Search results for: image processing techniques
10634 Remote Sensing Application in Environmental Researches: Case Study of Iran Mangrove Forests Quantitative Assessment
Authors: Neda Orak, Mostafa Zarei
Abstract:
Environmental assessment is an important session in environment management. Since various methods and techniques have been produces and implemented. Remote sensing (RS) is widely used in many scientific and research fields such as geology, cartography, geography, agriculture, forestry, land use planning, environment, etc. It can show earth surface objects cyclical changes. Also, it can show earth phenomena limits on basis of electromagnetic reflectance changes and deviations records. The research has been done on mangrove forests assessment by RS techniques. Mangrove forests quantitative analysis in Basatin and Bidkhoon estuaries was the aim of this research. It has been done by Landsat satellite images from 1975- 2013 and match to ground control points. This part of mangroves are the last distribution in northern hemisphere. It can provide a good background to improve better management on this important ecosystem. Landsat has provided valuable images to earth changes detection to researchers. This research has used MSS, TM, +ETM, OLI sensors from 1975, 1990, 2000, 2003-2013. Changes had been studied after essential corrections such as fix errors, bands combination, georeferencing on 2012 images as basic image, by maximum likelihood and IPVI Index. It was done by supervised classification. 2004 google earth image and ground points by GPS (2010-2012) was used to compare satellite images obtained changes. Results showed mangrove area in bidkhoon was 1119072 m2 by GPS and 1231200 m2 by maximum likelihood supervised classification and 1317600 m2 by IPVI in 2012. Basatin areas is respectively: 466644 m2, 88200 m2, 63000 m2. Final results show forests have been declined naturally. It is due to human activities in Basatin. The defect was offset by planting in many years. Although the trend has been declining in recent years again. So, it mentioned satellite images have high ability to estimation all environmental processes. This research showed high correlation between images and indexes such as IPVI and NDVI with ground control points.Keywords: IPVI index, Landsat sensor, maximum likelihood supervised classification, Nayband National Park
Procedia PDF Downloads 29310633 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection
Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour
Abstract:
The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.Keywords: EEG, wavelet, epilepsy, detection
Procedia PDF Downloads 53810632 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring
Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie
Abstract:
Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement
Procedia PDF Downloads 1010631 Effect of Celebrity Endorsements and Social Media Influencers on Brand Loyalty: A Comparative Study
Authors: Dhruv Saini, Megha Sharma, Sharad Gupta
Abstract:
This research is showing the use of celebrity endorsement and social media influencers and how they help in enhancing the brand loyalty of the consumers. The study aims at keeping brand image of the brand as the link between the two. However, choosing the right celebrity or social media influencer is not an easy task and it is very essential for a brand to select the right ambassador for advertising their products and for selling the product to the ultimate consumer. The purpose of the study is to create a relationship of Celebrity endorsement with brand image and with brand loyalty and creating a relationship of Social media influencers with brand image and with brand loyalty and then making a comparison between the two by measuring the effects of both simultaneously. And then by analyzing which among the two has a greater impact on brand loyalty of the consumers. The study mainly focuses on four major variables namely Celebrity endorsement, Social media influencers, Brand image and Brand loyalty. The study also focuses on interdependence and relationships that these variables have with each other and how they are linked with each other. The study also aims at looking which among Celebrity endorsement and Social media influencer has a greater impact on increasing or enhancing the loyalty for a brand. Earlier celebrity endorsers had a major impact on brand loyalty of the consumers but with time social media influencers are also playing a very vital role in impacting the brand loyalty of the consumers and are giving a fight to the celebrity endorsers as well. Also, Brand image also has a very vital role to play in enhancing the brand loyalty of a brand in the minds of the consumers as a well-known and a better perception of a brand leads to retention of more and more consumers. Also, both Celebrity endorsement and Social media influencers are two-way swords as both have a number of positives and a number of negatives as well, so these are to be compared keeping in mind their adverse effects. Examination of the current market situation has shown that the recommendations of celebrities when properly integrated by