification, precision and accuracy were considered and the measurement uncertainty was estimated based on the bottom-up approach according to the international guidelines of ISO/IEC 17025. Limit of detections, estimated from blank signal using 3 s criterion, were 3.0 mg/kg for Pt and respectively 3.6 mg/kg for Pd, while limits of quantification were 9.0 mg/kg for Pt and respectively 10.8 mg/kg for Pd. Precisions, evaluated as standard deviations of repeatability (n=5 parallel samples), were less than 10% for both precious metals. Accuracies of the method, verified by recovery estimation certified reference material NIST SRM 2557 - pulverized recycled monolith, were 99.4 % for Pt and 101% for Pd. The obtained limit of quantifications and accuracy were satisfactory for the intended purpose. The paper offers all the steps necessary to validate the determination method for Pt and Pd in catalysts using inductively coupled plasma optical emission spectrometry.

Keywords: catalyst analysis, ICP-OES, method validation, platinum, palladium

Procedia PDF Downloads 158
2462 Towards a Sustainable Energy Future: Method Used in Existing Buildings to Implement Sustainable Energy Technologies

Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Souza Melegari, N. Samuel

Abstract:

This article describes the development of a model that uses a method where openings are represented by single glass and double glass. The model is based on a healthy balance equations purely theoretical and empirical data. Simplified equations are derived through a synthesis of the measured data obtained from meteorological stations. The implementation of the model in a design tool integrated buildings is discussed in this article, to better punctuate the requirements of comfort and energy efficiency in architecture and engineering. Sustainability, energy efficiency, and the integration of alternative energy systems and concepts are beginning to be incorporated into designs for new buildings and renovations to existing buildings. Few means have existed to effectively validate the potential performance benefits of the design concepts. It was used a method of degree-days for an assessment of the energy performance of a building showed that the design of the architectural design should always be considered the materials used and the size of the openings. The energy performance was obtained through the model, considering the location of the building Central Park Shopping Mall, in the city of Cascavel - PR. Obtained climatic data of these locations and in a second step, it was obtained the coefficient of total heat loss in the building pre-established so evaluating the thermal comfort and energy performance. This means that the more openings in buildings in Cascavel – PR, installed to the east side, they may be higher because the glass added to the geometry of architectural spaces will cause the environment conserve energy.

Keywords: sustainable design, energy modeling, design validation, degree-days methods

Procedia PDF Downloads 404
2461 Static Characterization of a Bio-Based Sandwich in a Humid Environment

Authors: Zeineb Kesentini, Abderrahim El Mahi, Jean Luc Rebiere, Rachid El Guerjouma, Moez Beyaoui, Mohamed Haddar

Abstract:

Industries’ attention has been drawn to green and sustainable materials as a result of the present energy deficit and environmental damage. Sandwiches formed of auxetic structures made up of periodic cells are also being investigated by industry. Several tests have emphasized the exceptional properties of these materials. In this study, the sandwich's core is a one-cell auxetic core. Among plant fibers, flax fibers are chosen because of their good mechanical properties comparable to those of glass fibers. Poly (lactic acid) (PLA), as a green material, is available from starch, and its production process requires fewer fossil resources than petroleum-based plastics. A polylactic acid (PLA) reinforced with flax fiber filament was employed in this study. The manufacturing process used to manufacture the test specimens is 3D printing. The major drawback of a 100% bio-based material is its low resistance to moisture absorption. In this study, a sandwich based on PLA / flax with an auxetic core is characterized statically for different periods of immersion in water. Bending tests are carried out on the composite sandwich for three immersion time. Results are compared to those of non immersed specimens. It is found that non aged sandwich has the ultimate bending stiffness.

Keywords: auxetic, bending tests, biobased composite, sandwich structure, 3D printing

Procedia PDF Downloads 145
2460 Topographic and Thermal Analysis of Plasma Polymer Coated Hybrid Fibers for Composite Applications

Authors: Hande Yavuz, Grégory Girard, Jinbo Bai

Abstract:

Manufacturing of hybrid composites requires particular attention to overcome various critical weaknesses that are originated from poor interfacial compatibility. A large number of parameters have to be considered to optimize the interfacial bond strength either to avoid flaw sensitivity or delamination that occurs in composites. For this reason, surface characterization of reinforcement phase is needed in order to provide necessary data to drive an assessment of fiber-matrix interfacial compatibility prior to fabrication of composite structures. Compared to conventional plasma polymerization processes such as radiofrequency and microwave, dielectric barrier discharge assisted plasma polymerization is a promising process that can be utilized to modify the surface properties of carbon fibers in a continuous manner. Finding the most suitable conditions (e.g., plasma power, plasma duration, precursor proportion) for plasma polymerization of pyrrole in post-discharge region either in the presence or in the absence of p-toluene sulfonic acid monohydrate as well as the characterization of plasma polypyrrole coated fibers are the important aspects of this work. Throughout the current investigation, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) are used to characterize plasma treated hybrid fibers (CNT-grafted Toray T700-12K carbon fibers, referred as T700/CNT). TGA results show the trend in the change of decomposition process of deposited polymer on fibers as a function of temperature up to 900 °C. Within the same period of time, all plasma pyrrole treated samples began to lose weight with relatively fast rate up to 400 °C which suggests the loss of polymeric structures. The weight loss between 300 and 600 °C is attributed to evolution of CO2 due to decomposition of functional groups (e.g. carboxyl compounds). With keeping in mind the surface chemical structure, the higher the amount of carbonyl, alcohols, and ether compounds, the lower the stability of deposited polymer. Thus, the highest weight loss is observed in 1400 W 45 s pyrrole+pTSA.H2O plasma treated sample probably because of the presence of less stable polymer than that of other plasma treated samples. Comparison of the AFM images for untreated and plasma treated samples shows that the surface topography may change on a microscopic scale. The AFM image of 1800 W 45 s treated T700/CNT fiber possesses the most significant increase in roughening compared to untreated T700/CNT fiber. Namely, the fiber surface became rougher with ~3.6 fold that of the T700/CNT fiber. The increase observed in surface roughness compared to untreated T700/CNT fiber may provide more contact points between fiber and matrix due to increased surface area. It is believed to be beneficial for their application as reinforcement in composites.

Keywords: hybrid fibers, surface characterization, surface roughness, thermal stability

Procedia PDF Downloads 224
2459 Effect of Substrate Temperature on Structure and Properties of Sputtered Transparent Conducting Film of La-Doped BaSnO₃

Authors: Alok Tiwari, Ming Show Wong

Abstract:

Lanthanum (La) doped Barium Tin Oxide (BaSnO₃) film is an excellent alternative for expensive Transparent Conducting Oxides (TCOs) film such as Indium Tin Oxide (ITO). However single crystal film of La-doped BaSnO₃ has been reported with a good amount of conductivity and transparency but in order to improve its reachability, it is important to grow doped BaSO₃ films on an inexpensive substrate. La-doped BaSnO₃ thin films have been grown on quartz substrate by Radio Frequency (RF) sputtering at a different substrate temperature (from 200⁰C to 750⁰C). The thickness of the film measured was varying from 360nm to 380nm with varying substrate temperature. Structure, optical and electrical properties have been studied. The carrier concentration is seen to be decreasing as we enhance the substrate temperature while mobility found to be increased up to 9.3 cm²/V-S. At low substrate temperature resistivity found was lower (< 3x10⁻³ ohm-cm) while sudden enhancement was seen as substrate temperature raises and the trend continues further with increasing substrate temperature. Optical transmittance is getting better with higher substrate temperature from 70% at 200⁰C to > 80% at 750⁰C. Overall, understanding of changes in microstructure, electrical and optical properties of a thin film by varying substrate temperature has been reported successfully.