comparing product strengths. Advertisers agree that celebrity authorization does not guarantee sales but it can create buzz and make the consumer feel better by-product, which is also what customers should expect as a real star by delivering the promise. On the other hand, depending on the results of the studies, there should be a variety of conclusions planned. Some of the influential people on social media had a positive impact on the product portrait. One of the conclusions is that the product image had a positive impact on consumers. Moreover, the results of the following study states that the most influential influencers consumers in their intended purpose of the purchase, but instead produced a positive result indirectly with Brand image which would further lead to brand loyalty .Keywords: brand image, brand loyalty, celebrity endorsement, social media influencer
Procedia PDF Downloads 19510630 An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic
Authors: M. Iruleswari, A. Jeyapaul Murugan
Abstract:
Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.Keywords: finite impulse response, distributed arithmetic, field programmable gate array, look-up table
Procedia PDF Downloads 45710629 Administrators' Information Management Capacity and Decision-Making Effectiveness on Staff Promotion in the Teaching Service Commissions in South – West, Nigeria
Authors: Olatunji Sabitu Alimi
Abstract:
This study investigated the extent to which administrators’ information storage, retrieval and processing capacities influence decisions on staff promotion in the Teaching Service Commissions (TESCOMs) in The South-West, Nigeria. One research question and two research hypotheses were formulated and tested respectively at 0.05 level of significance. The study used the descriptive research of the survey type. One hundred (100) staff on salary grade level 09 constituted the sample. Multi- stage, stratified and simple random sampling techniques were used to select 100 staff from the TESCOMs in The South-West, Nigeria. Two questionnaires titled Administrators’ Information Storage, Retrieval and Processing Capacities (AISRPC), and Staff Promotion Effectiveness (SPE) were used for data collection. The inventory was validated and subjected to test-re-test and reliability coefficient of r = 0.79 was obtained. The data were collected and analyzed using Pearson Product Moment Correlation coefficient and simple percentage. The study found that Administrators at TESCOM stored their information in files, hard copies, soft copies, open registry and departmentally in varying degrees while they also processed information manually and through electronics for decision making. In addition, there is a significant relationship between administrators’ information storage and retrieval capacities in the TESCOMs in South – West, Nigeria, (r cal = 0.598 > r table = 0.195). Furthermore, administrators’ information processing capacity and staff promotion effectiveness were found to be significantly related (r cal = 0.209 > r table = 0.195 at 0.05 level of significance). The study recommended that training, seminars, workshops should be organized for administrators on information management, while educational organizations should provide Information Management Technology (ICT) equipment for the administrators in the TESCOMs. The staff of TESCOM should be promoted having satisfied the promotion criteria such as spending required number of years on a grade level, a clean record of service and vacancy.Keywords: information processing capacity, staff promotion effectiveness, teaching service commission, Nigeria
Procedia PDF Downloads 53310628 Damage Analysis in Open Hole Composite Specimens by Digital Image Correlation: Experimental Investigation
Authors: Faci Youcef
Abstract:
In the present work, an experimental study is carried out using the digital image correlation (DIC) technique to analyze the damage and behavior of woven composite carbon/epoxy under tensile loading. The tension mechanisms associated with failure modes of bolted joints in advanced composites are studied, as well as displacement distribution and strain distribution. The evolution value of bolt angle inclination during tensile tests was studied. In order to compare the distribution of displacements and strains along the surface, figures of image mapping are made. Several factors that are responsible for the failure of fiber-reinforced polymer composite materials are observed. It was found that strain concentrations observed in the specimens can be used to identify full-field damage onset and to monitor damage progression during loading. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions include a failure analysis associated with bolt angle inclinations and supported by microscopic visualizations of the composite specimen. The DIC results can be used to develop and accurately validate numerical models.Keywords: Carbone, woven, damage, digital image, bolted joint, the inclination of angle
Procedia PDF Downloads 8010627 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification
Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo
Abstract:
The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.Keywords: the bluff body wakes, low-order modeling, neural network, system identification
Procedia PDF Downloads 18010626 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin
Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya
Abstract:
Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.Keywords: paleochannels, optical data, SAR image, SNAP
Procedia PDF Downloads 9210625 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery
Authors: Bencherif Kada
Abstract:
In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, diversity, shrublands
Procedia PDF Downloads 12410624 Giant Achievements in Food Processing
Authors: Farnaz Amidi Fazli
Abstract:
After long period of human experience about food processing from raw eating to canning of food in the last century now it is time to use novel technologies which are sometimes completely different from common technologies. It is possible to decontaminate food without using heat or the foods are stored without using cold chain. Pulsed electric field (PEF) processing is a non-thermal method of food preservation that uses short bursts of electricity, PEF can be used for processing liquid and semi-liquid food products. PEF processing offers high quality fresh-like liquid foods with excellent flavor, nutritional value, and shelf-life. High pressure processing (HPP) technology has the potential to fulfill both consumer and scientific requirements. The use of HPP for over 50 years has found applications in non-food industries. For food applications, ‘high pressure’ can be generally considered to be up to 600 MPa for most food products. After years, freezing has its high potential to food preservation due to new and quick freezing methods. Foods which are prepared by this technology have more acceptability and high quality comparing with old fashion slow freezing. Thus, quick freezing has further been adopted as a widespread commercial method for long-term preservation of perishable foods which improved both the health and convenience of everyone in the industrialised countries. Above parameters are achieved by Fluidised-bed freezing systems, freezing by immersion and Hydrofluidisation on the other hand new thawing methods like high-pressure, microwave, ohmic, and acoustic thawing have a key role in quality and adaptability of final product.Keywords: quick freezing, thawing, high pressure, pulse electric, hydrofluidisation
Procedia PDF Downloads 32110623 Comparative Study on Manet Using Soft Computing Techniques
Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri
Abstract:
Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network
Procedia PDF Downloads 34910622 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 51710621 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials
Authors: Mohammad Nadeem, Haider Banka, R. Venugopal
Abstract:
Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.Keywords: fine material, granulation, intelligent technique, modelling
Procedia PDF Downloads 37410620 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network
Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal
Abstract:
This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography
Procedia PDF Downloads 14310619 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 28710618 Mapping Forest Biodiversity Using Remote Sensing and Field Data in the National Park of Tlemcen (Algeria)
Authors: Bencherif Kada
Abstract:
In forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects, and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants and bare soils. Texture attributes seem to provide no useful information while spatial attributes of shape, compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, biodiversity, shrublands
Procedia PDF Downloads 3010617 Patient-Specific Design Optimization of Cardiovascular Grafts
Authors: Pegah Ebrahimi, Farshad Oveissi, Iman Manavi-Tehrani, Sina Naficy, David F. Fletcher, Fariba Dehghani, David S. Winlaw
Abstract:
Despite advances in modern surgery, congenital heart disease remains a medical challenge and a major cause of infant mortality. Cardiovascular prostheses are routinely used in surgical procedures to address congenital malformations, for example establishing a pathway from the right ventricle to the pulmonary arteries in pulmonary valvar atresia. Current off-the-shelf options including human and adult products have limited biocompatibility and durability, and their fixed size necessitates multiple subsequent operations to upsize the conduit to match with patients’ growth over their lifetime. Non-physiological blood flow is another major problem, reducing the longevity of these prostheses. These limitations call for better designs that take into account the hemodynamical and anatomical characteristics of different patients. We have integrated tissue engineering techniques with modern medical imaging and image processing tools along with mathematical modeling to optimize the design of cardiovascular grafts in a patient-specific manner. Computational Fluid Dynamics (CFD) analysis is done according to models constructed from each individual patient’s data. This allows for improved geometrical design and achieving better hemodynamic performance. Tissue engineering strives to provide a material that grows with the patient and mimic the durability and elasticity of the native tissue. Simulations also give insight on the performance of the tissues produced in our lab and reduce the need for costly and time-consuming methods of evaluation of the grafts. We are also developing a methodology for the fabrication of the optimized designs.Keywords: computational fluid dynamics, cardiovascular grafts, design optimization, tissue engineering