Keywords: conductivity, perovskite, mobility, TCO film

Procedia PDF Downloads 156
2458 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: axial voidage, circulating fluidized bed, splash zone, static bed

Procedia PDF Downloads 274
2457 Effect of Steel Fibers on M30 Fly Ash Concrete

Authors: Saksham

Abstract:

Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices.

Keywords: concrete, sustainability, durability, compressive strength

Procedia PDF Downloads 35
2456 Tunnel Convergence Monitoring by Distributed Fiber Optics Embedded into Concrete

Authors: R. Farhoud, G. Hermand, S. Delepine-lesoille

Abstract:

Future underground facility of French radioactive waste disposal, named Cigeo, is designed to store intermediate and high level - long-lived French radioactive waste. Intermediate level waste cells are tunnel-like, about 400m length and 65 m² section, equipped with several concrete layers, which can be grouted in situ or composed of tunnel elements pre-grouted. The operating space into cells, to allow putting or removing waste containers, should be monitored for several decades without any maintenance. To provide the required information, design was performed and tested in situ in Andra’s underground laboratory (URL) at 500m under the surface. Based on distributed optic fiber sensors (OFS) and backscattered Brillouin for strain and Raman for temperature interrogation technics, the design consists of 2 loops of OFS, at 2 different radiuses, around the monitored section (Orthoradiale strains) and longitudinally. Strains measured by distributed OFS cables were compared to classical vibrating wire extensometers (VWE) and platinum probes (Pt). The OFS cables were composed of 2 cables sensitive to strains and temperatures and one only for temperatures. All cables were connected, between sensitive part and instruments, to hybrid cables to reduce cost. The connection has been made according to 2 technics: splicing fibers in situ after installation or preparing each fiber with a connector and only plugging them together in situ. Another challenge was installing OFS cables along a tunnel mad in several parts, without interruption along several parts. First success consists of the survival rate of sensors after installation and quality of measurements. Indeed, 100% of OFS cables, intended for long-term monitoring, survived installation. Few new configurations were tested with relative success. Measurements obtained were very promising. Indeed, after 3 years of data, no difference was observed between cables and connection methods of OFS and strains fit well with VWE and Pt placed at the same location. Data, from Brillouin instrument sensitive to strains and temperatures, were compensated with data provided by Raman instrument only sensitive to temperature and into a separated fiber. These results provide confidence in the next steps of the qualification processes which consists of testing several data treatment approach for direct analyses.

Keywords: monitoring, fiber optic, sensor, data treatment

Procedia PDF Downloads 118
2455 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH as a sustainable material instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared, incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

Keywords: high temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties

Procedia PDF Downloads 259
2454 Torsional Behavior of Reinforced Concrete (RC) Beams Strengthened by Fiber Reinforced Cementitious Materials– a Review

Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri

Abstract:

Reinforced concrete (RC) is commonly used material in the construction sector, due to its low-cost and durability, and allowed the architectures and designers to construct structural members with different shapes and finishing. Usually, RC members are designed to sustain service loads efficiently without any destruction. However, because of the faults in the design phase, overloading, materials deficiencies, and environmental effects, most of the structural elements will require maintenance and repairing over their lifetime. Therefore, strengthening and repair of the deteriorated and/or existing RC structures are much important to extend their life cycle. Various techniques are existing to retrofit and strengthen RC structural elements such as steel plate bonding, external pre-stressing, section enlargement, fiber reinforced polymer (FRP) wrapping, etc. Although these configurations can successfully improve the load bearing capacity of the beams, they are still prone to corrosion damage which results in failure of the strengthened elements. Therefore, many researchers used fiber reinforced cementitious materials due to its low-cost, corrosion resistance, and result in improvement of the tensile and fatigue behaviors. Various types of cementitious materials have been used to strengthen or repair structural elements. This paper has summarized to accumulate data regarding on previously published research papers concerning the torsional behaviors of RC beams strengthened by various types of cementitious materials.