Procedia PDF Downloads 24210616 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.Keywords: biological pathway, gene identification, object detection, Siamese network
Procedia PDF Downloads 29210615 The Image of Uganda in Germany: Assessing the Perceptions of Germans about Uganda as a Tourist Destination
Authors: K. V. Nabichu
Abstract:
The rationale of this research was to review how Germans perceive Uganda as a tourism destination, after German visitors arrivals to Uganda remain few compared to other destinations like Kenya. It was assumed that Uganda suffers a negative image in Germany due to negative media influence. The study findings indicate that Uganda is not a popular travel destination in Germany, there is generally lack of travel information about Uganda. Despite the respondents’ hearing about Uganda’s and her beautiful attractions, good climate and friendly people, they also think Uganda is unsafe for travel. Findings further show that Uganda is a potential travel destination for Germans due to her beautifull landscape, rich culture, wild life, primates and the Nile, however political unrest, insecurity, the fear for diseases and poor hygiene hinder Germans from travelling to Uganda. The media, internet as well as friends and relatives were the major primary sources of information on Uganda while others knew about Uganda through their school lessons and sports. Uganda is not well advertised and promoted in Germany.Keywords: destination Uganda and Germany, image, perception, negative media influence
Procedia PDF Downloads 34010614 Improvement of the Traditional Techniques of Artistic Casting through the Development of Open Source 3D Printing Technologies Based on Digital Ultraviolet Light Processing
Authors: Drago Diaz Aleman, Jose Luis Saorin Perez, Cecile Meier, Itahisa Perez Conesa, Jorge De La Torre Cantero
Abstract:
Traditional manufacturing techniques used in artistic contexts compete with highly productive and efficient industrial procedures. The craft techniques and associated business models tend to disappear under the pressure of the appearance of mass-produced products that compete in all niche markets, including those traditionally reserved for the work of art. The surplus value derived from the prestige of the author, the exclusivity of the product or the mastery of the artist, do not seem to be sufficient reasons to preserve this productive model. In the last years, the adoption of open source digital manufacturing technologies in small art workshops can favor their permanence by assuming great advantages such as easy accessibility, low cost, and free modification, adapting to specific needs of each workshop. It is possible to use pieces modeled by computer and made with FDM (Fused Deposition Modeling) 3D printers that use PLA (polylactic acid) in the procedures of artistic casting. Models printed by PLA are limited to approximate minimum sizes of 3 cm, and optimal layer height resolution is 0.1 mm. Due to these limitations, it is not the most suitable technology for artistic casting processes of smaller pieces. An alternative to solve size limitation, are printers from the type (SLS) "selective sintering by laser". And other possibility is a laser hardens, by layers, metal powder and called DMLS (Direct Metal Laser Sintering). However, due to its high cost, it is a technology that is difficult to introduce in small artistic foundries. The low-cost DLP (Digital Light Processing) type printers can offer high resolutions for a reasonable cost (around 0.02 mm on the Z axis and 0.04 mm on the X and Y axes), and can print models with castable resins that allow the subsequent direct artistic casting in precious metals or their adaptation to processes such as electroforming. In this work, the design of a DLP 3D printer is detailed, using backlit LCD screens with ultraviolet light. Its development is totally "open source" and is proposed as a kit made up of electronic components, based on Arduino and easy to access mechanical components in the market. The CAD files of its components can be manufactured in low-cost FDM 3D printers. The result is less than 500 Euros, high resolution and open-design with free access that allows not only its manufacture but also its improvement. In future works, we intend to carry out different comparative analyzes, which allow us to accurately estimate the print quality, as well as the real cost of the artistic works made with it.Keywords: traditional artistic techniques, DLP 3D printer, artistic casting, electroforming
Procedia PDF Downloads 14210613 A Context-Sensitive Algorithm for Media Similarity Search
Authors: Guang-Ho Cha
Abstract:
This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.Keywords: context-sensitive search, image search, similarity ranking, similarity search
Procedia PDF Downloads 36510612 Cause-Related Marketing: A Review of the Literature
Authors: Chang Hung Chen
Abstract:
Typically the Cause-Related Marketing (CRM) is effective for promoting products, and is also accepted as a role of communication tool for creating a positive image of the corporate. Today, companies are taking Corporate Social Responsibility (CSR) as core activities to build a goal of sustainable development. CRM is not a synonym of CSR. Actually, CRM is a part of CSR, or a type of marketing strategy in CSR framework. This article focuses on the relationship between CSR and CRM, and how the CRM improves the CSR performance of the corporate. The research was conducted through review of literature on the subject area.Keywords: cause-related marketing, corporate social responsibility, corporate image, consumer behavior
Procedia PDF Downloads 34910611 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision
Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek
Abstract:
This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking
Procedia PDF Downloads 45810610 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps
Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam
Abstract:
GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.Keywords: noise, image, GIS, digital map, inpainting
Procedia PDF Downloads 35210609 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 19810608 Brand Equity Tourism Destinations: An Application in Wine Regions Comparing Visitors' and Managers' Perspectives
Abstract:
The concept of brand equity in the wine tourism area is an interesting topic to explore the factors that determine it. The aim of this study is to address this gap by investigating wine tourism destinations brand equity, and understanding the impact that the denomination of origin (DO) brand image and the destination image have on brand equity. Managing and monitoring the branding of wine tourism destinations is crucial to attract tourist arrivals. The multiplicity of stakeholders involved in the branding process calls for research that, unlike previous studies, adopts a broader perspective and incorporates an internal and an external perspective. Therefore, this gap by comparing managers’ and visitors’ approaches to wine tourism destination brand equity has been addressed. A survey questionnaire for data collection purposes was used. The hypotheses were tested using winery managers and winery visitors, each leading a different position relative to the wine tourism destination brand equity. All the interviews were conducted face-to-face. The survey instrument included several scales related to DO brand image, destination image, and wine tourism destination brand equity. All items were measured on seven-point Likert scales. Partial least squares was used to analyze the accuracy of scales, the structural model, and multi-group analysis to identify the differences in the path coefficients and to test the hypotheses. The results show that the positive influence of DO brand image on wine tourism destination brand equity is stronger for wineries than for visitors, but there are no significant differences between the two groups. However, there are significant differences in the positive effect of destination brand image on both wine tourism destination brand equity and DO brand image. The results of this study are important for consultants, practitioners, and policy makers. The gap between managers and visitors calls for the development of a number of campaigns to enhance the image that visitors hold and, thus, increase tourist arrivals. Events such as wine gatherings and gastronomic symposiums held at universities and culinary schools and participation in business meetings can enhance the perceptions and in turn, the added value, brand equity of the wine tourism destinations. The images of destinations and DOs can help strengthen the brand equity of the wine tourism destinations, especially for visitors. Thus, the development and reinforcement of favorable, strong, and unique destination associations and DO associations are important to increase that value. Joint campaigns are advisable to enhance the images of destinations and DOs and, as a consequence, the value of the wine tourism destination brand.Keywords: brand equity, managers, visitors, wine tourism
Procedia PDF Downloads 13410607 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain
Authors: Juliza Hidayati, Sawarni Hasibuan
Abstract:
PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.Keywords: palm oil, value chain, value added, supply chain
Procedia PDF Downloads 37110606 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition
Authors: F. Laatar, S. Ktifa, H. Ezzaouia
Abstract:
Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties
Procedia PDF Downloads 37710605 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter
Authors: Vahid Anari, Leila Shahmohammadi
Abstract:
Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction
Procedia PDF Downloads 67