Keywords: reinforced concrete beams, strengthening techniques, cementitious materials, torsional strength, twisting angle

Procedia PDF Downloads 110
2453 Clusterization Probability in 14N Nuclei

Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev

Abstract:

The main aim of the current work is to examine if 14N is candidate to be clusterized nuclei or not. In order to check this attendance, we have measured the angular distributions for 14N ion beam elastically scattered on 12C target nuclei at different low energies; 17.5, 21, and 24.5MeV which are close to the Coulomb barrier energy for 14N+12C nuclear system. Study of various transfer reactions could provide us with useful information about the attendance of nuclei to be in a composite form (core + valence). The experimental data were analyzed using two approaches; Phenomenological (Optical Potential) and semi-microscopic (Double Folding Potential). The agreement between the experimental data and the theoretical predictions is fairly good in the whole angular range.

Keywords: deuteron transfer, elastic scattering, optical model, double folding, density distribution

Procedia PDF Downloads 321
2452 Nanofocusing of Surface Plasmon Polaritons by Partially Metal- Coated Dielectric Conical Probe: Optimal Asymmetric Distance

Authors: Ngo Thi Thu, Kazuo Tanaka, Masahiro Tanaka, Dao Ngoc Chien

Abstract:

Nanometric superfocusing of optical intensity near the tip of partially metal- coated dielectric conical probe of the convergent surface plasmon polariton wave is investigated by the volume integral equation method. It is possible to perform nanofocusing using this probe by using both linearly and radially polarized Gaussian beams as the incident waves. Strongly localized and enhanced optical near-fields can be created on the tip of this probe for the cases of both incident Gaussian beams. However the intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip.

Keywords: waveguide, surface plasmons, electromagnetic theory

Procedia PDF Downloads 463
2451 Bright, Dark N-Soliton Solution of Fokas-Lenells Equation Using Hirota Bilinearization Method

Authors: Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy

Abstract:

In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across the optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain a bright soliton solution. We have obtained bright 1-soliton and 2-soliton solutions and propose a scheme for obtaining an N-soliton solution. We have used an additional parameter that is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. In the non-vanishing boundary condition, we obtain the dark 1-soliton solution. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.

Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton

Procedia PDF Downloads 95
2450 Some Fundamental Physical Properties of BiGaO₃ Cubic Perovskite

Authors: B. Gueridi, T. Chihi, M. Fatmi, A. Faci

Abstract:

Some fundamental physical properties of BiGaO₃ were investigated under pressure and temperature effect using generalized gradient approximation and local density approximation approaches. The effect of orientation on Debye temperature and sound waves velocities were estimated from elastic constants. The value of the bulk modulus of BiGaO₃ is a sign of its high hardness because it is linked to an isotropic deformation. BiGaO₃ is a semiconductor and ductile material with covalent bonding (Ga–O), and the Bi-O bonding is ionic. The optical transitions were observed when electrons pass from the top of the valence band (O-2p) to the bottom of the conduction band (Ga-4p or Bi-6p). The thermodynamic parameters are determined in temperature and pressure ranging from 0 to 1800 K and 0 to 50 GPa.

Keywords: BiGaO₃ perovskite, optical absorption, first principle, band structure

Procedia PDF Downloads 101
2449 Impact of Unusual Dust Event on Regional Climate in India

Authors: Kanika Taneja, V. K. Soni, Kafeel Ahmad, Shamshad Ahmad

Abstract:

A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere.

Keywords: aerosol optical properties, dust storm, radiative transfer model, sky radiometer

Procedia PDF Downloads 369
2448 Assessment of Exploitation Vulnerability of Quantum Communication Systems with Phase Encryption

Authors: Vladimir V. Nikulin, Bekmurza H. Aitchanov, Olimzhon A. Baimuratov

Abstract:

Quantum communication technology takes advantage of the intrinsic properties of laser carriers, such as very high data rates and low power requirements, to offer unprecedented data security. Quantum processes at the physical layer of encryption are used for signal encryption with very competitive performance characteristics. The ultimate range of applications for QC systems spans from fiber-based to free-space links and from secure banking operations to mobile airborne and space-borne networking where they are subjected to channel distortions. Under practical conditions, the channel can alter the optical wave front characteristics, including its phase. In addition, phase noise of the communication source and photo-detection noises alter the signal to bring additional ambiguity into the measurement process. If quantized values of photons are used to encrypt the signal, exploitation of quantum communication links becomes extremely difficult. In this paper, we present the results of analysis and simulation studies of the effects of noise on phase estimation for quantum systems with different number of encryption bases and operating at different power levels.

Keywords: encryption, phase distortion, quantum communication, quantum noise

Procedia PDF Downloads 542
2447 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures

Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha

Abstract:

5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.

Keywords: concrete beam, FRP bars, spacing effect, thermal deformation

Procedia PDF Downloads 195
2446 Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials

Authors: Jefto Terzovic, Ana Kontic, Isidora Ilic

Abstract:

In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials.

Keywords: laminated glass, laminated plexiglass, aseismic stiffening, experiment, laboratory testing, computer model, finite element method

Procedia PDF Downloads 67
2445 Effect of Different Carbon Fabric Orientations on the Fracture Properties of Carbon Fabric Reinforced Polymer Composites

Authors: S. F. Halim, H. F. Naguib, S. N. Lawandy, R. S. Hegazy, M. N. Baheg

Abstract:

The main drawbacks of the traditional carbon fabric reinforced epoxy resin (CFRP) are low strain failure, delamination between composites layers, and low impact resistance due to the brittleness of epoxy resin. The aim of this study is to enhance the fracture properties of the CFRP composites laminates via the variation of composite's designs. A series of composites were fabricated in which bidirectional (00/900) carbon fabric (CF) layers were laid inside the resin matrix with orientation codes as F1 [(00, 900)/ (00, 900)], F2 [(900, 00)/ (00, 900)] and F3 [(00,900)/ (900, 00). The mechanical and dynamic properties of the composites were estimated. In addition, the morphology of samples surface was examined by scanning electron microscope (SEM) after impact fracture. The results revealed that the CFRP properties could be tailored fitting specific applications by controlling the fabric orientation inside the CFRP composite design. F2 orientation [(900, 00)/ (00.900)] showed the highest tensile and flexural strength values. On the other hand, the impact strength values of composites were in the order F1 > F2 > F3. The storage modulus, loss modulus, and glass transition temperature Tg values obtained from the dynamic mechanical analysis (DMA) examination was in the order F1 > F2 > F3. The variation in the properties of the composite was clearly explained by the SEM micrographs as the failure of F3 orientation properties was referred to as the complete breakage of the CF layers upon fracture.

Keywords: carbon fiber, CFRP, composites, epoxy resins, flexural strength

Procedia PDF Downloads 119
2444 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations

Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman

Abstract:

Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.

Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images

Procedia PDF Downloads 125
2443 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics

Procedia PDF Downloads 64
2442 Composite Materials from Beer Bran Fibers and Polylactic Acid: Characterization and Properties

Authors: Camila Hurtado, Maria A. Morales, Diego Torres, L.H. Reyes, Alejandro Maranon, Alicia Porras

Abstract:

This work presents the physical and chemical characterization of beer brand fibers and the properties of novel composite materials made of these fibers and polylactic acid (PLA). Treated and untreated fibers were physically characterized in terms of their moisture content (ASTM D1348), density, and particle size (ASAE S319.2). A chemical analysis following TAPPI standards was performed to determine ash, extractives, lignin, and cellulose content on fibers. Thermal stability was determined by TGA analysis, and an FTIR was carried out to check the influence of the alkali treatment in fiber composition. An alkali treatment with NaOH (5%) of fibers was performed for 90 min, with the objective to improve the interfacial adhesion with polymeric matrix in composites. Composite materials based on either treated or untreated beer brand fibers and polylactic acid (PLA) were developed characterized in tension (ASTM D638), bending (ASTM D790) and impact (ASTM D256). Before composites manufacturing, PLA and brand beer fibers (10 wt.%) were mixed in a twin extruder with a temperature profile between 155°C and 180°C. Coupons were manufactured by compression molding (110 bar) at 190°C. Physical characterization showed that alkali treatment does not affect the moisture content (6.9%) and the density (0.48 g/cm³ for untreated fiber and 0.46 g/cm³ for the treated one). Chemical and FTIR analysis showed a slight decrease in ash and extractives. Also, a decrease of 47% and 50% for lignin and hemicellulose content was observed, coupled with an increase of 71% for cellulose content. Fiber thermal stability was improved with the alkali treatment at about 10°C. Tensile strength of composites was found to be between 42 and 44 MPa with no significant statistical difference between coupons with either treated or untreated fibers. However, compared to neat PLA, composites with beer bran fibers present a decrease in tensile strength of 27%. Young modulus increases by 10% with treated fiber, compared to neat PLA. Flexural strength decreases in coupons with treated fiber (67.7 MPa), while flexural modulus increases (3.2 GPa) compared to neat PLA (83.3 MPa and 2.8 GPa, respectively). Izod impact test results showed an improvement of 99.4% in coupons with treated fibers - compared with neat PLA.

Keywords: beer bran, characterization, green composite, polylactic acid, surface treatment

Procedia PDF Downloads 116
2441 Increasing the Frequency of Laser Impulses with Optical Choppers with Rotational Shafts

Authors: Virgil-Florin Duma, Dorin Demian

Abstract:

Optical choppers are among the most common optomechatronic devices, utilized in numerous applications, from radiometry to telescopes and biomedical imaging. The classical configuration has a rotational disk with windows with linear margins. This research points out the laser signals that can be obtained with these classical choppers, as well as with another, novel, patented configuration, of eclipse choppers (i.e., with rotational disks with windows with non-linear margins, oriented outwards or inwards). Approximately triangular laser signals can be obtained with eclipse choppers, in contrast to the approximately sinusoidal – with classical devices. The main topic of this work refers to another, novel device, of choppers with shafts of different shapes and with slits of various profiles (patent pending). A significant improvement which can be obtained (with regard to disk choppers) refers to the chop frequencies of the laser signals. Thus, while 1 kHz is their typical limit for disk choppers, with choppers with shafts, a more than 20 times increase in the chop frequency can be obtained with choppers with shafts. Their transmission functions are also discussed, for different types of laser beams. Acknowledgments: This research is supported by the Romanian National Authority for Scientific Research, through the project PN-III-P2-2.1-BG-2016-0297.

Keywords: laser signals, laser systems, optical choppers, optomechatronics, transfer functions, eclipse choppers, choppers with shafts

Procedia PDF Downloads 178
2440 Sliver Nanoparticles Enhanced Visible and Near Infrared Emission of Er³+ Ions Doped Lithium Tungsten Tellurite Glasses

Authors: Sachin Mahajan, Ghizal Ansari

Abstract:

TeO2-WO3-Li2O glass doped erbium ions (1mol %) and embedded silver nanoparticles( Ag NPs) has successfully been prepared by melt quenching technique and increasing the heat-treatment duration. The amorphous nature of the glass is determined by X-ray diffraction method, and the presences of silver nanoparticles are confirmed using Transmission Electron Microscopy analysis. TEM image reveals that the Ag NPs are dispersed homogeneously with average size 18 nm. From the UV-Vis absorption spectra, the surface plasmon resonance (SPR) peaks are detected at 550 and 578 nm. Under 980 nm excitation wavelengths, enhancement of red upconversion fluorescence and near-infrared broadband emission around 1550nm of Er3+ ions doped tellurite glasses containing Ag NPs have been observed. The observed enhancement of Er3+ emission is mainly attributed to the local field effects of Ag NPs causes an intensified electromagnetic field around NPs. For observed enhancement involved mechanisms are discussed.

Keywords: erbium ions, silver nanoparticle, surface plasmon resonance, upconversion emission

Procedia PDF Downloads 576
2439 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals

Authors: N. Renuka, R. Ramesh Babu, N. Vijayan

Abstract:

Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.

Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer

Procedia PDF Downloads 245
2438 Hot Air Flow Annealing of MAPbI₃ Perovskite: Structural and Optical Properties

Authors: Mouad Ouafi, Lahoucine Atourki, Larbi Laanab, Erika Vega, Miguel Mollar, Bernabe Marib, Boujemaa Jaber

Abstract:

Despite the astonishing emergence of the methylammonium lead triiodide perovskite as a promising light harvester for solar cells, their physical properties in solution-processed MAPbI₃ are still crucial and need to be improved. The objective of this work is to investigate the hot airflow effect during the growth of MAPbI₃ films using the spin-coating process on their structural, optical and morphological proprieties. The experimental results show that many physical proprieties of the perovskite strongly depend on the air flow temperature and the optimization which has a beneficial effect on the perovskite quality. In fact, a clear improvement of the crystallinity and the crystallite size of MAPbI₃ perovskite is demonstrated by the XRD analyses, when the airflow temperature is increased up to 100°C. Alternatively, as far as the surface morphology is concerned, SEM micrographs show that significant homogenous nucleation, uniform surface distribution and pin holes free with highest surface coverture of 98% are achieved when the airflow temperature reaches 100°C. At this temperature, the improvement is also observed when considering the optical properties of the films. By contrast, a remarkable degradation of the MAPbI₃ perovskites associated to the PbI₂ phase formation is noticed, when the hot airflow temperature is higher than 100°C, especially 300°C.

Keywords: hot air flow, crystallinity, surface coverage, perovskite morphology

Procedia PDF Downloads 154
2437 Experimental Investigation of the Effect of Glass Granulated Blast Furnace Slag on Pavement Quality Concrete Pavement Made of Recycled Asphalt Pavement Material

Authors: Imran Altaf Wasil, Dinesh Ganvir

Abstract:

Due to a scarcity of virgin aggregates, the use of reclaimed asphalt pavement (RAP) as a substitute for natural aggregates has gained popularity. Despite the fact that RAP is recycled in asphalt pavement, there is still excess RAP, and its use in concrete pavements has expanded in recent years. According to a survey, 98 percent of India's pavements are flexible. As a result, the maintenance and reconstruction of such pavements generate RAP, which can be reused in concrete pavements as well as surface course, base course, and sub-base of flexible pavements. Various studies on the properties of reclaimed asphalt pavement and its optimal requirements for usage in concrete has been conducted throughout the years. In this study a total of four different mixes were prepared by partially replacing natural aggregates by RAP in different proportions. It was found that with the increase in the replacement level of Natural aggregates by RAP the mechanical and durability properties got reduced. In order to increase the mechanical strength of mixes 40% Glass Granulated Blast Furnace Slag (GGBS) was used and it was found that with replacement of cement by 40% of GGBS, there was an enhancement in the mechanical and durability properties of RAP inclusive PQC mixes. The reason behind the improvement in the properties is due to the processing technique used in order to remove the contaminant layers present in the coarse RAP aggregates. The replacement level of Natural aggregate with RAP was done in proportions of 20%, 40% and 60% along with the partial replacement of cement by 40% GGBS. It was found that all the mixes surpassed the design target value of 40 MPa in compression and 4.5 MPa in flexure making it much more economical and feasible.

Keywords: reclaimed asphalt pavement, pavement quality concrete, glass granulated blast furnace slag, mechanical and durability properties

Procedia PDF Downloads 102